home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



3. Приложения волновой механики систем

Волновая механика систем, развитая с учетом принципа Паули и спина, добилась многочисленных блестящих успехов. Одним из них было объяснение спектра гелия. В то время как спектр ионизованного гелия нашел свое объяснение еще в теории Бора (ионизованный гелий относится к простейшей группе систем с одним электроном), спектр нейтрального гелия оставался загадкой. Действительно, линии нейтрального гелия делились на две отдельные категории, соответствующие термам, которые, по крайней мере в первом приближении, не были взаимно связаны.

Эти две системы совершенно независимых линий получили название спектров ортогелия и парагелия. Долгое время считалось, что эти два различных типа атомов гелия реально существуют, причем каждый испускает свой спектр. Но, наконец, удалось обнаружить, что различия между парагелием и ортогелием нет: один и тот же атом гелия в зависимости от обстоятельств излучает то орто-, то пара-спектр.

Гейзенберг в своей знаменитой работе дал ключ к разгадке этого явления. Поскольку оба орбитальных электрона нейтрального атома гелия подчиняются принципу Паули, то волновая функция этого атома должна быть антисимметричной по отношению ко всем координатам и спинам обоих электронов. Но эта антисимметрия может осуществляться двумя путями: волновая функция может быть симметрична по отношению к координатам и антисимметрична по отношению к спинам или наоборот. Таким образом, существует два типа волновых функций и, следовательно, спектральных термов. Наконец, поскольку спектральные термы относятся к разным категориям, они не могут быть взаимосвязаны, по крайней мере в первом приближении. Теперь достаточно отождествить одну из категорий термов с термами ортогелия, а другую – с термами парагелия, чтобы получить вполне удовлетворительное объяснение распада спектра гелия на две независимые части. С помощью такой интерпретации Гейзенбергу удалось объяснить некоторые особенности спектров ортогелия и парагелия, в частности: в то время как линии парагелия одинарные, линии ортогелия тройные и образуют триплеты. Объяснение Гейзенбергом этого незначительного факта теории представляет само по себе прекрасное подтверждение принципа Паули, ибо такое различие между тонкой структурой этих двух серий возникает именно из-за принципа Паули. Без него мы получили бы иной результат, противоречащий эксперименту.

Другим замечательным приложением волновой механики систем стала теория молекулы водорода или, в более общем виде, теория гомеополярной молекулы. Классическая теория в некоторой степени позволяет нам понять происхождение связей, соединяющих атомы гетерополярной молекулы, т е. молекулы, атомы которой обладают различным сродством к электрону. Действительно, в этом случае можно себе представить, что различные атомы молекулы превращаются в ионы, отдавая или присоединяя электроны. Поэтому можно думать, что стабильность молекулярной структуры обусловлена действием кулоновых сил между различными образовавшимися ионами. Однако случай гомеополярных молекул, например, весьма важный случай молекул, состоящих из двух атомов одинаковой природы, был раньше для физиков наиболее затруднительным, так как не существовало никаких причин, чтобы атомы с одинаковым сродством к электрону превращались в ионы различных знаков.

Следовательно, оставалось неясным, какого типа силы могут действовать между этими нейтральными атомами, чтобы обеспечить их связь в молекуле. Все, что приходило в голову, оказывалось для этой роли слишком слабым. Волновая механика позволяет, и это немалый успех, понять природу гомеополярных связей, введя понятие обменной энергии. Вот что означает это несколько таинственное выражение: если тщательно исследовать с помощью волновой механики поведение системы, содержащей тождественные частицы, оказывается, что в выражении для энергии системы наряду с членами, описывающими известное взаимодействие между частицами, появляются члены нового типа, связанные с тем, что тождественные частицы могут меняться местами.

Эти члены и описывают то, что мы назвали обменной энергией. Им соответствуют силы совершенно нового типа, которые невозможно представить в классической векторной форме и которые огромны по величине. Эти новые силы – неизбежное следствие формализма новой механики, однако, оказывается, их нельзя объяснить физически, в старом смысле этого слова. Мы снова оказались перед фактом, выходящим за рамки всех классических представлений и показывающим, сколь ошибочен наш обычный прием локализации физических величин в непрерывном пространстве трех измерений. Весьма поучительно следующее замечание: обменная энергия существует лишь тогда, когда вероятность найти две одинаковые частицы в одной области пространства не равна нулю. Иными словами, так как частицы в волновой механике, вообще говоря, не локализованы, то существует некоторое распределение плотностей вероятности. Обменная энергия существует в том и только в том случае, когда распределения плотности вероятности для двух частиц одного сорта перекрываются. Это замечание проливает свет на зависимость между обменной энергией и невозможностью локализовать частицу в пространстве.

Не останавливаясь больше на этих очень интересных свойствах обменной энергии, мы хотели бы показать, как объяснить образование гомеополярной молекулы. Простейший пример такой молекулы дает молекула водорода, состоящая из двух атомов, каждый из которых содержит один электрон. Когда два атома водорода, вначале находящиеся далеко друг от друга, начинают сближаться, они стремятся образовать механическую систему с двумя электронами. Поэтому между этими двумя электронами появляется обменная энергия.

Эту энергию можно вычислить методами волновой механики с учетом принципа Паули и существования спина. Это и проделали Гайтлер и Лондон. Они получили следующий результат: если спиновые векторы обоих электронов имеют одинаковые знаки, то обменная энергия соответствует отталкиванию между атомами, и молекула образоваться не может. Если, наоборот, векторы спинов имеют противоположные знаки, обменная энергия соответствует притяжению атомов, когда же атомы сближаются еще больше, снова возникает отталкивание. Это как раз и есть случаи, когда появляется тенденция к образованию стабильной молекулы.

Эта теория хорошо объясняет образование и свойства молекулы водорода. По существу ее можно трактовать следующим образом: электроны двух атомов водорода способны образовать пару с противоположно направленными векторами спина. Эта пара, обладая очень большой стабильностью, представляет собой связующее звено между двумя атомами и заставляет их соединяться в единую молекулу. В таком виде объяснение можно обобщить на случай всех двухатомных молекул и даже молекул, содержащих больше двух атомов. Рассмотрим, например, любую двухатомную молекулу. Два атома, способных объединиться в эту молекулу, содержат то или иное число электронов; определенное число этих электронов образует внутри атома пары электронов одинаковой энергии и противоположных спинов, некоторые же из них таких пар не образуют.

Электроны, не имеющие пары, остроумно названные холостыми электронами, стремятся, как только представится такая возможность, объединиться с электронами другого атома и образовать пару. Действительно, расчеты показывают, что в большинстве случаев сближение двух атомов приводит к образованию молекулы, в которой по крайней мере некоторые из холостых электронов этих двух атомов образуют пары. Образование таких пар и оказывается причиной молекулярной связи между двумя атомами. Очевидно, что это объяснение можно обобщить на случай молекул, содержащих более двух атомов.

Представление о том, что образование молекул происходит благодаря формированию электронных пар с противоположно направленными векторами спинов, позволяет нам дать объяснение понятию валентности, играющему фундаментальную роль в химии. Вообще можно сказать, что атом, содержащий в основном состоянии некоторое число nхолостых электронов, будет иметь химическую валентность n. Действительно, такой атом способен присоединить к себе еще nатомов водорода, поскольку каждый из его nсвободных электронов может образовать пару с электроном атома водорода.

Таким образом, валентность данного атома или по крайней мере максимальная его валентность равна n. Отсюда видно, что существование химической валентности связано с наличием обменной энергии между электронами. Теперь понятно, почему попытки объяснить валентные силы с помощью векторной схемы, применимой в остальных случаях, не дали по-настоящему удовлетворительного результата. Кроме того, тот факт, что два электрона, образуя пару, как бы нейтрализуются и не влияют больше ни на какие молекулярные взаимодействия, объясняет валентное насыщение, абсолютно несовместимое с представлением о валентностях как о силах старого типа. Отсюда уже видно, насколько удовлетворительна и разумна новая теория валентности, основанная на волновой механике.

В то время как это новое основание теории валентности кажется вполне несомненным, детальное объяснение различных фактов химии, связанных с этой теорией (многократная или направленная валентность, стереохимия, свободные связи и т д.), остается еще трудной задачей. Решением ее уже начали заниматься серьезно, однако такая математическая химия оказывается сложной наукой, и многое еще предстоит сделать, чтобы довести ее до конца. За исключением простого случая молекулы водорода, точный расчет собственных значений и собственных функций невозможен и приходится ограничиваться вычислением собственных значений и классификацией их в соответствии со свойствами симметрии отвечающих им волновых функций, выражения для которых остаются неизвестными. Для этого приходится обращаться к весьма общим методам, основанным на теории групп. Эта теория пока еще мало известна физикам, но она оказывается незаменимой в этом разделе волновой механики. Кроме того, мы с ее помощью очень быстрым и красивым путем приходим к прекрасным весьма общим результатам. Однако, поскольку физики-теоретики, умеющие обращаться с этим сложным методом, за недостатком времени не всегда занимаются изучением даже основных многочисленных и сложных химических фактов, для успешного завершения уже начавшей развиваться теории необходимо тесное сотрудничество между физиками и химиками. Что же касается нынешнего состояния науки о квантах, то во всяком случае одним из славных успехов новой механики стало объяснение некоторых важнейших законов химии.


2. Системы, состоящие из частиц одинаковой природы. Принцип Паули | Революция в физике | 4. Квантовая статистика