home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add



День 24

280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий

280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий

Четвертая неделя. Пришло время сделать шаг назад и немного вами полюбоваться. У вас получилось! Только задумайтесь! Вы больше не просто какой-то диск, похожий на блюдце. Ваши клетки блуждали, росли, крутились и теперь превратились в нечто, напоминающее забавную маленькую личинку. Вы всего несколько миллиметров в длину, и вас хорошо бы поместить под микроскоп, чтобы разглядеть, что же вы собой представляете, но у вас уже отчетливо различимы верхняя и нижняя части, а внутри формируются новые органы. Еще у вас есть пульсирующая красная сердечная трубка и расширяющаяся в вашей голове нервная трубка, а также трубка кишечника, проходящая сквозь ваше мохнатое прозрачное тело.

На все это у вас ушло всего три недели – всего ничего, а уже такие перемены. Но, с другой стороны, плодовая мушка, например, умудряется стать полностью сформировавшейся личинкой менее чем за сутки: нет смысла тянуть, когда жить тебе предстоит какие-то несколько недель. Вылупившись из яйца, эта блестящая белая личинка выползает наружу, чтобы есть и расти. Пять дней спустя ее вес увеличивается более чем в тысячу раз. Теперь личинка может спокойно превратиться в куколку, где ее клетки добавят необходимые штрихи к портрету, и… шедевр готов! Появляются глаза, усики, крылья и ножки, а дней через девять вылетает готовая плодовая мушка. Ровно столько времени у вас ушло на то, чтобы зарыться в матку вашей матери.


280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий

Для биологов плодовая мушка – нечто большее, чем надоедливый кухонный вредитель. Вот уже больше века эти насекомые помогают ученым проводить генетические исследования. Сложно придумать более подходящее подопытное существо: они маленькие, нетребовательные, живут недолго и быстро растут. Но подождите. Что же мы можем узнать, изучая эти крошечные создания? Плодовые мушки совершенно на нас не похожи. Тем не менее перед этой крошечной личинкой стоит такая же непростая задача, что и перед человеком: ей нужно создать полноценный организм, в котором все будет на своих местах. Причем, чтобы этого добиться, нам обоим необходимо проделать один и тот же трюк: разделить свое тело на сегменты.

На четвертой неделе после зачатия ваши сегменты впервые становится видно. С двух сторон спины, рядом с головой появляются два небольших бугорка, именуемых сомитами. Приблизительно час спустя появляется еще одна пара, а затем еще одна, и так далее, пока пар не станет 44 и они не будут простираться вдоль всей вашей спины. В результате на вашем позвоночнике появятся всевозможные странные штуковины – у вас сформируются плечи, ребра и таз, но предшествует всему этому повторяющаяся структура. Ваш позвоночник делится на маленькие позвонки, все одинаковой формы. Впоследствии они изменятся, подстраиваясь под свое расположение: верхние станут узкими, чтобы вы могли кивать или качать головой, нижние же, напротив, расширятся и сделаются более крепкими. Мышцы живота у нас также поделены на сегменты, что хорошо заметно на натренированном теле.

У плодовой мушки в личиночной стадии подобные сегменты тоже хорошо различимы: вдоль всего тельца можно разглядеть небольшие канавки. Позже, когда личинка превратится в мушку, у нее вырастут разные части тела в зависимости от расположения каждого сегмента. Из первого сегмента сформируется голова с глазами и усиками, а последние станут брюшком. Обычно маленькая мушка вылетает из кокона с правильно расположенными крыльями и усиками. Но иногда все идет не совсем по плану. Некоторые плодовые мушки появляются на свет с крупными волосатыми лапками, торчащими из головы вместо тоненьких усиков. У других же вырастают лишние пары крыльев либо лапки появляются в районе рта. «Что за чертовщина? – скажете вы. – Что случилось с этими крошечными созданиями?»

В 1970-х ученые почти приблизились к разгадке. Генетик Эдвард Льюис вместе с коллегами из Калифорнийского технологического института изучил гены мушек-мутантов и обнаружил, что каждая такая трансформация была вызвана повреждением одного из генов. Ученые быстро отследили все восемь генов: они все были расположены в третьей хромосоме мушки. Как это ни странно, гены в цепочке ДНК были расположены в том же порядке, что и контролируемые ими части тела. С одного конца цепочки ДНК были гены, отвечавшие за голову, а с другой – влиявшие на формирование брюшка. Гены, расположенные между ними, соответственно, отвечали за туловище мушки.

ИНТЕРЕСНО

Некоторые особи плодовой мушки появляются на свет с генетическими патологиями: лишней парой крыльев, лапками в районе рта. Причина – повреждение одного из генов.

Эти гены получили название «Hox-гены». Если их изменить, то некоторые части тела мушки окажутся не на своих местах. Возьмем, например, ген Ultrabithorax, чья задача, наряду с остальными Hox-генами, заключается в том, чтобы сообщать клеткам, что они расположены в последнем из трех сегментов туловища мушки. Без сигнала от него эти клетки будут думать, что размещены в сегменте, находящемся дальше, и в результате станут создавать те части тела, которые относятся к этому сегменту. Послушные клетки даже догадываться не будут, что на самом деле должны формировать крошечные, в форме ложки, органы равновесия, торчащие прямо за крыльями, без которых мушка не способна летать, даже если у нее вдруг появится дополнительная пара крыльев. Таким образом, Hox-гены так или иначе следят за тем, чтобы клетки в различных сегментах вели себя по-разному. Но как именно им это удается? Чем же на самом деле занимаются эти таинственные гены?

В 1980-х годах Уолтер Геринг вместе со своими коллегами из Базельского университета нашел ответ на эти вопросы. Генная инженерия стремительно развивалась, благодаря чему появилась возможность копировать определенные участки ДНК и исследовать, из чего они состоят. Буква за буквой ученые воссоздали код Hox-гена. А спустя некоторое время обнаружили строчку из 180 букв, которая подходила ко всем генам независимо от того, за формирование какого сегмента они отвечали. Ученые поняли, что ключ к пониманию работы Hox-генов именно в этой последовательности из 180 букв, которую они назвали «гомеобокс». Но разве она не попадалась им раньше? Исследователи принялись изучать свои базы данных, чтобы сравнить эти 180 символов с расшифрованными прежде генами. Постоянно натыкаясь на эту последовательность, они заметили закономерность: все гены, в которых встречались эти 180 букв, производили белки, прикрепляющиеся к ДНК. Белки же способны включать и выключать гены, и это стало известно благодаря еще одному любимчику биологов – кишечной палочке.

Мои друзья смотрят на меня с явным скептицизмом, когда я говорю им, что развожу у себя в лаборатории кишечную палочку. Эти бактерии, увы, заслужили плохую репутацию среди обывателей, а все благодаря некоторым весьма сомнительным членам их семейства, которые вызывают ужасные кишечные заболевания. Вместе с тем это крайне несправедливо, так как большинство разновидностей кишечных палочек совершенно безвредны и никогда не вызывают рвоту. Безобидные кишечные палочки обитают у вас в кишечнике с самого начала. Более того, они не пускают туда своих по-настоящему опасных собратьев. В лаборатории мы выращиваем кишечные палочки в желтой очень питательной жидкости при температуре 37°С – все, как они любят. В знак благодарности эти бактерии копируют ДНК, создавая для нас белки. Они наши крошечные биологические заводы, и без них мы как без рук.

ИНТЕРЕСНО

Безобидные кишечные палочки обитают у вас в кишечнике с самого начала. Более того, они не пускают туда своих по-настоящему опасных собратьев.

В 1960-е годы французы Жак Моно и Франсуа Жакоб изучили влияние различных питательных веществ на кишечные палочки. Они обратили внимание, что если предоставить кишечным палочкам доступ одновременно к глюкозе и лактозе, то они первым делом принимаются наворачивать глюкозу – свое излюбленное лакомство. Это как ваза со сладостями: никто не станет есть ириски и карамельки, пока там еще остались шоколадные конфеты. Бактериям гораздо проще получить энергию именно из глюкозы. Чтобы использовать лактозу, им приходится сначала разделять ее на маленькие кусочки с помощью специальных белков-ножниц, так что бактерии не заморачиваются с этим белком, пока остается хотя бы немного глюкозы. Весьма практично, но только вот как такому простому организму даются столь важные решения?

Чтобы создать белки-ножницы, расщепляющие лактозу, бактерия использует рецепт, записанный в одном из генов ее ДНК. Сначала ей нужно сделать копию этого рецепта, и затем послать ее на белковый завод. Однако Моно и Жакоб обнаружили, что бактерия производит также и другой белок, который не дает сделать эту копию. Он прицепляется к цепочке ДНК прямо напротив нужного гена, тем самым удерживая его в выключенном положении. Только после отсоединения этого мешающего белка бактерия может начать использовать данный рецепт для производства белков-ножниц. Кроме того, они обнаружили, что бактерия делает еще один белок с прямо противоположным эффектом: когда этот белок присоединяется к цепочке ДНК, то копировать нужный рецепт становится проще. Ген удерживается во включенном состоянии, и бактерия быстрее усваивает лактозу.

Итак, можно включать и выключать гены, подсоединяя к ДНК различные белки. Именно так и работают белки, производимые Hox-генами. Каждый Hox-белок подсоединяется к соответствующему участку ДНК, и – щелк! – целый набор разных генов включается или выключается.

Плодовая мушка устроена сложнее крошечной бактерии. Она состоит из нескольких разных органов, в каждом из которых находятся работающие сообща специализированные клетки. Таким образом, плодовой мушке приходится выделять довольно внушительные участки своей ДНК на то, чтобы контролировать время и место активации различных генов. У людей этот механизм еще сложнее.

Раньше ученые называли все участки ДНК, в которых не было генов, «мусорными», поскольку у них не было каких-либо явных функций.

В наши дни этот термин почти не используется, потому что ученые находят все новые и новые смыслы, запрятанные в этих таинственных и кажущихся иногда пустыми строчках ДНК.

Между генами в ДНК расположены буквенные последовательности, которые работают как генетические переключатели. Определенные белки распознают эти последовательности и помогают гену сработать в нужный момент и в нужном месте. Эти генетические переключатели можно сравнить с выключателями света у нас дома. Некоторые из них, те, что поважнее, регулируют все освещение в комнате, а другие включают и выключают только настольную лампу.

Hox-гены производят белки, которые как раз и выполняют роль главных переключателей для целых наборов генов, а также делают все необходимое, чтобы в разных сегментах вырабатывались разные белки, то есть чтобы у плодовой мушки усики выросли на голове, а крылья – на туловище.

Тут возникает важный вопрос: что все это значит для нас? Я ведь пообещала, что эта история будет о вас, а вот пишу подозрительно много о каких-то плодовых мушках. Чтобы найти наших общих предков с плодовыми мушками, нам бы пришлось вернуться более чем на полмиллиарда лет назад – нас сложно назвать близкими родственниками.

В прошлом считалось, что гены, отвечающие за формирование тела плодовой мушки, кардинально отличаются от соответствующих генов у людей. Но все буквально встало с ног на голову в 1980-е, когда ученые, начав поиски Hox-генов у животных, стали находить их повсюду. Эти гены были у червей и рыб, у лягушек и мышей.

А что насчет людей? Мы тоже оказались не исключением. Разумеется, у нас все несколько сложнее: в нашем геноме целых четыре набора Hox-генов, а не один, как у плодовых мушек. Принцип между тем остается тот же: судьба бугорков вдоль вашей спины, когда вы еще в стадии зародыша, определяется различными комбинациями Hox-генов. Они контролируют, чтобы вдоль вашего позвоночника все формировалось как надо: лопатки вверху, таз внизу, а между ними ребра.

ИНТЕРЕСНО

После полумиллиарда лет эволюции прежние гены все еще используются, только уже по-новому и в новых комбинациях.

Подобно тому, как с помощью гвоздей и молотка можно построить сарай, особняк или церковь, посредством Hox-генов создаются и плодовая мушка, и мышь, и человек. Дело не только в том, какие гены есть в наличии. Важно то, как они используются. Честно говоря, у нас с плодовыми мушками больше половины генов общие. Нашим с ними предком, может, и был какой-нибудь червяк, однако даже червю нужны гены, чтобы его голова отличалась от хвоста. После полумиллиарда лет эволюции эти гены по-прежнему используются, только уже по-новому и в новых комбинациях. Как мы с вами вскоре увидим, Hox-гены для нас далеко не единственные сувениры из прошлого.


Глава 8 Искусство создания плодовой мушки | 280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий | ВТОРОЙ МЕСЯЦ