home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add



Глава 13. Господь Бог, Гёдель и поиск истины

Я понимаю слово “доказательство” не в том смысле, как его толкуют юристы, для которых два полудоказательства равны одному целому, а в том, как оно мыслится математику, для которого половина доказательства = 0, а доказательство требует исключения всяких сомнений.

Карл Фридрих Гаусс

Доказательство – это идол, во имя которого чистый математик истязает себя.

Артур Эддингтон, “Природа физического мира”

Математика – единственная наука, где возможна абсолютная достоверность. Ее утверждения и теоремы могут быть доказаны безусловно и безоговорочно и останутся истинными уже навсегда. Именно поэтому математики так одержимы поиском доказательств. Строго доказанное предположение становится неопровержимым фактом, незыблемым фундаментом для будущих исследований. Единственное неизбежное и досадное облако, омрачающее в остальном ясный горизонт математики, – это сознание того, что всегда, в любой математической системе, будут существовать утверждения, которые невозможно ни доказать, ни опровергнуть средствами самой этой системы.

Примерно в 1941 году логик австрийского происхождения Курт Гёдель, близкий друг и коллега Эйнштейна по Институту перспективных исследований в Принстоне, доказал существование Бога. В отличие от Эйнштейна, чьи религиозные убеждения находились где-то посередине между агностицизмом и пантеизмом (однажды он сказал, что верит в “Бога Спинозы”), Гёдель был не посещающим церковь теистом и, по утверждению его жены, “каждое воскресное утро читал в постели Библию”. Опубликованное им доказательство существования Бога, впрочем, не имело никакого отношения ни к его лютеранским корням, ни вообще к чему-либо, что могло бы найти отклик в душе человека неискушенного. Оно представляло собой плод его изощренного математического ума. Первая строка выглядит так:


Эта странная математика. На краю бесконечности и за ним

Последующие выкладки тоже мало что проясняют. Заканчивается доказательство кульминационным


Эта странная математика. На краю бесконечности и за ним

Для нас, простых смертных, это означает: “Нечто богоподобное безусловно существует”.

Само собой разумеется, доказательство Гёделя не могло остаться неоспоренным. И хотя, записанное в нотации так называемой модальной логики, оно выглядит весьма впечатляюще и строго научно, основано оно на множестве сомнительных и спорных допущений. Совсем иначе обстоит дело с результатами других, более известных исследований Гёделя – прежде всего с его потрясшими мир теоремами о неполноте, о которых мы поговорим чуть позже.

Для разных людей “доказательство” означает разные вещи. Для юриста оно может принимать различные формы в зависимости от типа разбираемого дела и судебного органа. В юриспруденции доказывание по сути сводится к сбору свидетельских показаний и вещественных улик, причем требования к их объему и качеству, необходимые, чтобы убедить судью или жюри присяжных, разнятся при рассмотрении гражданских и уголовных дел. В гражданском процессе решение основывается на принципе большей вероятности: судья вправе признать ответчика виновным, если придет к заключению, что тот “вероятнее всего” нарушил закон или что существуют “обоснованные подозрения”. В англо-американской системе уголовного права обвиняемый считается невиновным, пока его вина не доказана; в этом случае “доказательством” признается не просто высокая вероятность виновности, но виновность “вне всяких разумных сомнений”.


Эта странная математика. На краю бесконечности и за ним

Курт Гёдель.


Ученым-естественникам, как и юристам, чаще приходится иметь дело со свидетельствами, чем с доказательствами. Современные ученые вообще обходятся довольно скромными формулировками и предпочитают не употреблять термины “доказательство” и “истина” в некоем абсолютном смысле. Естественные науки – это в основном наблюдения, выстраивание теорий, наиболее логично объясняющих результаты наблюдений, и последующая проверка теорий дальнейшими наблюдениями и экспериментами. Научные теории носят предварительный характер: это лишь лучший для своего времени способ с помощью доступной информации объяснить, как функционирует окружающий нас мир. Всего одного нового подтвержденного факта, не укладывающегося в теорию, достаточно, чтобы разбить ее в пух и прах. Возьмите хоть гравитацию. Аристотель был убежден, что тяжелые предметы падают с большей скоростью, чем легкие, – ведь если одновременно сбросить с высоты камень и перышко, камень приземлится гораздо быстрее. Потребовалось немало хитроумных экспериментов и почти две тысячи лет, чтобы доказать неправоту Аристотеля. Существует популярная легенда о том, как в 1589 году Галилей окончательно опроверг устаревшие представления о земном тяготении, взобравшись на Пизанскую башню и сбросив оттуда два пушечных ядра разной массы, которые достигли земли одновременно. Скорее всего, такого эксперимента никогда не было: единственный первичный источник, где он упоминается, – это биография Галилея, написанная одним из его учеников, Винченцо Вивиани, и опубликованная спустя годы после смерти автора. Зато мы точно знаем, что Галилей экспериментировал с шарами различной массы, которые он скатывал по наклонным плоскостям, ослабив таким остроумным способом эффекты земного тяготения, что позволило ему более точно измерять скорости, с какими падают тела. Результаты экспериментов Галилея и исследований немецкого астронома Иоганна Кеплера позже были положены Исааком Ньютоном в основу новой теории тяготения. Эту теорию до сих пор преподают в школах, с ее помощью составляют программы полетов космических кораблей по Солнечной системе, и на нее можно положиться почти в любой ситуации, когда требуется оценить гравитационные эффекты. Почти. Проблема в том, что она не всегда дает точный результат. Теория всемирного тяготения Ньютона позволяет с очень хорошей точностью предсказать эффекты гравитации – настолько хорошей, что в обычной ситуации разница между прогнозом и реальностью просто незаметна. И все же это лишь приближение. В 1915 году Эйнштейн обнародовал свою общую теорию относительности – на сегодняшний день нашу лучшую теорию гравитации. Она объясняет то, чего не может объяснить теория Ньютона, например, такие явления, как смещение орбиты Меркурия или отклонение света звезд вблизи Солнца, и ситуации с экстремальным гравитационным притяжением, как вблизи черных дыр. Никто ни на минуту не считает общую теорию относительности Эйнштейна последним словом в изучении гравитации – ведь она не объясняет, как действует притяжение в мире предельно малого, где царствует квантовая механика. Должна быть какая-то теория, объединяющая законы квантового мира и гравитацию, – мы просто пока не смогли ее найти.

Суть в том, что естественно-научную теорию можно опровергнуть или по крайней мере показать, что она не точна, – но вот доказать, что она всегда, при любых обстоятельствах верна, невозможно. Будущие открытия, о которых мы сегодня ничего не знаем, могут даже от самой стройной и убедительной теории не оставить камня на камне. С математикой же все иначе.

Доказательство – основа всей математической науки. В школе этим занимаются нечасто, там акцент больше на решении задач. Но в высшей математике без доказательства никуда, оно – главнейшая цель всех ученых. Математическую теорию возможно доказать так, чтоб не оставить и тени сомнения в ее правильности, и, будучи доказанной, она уже не изменится. К примеру, теорема Пифагора о сторонах прямоугольного треугольника доказана достоверно: просто немыслимо, что кто-нибудь когда-нибудь ее опровергнет (с оговорками, которые мы обсудим через минуту). Из всех областей знания есть всего две науки – математика и ее близкая родственница логика, – где возможна определенность, не допускающая никаких сомнений.

Так же как и ученые в естественных науках, на начальном этапе математики ищут свидетельства чего-либо, фактический материал – будь то геометрическое правило или закономерность в ряду чисел, – а уже потом выдвигают теорию, объединяющую собранную информацию в единое целое. Но, в отличие от естественных наук, в математике теория не подвергается постоянной доработке на основании новых полученных данных. Сколько бы раз математическая теория ни выдерживала испытания практикой в разных ситуациях и с разными значениями, она не будет признана истинной до тех пор, пока не будет предъявлено ее строгое, безукоризненное доказательство. Сама возможность существования таких доказательств говорит о том, что одних подтверждающих данных, свидетельств, математикам недостаточно.

История доказательств начинается в Древней Греции. До того времени математика служила людям в основном в практических целях: для расчетов, в строительстве и так далее. Существовали арифметические правила, да при работе с фигурами и пространством применялись проверенные опытом методы, но не более того. Понятие доказательства, появившееся около VII века до нашей эры, связано с деятельностью одного из первых известных представителей натурфилософии Фалеса Милетского. Фалес, чьи интересы охватывали почти все области знаний, в том числе философию, естественные науки, инженерное дело, историю и географию, доказал несколько простых начальных теорем в геометрии. Его соотечественник Пифагор, родившийся полстолетия спустя, известен всем гораздо лучше благодаря теореме, носящей его имя. Сам ли он нашел некое доказательство “теоремы Пифагора”, или это сделал кто-то из его последователей, сказать невозможно, поскольку никаких письменных свидетельств о таком доказательстве с тех времен не сохранилось. И вавилоняне, и другие народы знали о существовании правила, гласившего, что квадрат самой длинной стороны прямоугольного треугольника равен сумме квадратов двух других сторон, и применяли его в строительстве. Но кто первый это доказал и в какой форме, неизвестно. Согласно более поздним научным стандартам, то доказательство определенно должно было быть неформальным. Пифагорейцы также причастны к открытию иррациональных чисел – тех, что невозможно представить как отношение одного целого числа к другому. Корни этой идеи опять-таки проследить трудно, но, согласно мифу, один из членов пифагорейского культа, Гиппас, каким-то образом доказал, что квадратный корень из 2 невозможно выразить в виде дроби. Остальных пифагорейцев это открытие якобы привело в такой ужас, что они утопили Гиппаса, дабы скрыть от всех изъян в своей картине мира. Однако те немногочисленные древние источники, в которых упоминается история с утоплением, либо не называют Гиппаса по имени, либо утверждают, что наказание постигло его за другое богомерзкое преступление – он доказал, что возможно построить додекаэдр внутри сферы.

Математическое доказательство сделало огромный шаг вперед и вплотную приблизилось к той форме, в какой оно известно нам сегодня, благодаря трудам другого грека, Евклида, жившего в Александрии, в Египте, в начале III века до нашей эры. В своих “Началах” он заложил основы современной теории доказательств: некие исходные положения, принимаемые как самоочевидные, сочетаются с пошаговыми рассуждениями, когда каждый шаг, основывающийся на одном или нескольких исходных положениях, логически и неоспоримо вытекает из предыдущего.

“Начала” посвящены в основном геометрии и впервые излагают строгие доказательства многих из геометрических теорем, уже известных в то время грекам. Евклид начинает с перечисления пяти основных посылок, называемых теперь постулатами Евклида: например, “От всякой точки до всякой точки [можно] провести прямую линию” и “Ограниченную прямую [можно] непрерывно продолжать по прямой”[55]. Эти постулаты, которые сегодня мы именовали бы аксиомами, принимаются настолько очевидно верными, что не требуют доказательства. И даже если бы кто-то взялся их доказать, для этого потребовались бы другие исходные положения. С чего-то ведь все равно надо начинать. Сформулировав постулаты, Евклид приступает затем к рассуждениям, строка за строкой с безупречной логикой выводя каждое новое положение из предыдущего, пока не получит полное доказательство той или иной теоремы. Эти теоремы он использует для доказательства уже следующих, и так далее – упорядоченно и последовательно, позволяя читателю с легкостью отслеживать и проверять ход своих рассуждений[56].

Больше тысячи лет геометрия в том виде, как она изложена в “Началах” (она получила название евклидовой), не вызывала ни у кого вопросов. Но потом у некоторых математиков зародились сомнения в истинности одного из постулатов, на которых зиждется великий труд древнегреческого ученого. Первые четыре постулата Евклида просты, понятны и бесспорны, но пятый, так называемая аксиома параллельности, более сложен и не столь очевиден. У Евклида он сформулирован так: “И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, [в сумме] меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньшие двух прямых”[57]. Позже математики нашли способ выразить ту же мысль менее витиевато. Например, шотландец Джон Плейфер предложил такую альтернативную формулировку аксиомы параллельности: “Если дана прямая на плоскости и точка вне этой прямой, максимум одна прямая, параллельная данной прямой, может быть проведена через точку”. Существует и ряд других утверждений, по сути эквивалентных постулату о параллельных прямых; наиболее понятное из них, наверное, то, в котором говорится, что сумма углов треугольника равна 180 градусам. Но независимо от формулировки пятый постулат кажется менее очевидным и более запутанным, чем остальные четыре, а потому многие математики в последующие столетия подозревали, что возможно построить его доказательство с помощью первых четырех. Спустя более тысячи лет после Евклида некоторые арабские математики начали сомневаться в справедливости самого постулата: в их трудах содержатся первые намеки на то, что есть нечто и за пределами геометрии “Начал”.

В первой половине XIX века три математика – венгр Янош Бойяи, русский Николай Лобачевский и немец Карл Гаусс – осознали, что если изъять постулат о параллельных прямых, то получится не ущербная евклидова, а совершенно новая геометрия. Она получила название гиперболической, от греческого слова, означающего “слишком много” (в ней слишком много пространства для евклидовой плоскости). Гиперболическая геометрия характеризуется постоянной отрицательной кривизной (это означает, что гиперболическое пространство одинаково искривлено противоположным по сравнению со сферой образом). В гиперболической геометрии сумма углов треугольника меньше 180 градусов, а теорема Пифагора не выполняется. Это не значит, что евклидова геометрия неверна, а данное Евклидом доказательство теоремы Пифагора ошибочно. При условиях, изложенных в аксиомах Евклида, теорема Пифагора выполняется всегда. Но вот если эти аксиомы меняются, то возникают иные геометрические системы, в которых выполняются другие теоремы. Замена пятого постулата на его отрицание приводит к рождению абсолютно новой геометрии – гиперболической. То же самое происходит в любой математической системе: изменение базовых аксиом открывает новый математический мир, где действуют иные правила. Теорему Пифагора можно доказать, пользуясь набором аксиом – теми самыми пятью постулатами, – что сформулировал Евклид. Но уберите пятый постулат – и вы получите неевклидову геометрию, в которой теорема Пифагора неверна. Математики открыли и еще одну геометрическую систему, где также отрицается пятый постулат, но, кроме того, видоизменяется второй: прямые линии в ней не могут продолжаться бесконечно, поскольку находятся на поверхности сферы. Эта вторая неевклидова геометрия, получившая название эллиптической, была разработана немцем Бернхардом Риманом.

Евклид показал миру, как правильно и точно доказывать математические утверждения. Он также продемонстрировал, что с помощью одного набора аксиом, сформулированных в конкретном разделе математики, возможно охватить всю эту науку. После “Начал” он написал другие труды, в которых применил свои пять постулатов для доказательства других, не относящихся к геометрии теорем. Например, переработав свои постулаты так, чтобы они оказались применимы к теории чисел, он сумел доказать, что существует бесконечно много простых чисел (тех, что делятся только сами на себя и на единицу). Современные математики используют тот же подход – берут аксиомы из одного раздела своей науки и применяют их в разных областях; правда, обращаются они не к геометрии, а к другому, более абстрактному разделу математики, известному как теория множеств.

Родоначальниками теории множеств были (и это не случайно) те же ученые, что стояли у истоков математики бесконечного: немцы Георг Кантор и Рихард Дедекинд, с которыми мы уже встречались в десятой главе. Теория множеств возникла потому, что она способна оперировать как конечными, так и бесконечными числами. Кроме того, в точном соответствии со своим названием она дает математикам теоретическую основу для работы с множествами – наборами объектов, будь то числа, буквы алфавита, планеты, жители Парижа, множества множеств или любые другие, какие только можно выдумать. В мире математики любой волен выбирать, какой набор аксиом положить в основу одного из многочисленных возможных вариантов теории множеств. Так уж сложилось, что система, которой математики сегодня пользуются чаще всего, поскольку она хорошо работает в большинстве ситуаций, – это теория множеств Цермело – Френкеля. К ней добавляют еще одну специальную аксиому, известную как аксиома выбора, и все вместе называют “системой ZFC”[58]. Многие из аксиом ZFC очевидны и не требуют разъяснений: “Два множества, содержащие одни и те же элементы, идентичны” и подобные. А вот аксиома выбора оказалась орешком покрепче. Ее даже провозгласили самой спорной аксиомой со времен евклидова постулата о параллельности.

Упрощая, сформулируем аксиому выбора так: если дан любой набор множеств, всегда возможно выбрать из каждого ровно по одному неповторяющемуся элементу и составить из них новое множество. В повседневных ситуациях это кажется очевидным: например, можно выбрать по одному человеку из каждой страны мира и собрать их в одном помещении. Проблема в том, что не совсем понятно, как это осуществить, если число множеств бесконечно и сами они имеют бесконечный размер. В таком случае сделать необходимый выбор может быть просто невозможно, и тогда аксиома выбора начинает больше походить на произвольно навязанное правило, чем на утверждение, с которым все могут согласиться. И все же, несмотря на это, большинство математиков сегодня охотно принимают аксиому выбора, поскольку она необходима им для доказательства множества важных теорем. Порой ее применение приводит к результатам, кажущимся на первый взгляд совершенно невероятными. Один из них: парадокс Банаха – Тарского, он же парадокс удвоения шара, который мы уже обсуждали в девятой главе и согласно которому шар можно разрезать на конечное число частей, а затем собрать из них две копии того же шара, удвоив таким образом исходный объем. Под “разрезанием” здесь подразумевается абстрактное, математическое разбиение, невозможное в реальном мире. И все равно это больше похоже на колдовство, чем на математику. Тем не менее, если применять аксиому выбора, промежуточные части разрезанного шара можно считать не сплошными кусочками, а своего рода разрозненными “облачками”, не имеющими определенного объема, так что при их сборке легко получить объем, в два раза (или хоть в миллион) превышающий начальный.

Раз математики вольны сами выбирать для себя наборы аксиом, которые им больше нравятся и лучше отвечают поставленным целям, то, казалось бы, ничто не мешает им в конце концов составить такую систему аксиом, что позволит доказать любое общезначимое утверждение в математике. Другими словами, с правильной системой аксиом должно быть возможно доказать все, что математически истинно. У ведущих теоретиков начала XX века не было повода усомниться в такой возможности, и они активно искали доказуемо полную систему математики. Видное место среди них занимал немец Давид Гильберт, известный своими многочисленными достижениями в современной математике и составленным им списком из двадцати трех самых важных не решенных на тот момент математических проблем. В 1920 году он предложил реализовать проект, который бы продемонстрировал, что вся математика основывается на грамотно выбранной системе аксиом и что непротиворечивость такой системы можно доказать. Десятилетие спустя эти надежды рухнули, разнесенные в пух и прах выводами австрийского (а позже американского) математика, логика и философа Курта Гёделя.

В 1931 году, за несколько лет до отъезда Гёделя из Австрии и начала работы в Институте перспективных исследований в Принстоне, где он подружился с Альбертом Эйнштейном, им были опубликованы две сенсационные, шокирующие теоремы – первая и вторая теоремы о неполноте. Если в двух словах, первая из них гласит, что любая математическая система, достаточно сложная, чтобы включать в себя обычную – школьную – арифметику, не может быть одновременно и полной, и непротиворечивой. Полная система – это такая, в которой все, что в нее входит, можно доказать или опровергнуть. Непротиворечивая – значит не содержащая таких утверждений, которые могут быть одновременно и доказаны, и опровергнуты. Как гром среди ясного неба, теоремы Гёделя о неполноте показывали, что в любой математической системе (за исключением самых простых) всегда найдутся утверждения истинные, но недоказуемые. Теоремы о неполноте в каком-то смысле аналогичны принципу неопределенности в физике, поскольку также указывают на существование фундаментального предела познания. И, как и принцип неопределенности, они раздражают и подавляют нас, дразня тем, что реальность – в том числе чисто интеллектуальная – самим своим поведением препятствует полному познанию того, что мы пытаемся постичь разумом. Грубо говоря, они показывают, что истина сильнее доказательства – а это ненавистно, особенно для математика.

Работа Гёделя и его поразительные выводы стали возможны только после того, как математики и логики признали необходимость формализовать математические системы с помощью четко сформулированных наборов аксиом. Путь в этом направлении был указан еще в античные времена Евклидом. Но только во второй половине XIX века, с разработкой теории множеств и математической логики, процесс формализации приобрел необходимую строгость и появилась возможность распространить его на любую систему математики, какую только можно себе представить. Для арифметики, которую мы проходим в школе (что изучает числа натурального ряда: 0, 1, 2, 3, …), аксиоматическое основание разработал итальянец Джузеппе Пеано; оно до сих пор используется математиками почти без изменений. Некоторые из утверждений обычной арифметики, например “2 + 2 = 4”, кажутся настолько очевидными, что непонятно, зачем их вообще доказывать. И все же это необходимо. Тот факт, что они знакомы нам с детства, вовсе не означает, что их можно принимать как сами собой разумеющиеся. В арифметике Пеано утверждения вроде “2 + 2 = 4” доказать очень просто, для этого 2 и 4 представляются в более обобщенной форме – как SS0 и SSSS0 (где S означает successor – элемент, следующий за числом ряда). Несложно в ней и опровергнуть утверждения типа “2 + 2 = 5”. В то же время в ней, как и следовало ожидать, невозможно опровергнуть, что 2 + 2 = 4, или доказать, что 2 + 2 = 5. Но в арифметике Пеано было бы мало толку, если бы она справлялась только с такими простенькими задачками. Ее сила – в способности оперировать гораздо более сложными утверждениями об арифметике. Первоначально математики считали, что с ее помощью можно доказать или опровергнуть любое из подобных сложных утверждений без исключения и весь вопрос лишь в наличии достаточного времени. Гёдель же своей первой теоремой показал, что это не так.

В качестве примера он взял одно из утверждений об арифметике Пеано, которое невозможно было ни доказать, ни опровергнуть средствами самой этой арифметической системы. Он показал, что если это утверждение доказуемо, то оно ложно (а значит, может быть опровергнуто), а если оно может быть опровергнуто, то может быть и доказано. В любом из этих случаев арифметика Пеано, если она полна, оказывается противоречивой. Мы вправе попробовать пойти на уступки: хорошо, пусть система неполна, но ведь должен же быть способ доказать, что арифметика Пеано (или любая другая система) непротиворечива. Увы, вторая теорема Гёделя о неполноте разбивает и эту последнюю надежду, демонстрируя, что любое доказательство непротиворечивости системы (средствами самой этой системы) автоматически доказывает и обратное – что она противоречива. Не все математики, правда, убеждены, что в вопросе непротиворечивости за Гёделем последнее слово.

В 1900 году Гильберт включил доказательство непротиворечивости аксиом арифметики вторым пунктом в свой знаменитый список нерешенных (на тот момент) проблем. В 1931 году Гёдель своими теоремами, казалось бы, лишил математиков надежды, что эта проблема когда-нибудь будет решена. Но всего несколько лет спустя, в 1936-м, немецкий математик и логик Герхард Генцен, ассистент Гильберта в Гёттингенском университете в 1935–1939 годах, опубликовал статью, в которой доказал непротиворечивость арифметики Пеано – то есть пришел к заключению, вроде бы диаметрально противоположному выводу Гёделя. Однако, в отличие от Гёделя, Генцен не пытался доказать непротиворечивость системы Пеано средствами самой этой системы. Вместо этого он прибег к помощи ординалов с определенными свойствами, в частности одного очень большого ординала (c ним мы уже встречались в десятой главе), названного Кантором “эпсилон-ноль” (0). Это число настолько колоссально, что его невозможно описать средствами арифметики Пеано. Тем не менее, как обнаружил Генцен, его можно использовать для формулировки и доказательства утверждений, которые нельзя доказать в арифметике Пеано, – в том числе утверждения о непротиворечивости самой этой системы.

Методику Генцена можно расширить и применять для доказательства непротиворечивости многих других систем, при условии что удастся построить достаточно большой ординал. Более того, как выяснилось, всякая математическая система характеризуется определенной “силой”, числом, которое показывает, какие ординалы могут быть выражены в этой системе, а какие нет. Например, так называемый теоретико-доказательственный ординал арифметики Пеано равен 0, то есть в ней можно выразить любой ординал, меньший эпсилон-нуля, но не сам эпсилон-ноль. У более объемных математических систем теоретико-доказательственный ординал больше. У системы ZFC он неизвестен. Зато благодаря Генцену известно, что систему ZFC можно усилить “аксиомами больших кардиналов” и описывать тогда с ее помощью кльственным ординалом.

Математики все еще расходятся во мнениях относительно второй проблемы Гильберта: возможно ли доказать, что арифметика непротиворечива? Одни разделяют вывод Гёделя и считают, что это невозможно в принципе, другие склоняются к точке зрения Генцена, предложившего частичное доказательство. Как бы то ни было, этот вопрос не затрагивает сути теорем Гёделя: что в рамках любой математической системы (такой, например, как арифметика Пеано или ZFC) возможно сформулировать неразрешимые утверждения. Можно, конечно, судить об истинности или ложности таких утверждений, используя средства другой системы (как это сделал Генцен, усилив простую арифметику ординалами), но мы все равно не будем знать, является ли эта другая система непротиворечивой. Нам остается только принять ее за таковую.

Прошло три десятка лет после публикации в начале 1930-х годов теорем о неполноте, а примеров неразрешимых утверждений у математиков было раз-два и обчелся, не считая слишком уж искусственных, вроде тех, что сам Гёдель использовал в своем доказательстве. А затем произошел настоящий прорыв, и причиной его стало предположение, тревожившее умы математиков с того самого момента, как его в 1873 году выдвинул Георг Кантор. Это предположение – континуум-гипотеза, с которой мы уже встречались в десято1) – мощность множества всех счетных ординалов – равно также мощности множества всех действительных чисел; другими словами, что действительных чисел (или точек на линии) столько же, сколько счетных ординалов. Если континуум-гипотеза истинна, значит, не существует множества, которое по мощности занимало бы промежуточное положи подорвал свое психическое здоровье. Гильберт придавал континуум-гипотезе такое большое значение, что поставил ее на первое место в своем списке двадцати трех важнейших проблем. Лишь в 1963 году благодаря работе американского математика Пола Коэна был прояснен – если не окончательно определен – статус континуум-гипотезы. Коэн доказал, что в рамках ZFC (а они не так уж тесны!), самой широко используемой аксиоматической системы в современной математике, континуум-гипотеза неразрешима. Он обнаружил, что возможно сконструировать два различных набора аксиом, каждый из которых будет включать в себя все аксиомы ZFC и обладать внутренней непротиворечивостью, таких, что в одном из них континуум-гипотеза будет истинна, а в другом – ложна. Проще говоря, средствами системы ZFC континуум-гипотезу можно как доказать, так и опровергнуть – все зависит от того, какие дополнительные правила мы применим. Если же использовать ZFC в чистом виде, без дополнительных аксиом, невозможно ни то ни другое.

Подобная неразрешимость обнаруживается, как мы уже видели, даже в гораздо более простой евклидовой математике. Многие из начальных теорем Евклида, в том числе все первые 28 утверждений его “Начал”, не опираются на пятый постулат – тот, согласно которому параллельные прямые никогда не встретятся. Эти теоремы принадлежат к системе, ставшей известной как “абсолютная геометрия”: основанной на том же наборе аксиом, что и евклидова геометрия, за исключением пятого постулата. В абсолютной геометрии теорема Пифагора неразрешима, поскольку в евклидовой геометрии она верна, тогда как в неевклидовой (например, гиперболической), основанной на тех же аксиомах, но без постулата о параллельности, – неверна. Аналогично существуют аксиомы, добавление которых к системе ZFC позволяет как опровергнуть континуум-гипотезу (скажем, аксиомы форсинга), так и доказать ее (например, аксиома внутренней модели). В общем, континуум-гипотеза доказуемо неразрешима существующими сегодня методами. Даже используя мощнейший, охватывающий всю математическую науку инструментарий современной теории множеств, разрешить ее невозможно. Однако математика продолжает развиваться и расширяться – и надежда, что новые методики, такие как использование аксиом больших кардиналов, позволят найти решение, все еще теплится.

Самое известное из (до самого последнего времени) недоказанных утверждений в математике – это Великая (или Последняя) теорема Ферма. Название, к слову, не очень удачное, поскольку она не только не была последней из тех теорем, над которыми работал Пьер де Ферма, но и, строго говоря, вообще не была теоремой в том виде, в каком ее сформулировал великий француз. В более ранних работах она называлась точнее – гипотезой Ферма. “Последней” ее называют потому, что она была обнаружена лишь через тридцать лет после смерти математика его сыном Самюэлем в виде заметки, оставленной на полях одной книги из библиотеки ученого – “Арифметики” Диофанта. Формулируется утверждение очень просто: уравнение xn yn = zn не имеет решений в целых числах для значений n, превышающих 2. При n, равном 2, существует бесконечное число решений, например 32 + 42 = 9 + 16 = 25 = 52. Но если, настаивал Ферма, n равно 3 или больше, решений нет вообще. “Я открыл этому поистине чудесное доказательство, – написал он (на латыни), – но эти поля для него слишком малы”[59].


Эта странная математика. На краю бесконечности и за ним

Гравюра с портретом Пьера де Ферма.


Надо сказать, что Ферма был математиком поистине великим и в просчетах замечен не был. Ни в одном из опубликованных им доказательств не обнаружилось ошибок. Опровергнута была всего одна из его гипотез, причем Ферма и не утверждал, что может ее доказать. Так что же, его загадочный комментарий на полях был шуткой? Может, он таким образом бросал вызов современным ему и будущим математикам, пытаясь подтолкнуть их к поискам доказательства? Или же доказательство у него и правда было и ему действительно просто не хватило места, чтобы его изложить? История подсказывает, что последнее маловероятно: несмотря на многочисленные попытки решить проблему, никому в последующие столетия не удалось найти умеренно лаконичного доказательства. Лишь в 1995 году, через 358 лет после того, как Ферма начертал на полях свою дразнящую воображение заметку, его гипотеза была наконец переведена в разряд доказанных теорем, а потребовавшийся для этого математический арсенал по своей сложности намного превышал все, что было доступно в XVII веке.

Заслуга доказательства теоремы принадлежит британскому математику Эндрю Уайлсу, который “заболел” гипотезой Ферма в десятилетнем возрасте, впервые прочитав о ней по дороге из школы домой в книге, взятой в местной библиотеке. Почти четверть века спустя он всерьез занялся поиском доказательства. Эта работа привела его в область математики, связанную с эллиптическими кривыми и гипотезой Таниямы – Симуры, которую в 1957 году сформулировали японские математики Ютака Танияма и Горо Симура. Уайлс объявил о том, что нашел доказательство Великой теоремы Ферма, во время лекции в 1993 году, но впоследствии в нем был обнаружен изъян, и только два года спустя, уже почти отчаявшись исправить ошибку, Уайлс наконец представил миру безупречное доказательство, решившее вопрос окончательно и бесповоротно. Хотя Великая теорема Ферма – одна из самых известных сложных математических проблем, ее решение не так уж существенно для математики. Она, например, не была включена в составленный Гильбертом список кардинальных проблем. Зато гипотеза Таниямы – Симуры устанавливает важные взаимосвязи между, казалось бы, совершенно различными областями математики.

Доказательства, подобные найденному для Великой теоремы Ферма, непросты потому, что они мудреные и требуют поистине творческих прорывов. Другие сложны в основном из-за того, что трудоемки и немыслимо затратны по времени. Так называемая теорема о четырех красках, которая гласит, что любую карту можно раскрасить всего четырьмя красками так, чтобы ни в одном месте граничащие друг с другом регионы не оказались одного цвета, была впервые сформулирована в 1852 году в письме Огастеса де Моргана, первого профессора математики недавно открытого Университетского колледжа Лондона, своему другу, ирландскому математику Уильяму Гамильтону. Ограничения задачи: каждая из областей на карте должна быть связной; все области должны лежать на плоскости; граничащими друг с другом считаются области, имеющие общий участок границы, стык в одной точке не считается. Как выяснилось, доказать это совсем не просто. Одни теоретические выкладки – уже не подарок, но основная трудность была даже не в них, а в огромном количестве вариантов, требующих проверки. И вот, после более чем ста лет работы и изучения всех возможных карт, математикам удалось свести число уникальных конфигураций к 1936. Однако для проверки даже такого количества вариантов ни одиночному исследователю, ни группе ученых не хватило бы жизни, поэтому для обработки данных задействовали компьютеры. Наконец в 1976 году теорема о четырех красках была доказана Кеннетом Аппелем и Вольфгангом Хакеном из Иллинойского университета и все перепроверено с помощью различных программ и компьютеров.

Несмотря на скрупулезную проверку Аппелем и Хакеном результатов компьютерной обработки данных, проделанная ими работа вызвала бурный протест ряда математиков и философов, утверждавших, что “машинное” доказательство либо нелегитимно, либо ненадежно, поскольку его невозможно проверить вручную. Споры о том, допустимо ли использовать компьютеры для доказательства теорем, не прекращаются и сегодня – из-за опасений получить неверный результат, если вдруг компьютер даст сбой или в программное обеспечение закрадется ошибка. И все же в силу необходимости этот подход получает со временем все большее распространение и признание. Сколько-то развеять сомнения скептиков позволят появившиеся недавно “системы автоматического доказательства теорем” – программы-верификаторы, приводящие доказательства к некоему стандартному виду и проверяющие их на ошибки.

Раздел математики, известный своими чудовищно длинными доказательствами, – теория Рамсея. Суть ее в том, что при раскраске элементов любого множества в нем неизбежно появляется некоторый порядок. Одна из проблем теории Рамсея носит название “булева проблема пифагоровых троек”. В ней спрашивается, возможно ли каждое из положительных целых чисел покрасить либо в красный, либо в синий цвет таким образом, чтобы ни одна из пифагоровых троек (чисел a, b и c, удовлетворяющих условию abc2) не оказалась окрашена в один цвет. В мае 2016 года Марин Гейле, Оливер Кульман и Виктор Марек представили доказательство невозможности такой раскраски. Чтобы его получить, потребовалось два дня работы одного из самых быстродействующих компьютеров в мире, Stampede, расположенного в Техасском центре перспективных вычислительных систем, а объем файла с доказательством составил 200 терабайт. Чтобы просто с ним ознакомиться, человеку потребуется 10 миллиардов лет (примерно столько проживет суммарно наше Солнце), а чтобы проверить – и того больше. Впрочем, вполне вероятно, что в будущем нас ждут доказательства еще длиннее. Один из возможных претендентов на рекорд – теорема Рамсея для n = 5. Известно, что, как бы вы ни раскрасили в два цвета ребра графа с 49 вершинами, обязательно найдется пять таких вершин, что все соединяющие их ребра окажутся одного цвета. Известно также, что для 42 вершин это утверждение неверно. Но вот найти доказательство для минимального числа вершин, при котором это условие уже выполняется, – задача для математиков, вооруженных еще более мощными вычислительными системами.


Глава 12. Гну, тяну, кручу как хочу | Эта странная математика. На краю бесконечности и за ним | * * *