на главную | войти | регистрация | DMCA | контакты | справка | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


моя полка | жанры | рекомендуем | рейтинг книг | рейтинг авторов | впечатления | новое | форум | сборники | читалки | авторам | добавить



От гена к форме…

Последние десять лет жизни Северцова пришлись на время нового подъема эволюционной биологии. Но основой его стал синтез эволюционизма с генетикой, а основным предметом интереса – генетические механизмы эволюции и микроэволюционные процессы (в которых морфологические изменения, как правило, очень невелики, а плодотворность применения к ним северцовских категорий близка к нулю). При этом любые эволюционные процессы рассматривались так, словно естественный отбор оценивает непосредственно гены – то есть связь между геном и некоторым фенотипическим признаком (который только и может оцениваться отбором) мыслилась как однозначное взаимное соответствие.

Не нужно полагать, что создатели СТЭ были так наивны. Они прекрасно понимали, что на самом деле ген и признак связывает длинная и сложная цепочка взаимодействий, в той или иной мере чувствительных к воздействию окружающих условий. И что само понятие “признак” достаточно условно, и та наследственная черта, которую мы называем признаком, может определяться работой множества генов (и наоборот – один ген может влиять на целый ряд особенностей, которые мы воспринимаем как отдельные признаки). Но у них в то время практически не было инструментов и методов, позволяющих исследовать конкретную работу генов (о самой природе которых в ту пору не было известно практически ничего) в ходе индивидуального развития. В такой ситуации естественно было абстрагироваться от тех процессов, которые невозможно изучать, и принять представление об однозначной связи гена и признака как рабочее упрощение. “Мы обещаем, что когда-нибудь подберем ключик к этой шкатулке, а пока давайте займемся тем, что можно сделать, не открывая ее”, – сформулировал много лет спустя эту позицию известный английский эволюционист Джон Мейнард Смит, ученик уже знакомого нам Джона Холдейна.

Проблемы крупных морфологических преобразований и эволюции онтогенеза надолго отошли на второй план.

Правда, и в это время находились ученые, сохранявшие взгляд на эволюцию не как на “изменение генных частот”, а как на преобразование целостного организма, причем на всех стадиях его жизненного цикла. Наиболее плодотворно работали в этом направлении уже знакомый нам Иван Шмальгаузен и английский биолог Конрад Уоддингтон. Оба они искали пути, которые позволили бы связать генетические изменения с изменениями хода онтогенеза и в конечном счете – форм организмов.

Уоддингтон, начинавший как эмбриолог-экспериментатор, попытался использовать уже разработанные к тому времени генетиками методы анализа мутаций для расшифровки механизма регуляции эмбрионального развития. Эта работа привела его к идее “эпигенетического ландшафта”: развивающийся зародыш Уоддингтон уподоблял тяжелому шарику, скатывающемуся по склону горы от вершины (зачатия) до подножия (зрелого состояния). Рельеф этого склона довольно прихотлив, и его гребни и борозды определяют траекторию движения шарика. Этот рельеф задается генами, регулирующими развитие, и может быть изменен в результате мутаций (как реальный рельеф горного склона может быть изменен землетрясением или оползнем). Поскольку распределение “выступов” и “впадин” задает траекторию развития организма, мутации, меняющие это распределение, тем самым могут пустить развитие по другому пути. Понятно, что при любом конкретном состоянии ландшафта число возможных онтогенетических путей ограничено: “шарик” не может перекатываться через “выступы”, выскакивать из “желобов” и вообще катиться “вверх”. Эти возможные онтогенетические пути Уоддингтон назвал креодами.

Подход Шмальгаузена был несколько иным. Центральным в нем стало понятие нормы реакции, введенное в 1909 году немецким гидробиологом Рихардом Вольтереком. Суть его в том, что практически у любого признака, определяемого генами, есть некоторый “люфт” – пределы, в которых он может изменяться при заданном генотипе. Вспомним опыты Иогансена: даже фасолины, вызревшие на одном кусте, несколько отличались друг от друга по размеру и пропорциям, хотя были генетически идентичны и развивались в одних и тех же условиях. Если же условия развития сильно отличаются, то один и тот же генотип может формировать очень разные фенотипы. Вспомним альтернативные программы развития у саранчи, животных с физиологическим (то есть задаваемым условиями внешней среды) определением пола, вспомним результаты опытов Боннье, Шманкевича и других неоламаркистов. Наконец, можно вспомнить любимый пример самого Шмальгаузена – стрелолист (об особенностях формообразования у которого мы уже немного говорили в главе “…Что любое движенье направо начинается с левой ноги”). Как известно, это растение имеет три типа листьев. Листья, расположенные над водой, имеют весьма характерную форму, напоминающую наконечник стрелы (откуда и название растения), и обладают довольно мощными стоячими черешками. По поверхности воды плавают округлые листья, соединенные с растением шнуровидными черешками – длинными, тонкими и гибкими. А листья подводные имеют лентовидную форму и не разделены на черешок и пластинку. Все три типа листьев могут присутствовать на одном индивидуальном растении и, следовательно, быть сформированы в результате работы одного и того же генома.

По мысли Шмальгаузена, ген определяет не признак как таковой, а его норму реакции – пределы, в которых этот признак может изменяться. Внутри этого диапазона то, каким именно будет данный признак, определяется факторами окружающей среды (а также, возможно, влиянием других генов). У организмов с жестко определенной конечной формой этот выбор обычно делается на определенной стадии онтогенеза и уже не меняется всю дальнейшую жизнь: взрослый саранчук уже никогда не превратится в одиночную кобылку, самец крокодила – в самку, каковы бы ни были параметры среды, в которой им придется жить. У выросших на холоде мышей после перевода в теплое помещение не увеличиваются уши и хвосты. Но даже у таких организмов есть признаки, которые могут меняться “туда-сюда”: летняя и зимняя окраска многих млекопитающих умеренных и приполярных областей, брачные наряды (включающие порой не только смену цвета покровов, но и отрастание весьма причудливых “украшений”), пигментация человеческой кожи и т. д. В конечном счете на сдвигах в пределах нормы реакции основаны все адаптивные модификации – закономерные изменения характерных видовых признаков в сторону, более адекватную изменившимся условиям. Однако это не изначально присущее всему живому свойство (как полагали ламаркисты), а результат действия сложного механизма, устанавливающего связь между определенными воздействиями среды и сдвигами некоторых признаков (в пределах их нормы реакции) в определенную сторону[194]. Иными словами, всякая адаптивная модификация – это всегда результат предшествующей эволюции. Но она в самом деле может стать первым шагом в эволюции дальнейшей – если те условия, ответом на которые была данная модификация, в какой-то момент станут постоянными для вида или каких-то его популяций. В этом случае отбор пойдет на сужение нормы реакции тех генов, что обеспечивали модификацию, и развитие, которое раньше могло в зависимости от условий пойти в сторону “обычной” или “модифицированной” формы, теперь при любых условиях будет развиваться по “модифицированному” варианту. Возможно даже, что у одной части вида развитие стабилизируется на одном “краю” прежней широкой нормы реакции, а у другой – на другом. И то, что было разными жизненными формами одного вида, превратится в разные виды. Например, ряд пресноводных рыб в некоторых водоемах (обычно в озерах) образует две “расы”, резко различающиеся как экологически, так и морфологически. В частности, у всем известного обыкновенного окуня одна такая форма – крупный светлоокрашенный хищник, другая – мелкий темноокрашенный поедатель планктона и донных беспозвоночных. У окуней обе формы остаются внутривидовыми, а вот у некоторых байкальских рыб подобные формы представляют собой отдельные виды.


Дарвинизм в XXI веке

Взгляд Уоддингтона и Шмальгаузена на эволюцию из нашего времени представляется куда более глубоким и, если угодно, диалектичным, чем прямое (и часто не осознаваемое) отождествление генов с определяемыми ими признаками. Однако несмотря на широкую известность и авторитет обоих ученых, их идеи оказались не восприняты СТЭ, формировавшейся как раз в те годы, на которые приходится расцвет творчества обоих выдающихся биологов. Важнейшие работы Шмальгаузена не стали своевременно известны в мире – сказывалась нарастающая самоизоляция советской науки, дополненная затем неизбежным разрывом научных связей во время мировой войны. А в 1948 году основные области фундаментальной биологии – прежде всего генетика и теория эволюции – и вовсе были заменены в СССР м'oроком “мичуринской биологии”, полностью заслонившим работы серьезных советских исследователей от их зарубежных коллег. (Главный труд Шмальгаузена – монография “Факторы эволюции” – был издан по-английски только в 1973 году, через 27 лет после написания и через десять – после смерти автора.) Уоддингтону ни с чем подобным столкнуться не пришлось, его работы были хорошо известны коллегам – но принесли ему лишь репутацию оригинала, неустанного критика СТЭ и даже чуть ли не антидарвиниста.

В чем были причины такой глухоты? Как уже говорилось, биологи середины ХХ века ясно осознавали, что в основе “синтетистского” подхода лежит ряд явных упрощений. Но именно такое упрощенное рассмотрение позволяло создать стройную модель элементарных эволюционных процессов, опираясь на которую можно было надеяться разобраться в более сложных случаях. (Точно так же в свое время Мендель, проанализировав простейший тип наследования отдельных элементарных признаков, смог разработать теоретическую модель, на основе которой впоследствии удалось понять куда более сложные и загадочные случаи – включая те, что явно нарушали все менделевские соотношения.) Да у ученых, по сути, и не было выбора: как ни привлекательны были идеи Уоддингтона и Шмальгаузена, для воплощения их в конкретные исследования требовались инструменты и методы, которых в те времена просто не существовало.

Прошли десятилетия, прежде чем эволюционная биология вновь обратилась к теме индивидуального развития организмов. Ключом к “шкатулке”, о которой говорил Мейнард Смит, стала технология секвенирования – определения последовательности нуклеотидов в конкретных фрагментах ДНК, позволяющего сравнивать между собой гены разных организмов. Уже в 1984 году были открыты некие гены, чрезвычайно сходные у насекомых и позвоночных и явно представляющие собой варианты одной и той же нуклеотидной последовательности. Вообще-то подобные гены, мало различающиеся даже у очень отдаленных друг от друга организмов, были известны и ранее, но это были так называемые “гены домашнего хозяйства”, необходимые для собственных нужд клетки: гены ДНК- и РНК-полимераз, цитохромов, транспортных и рибосомных РНК и т. д. Понятно, что такие гены работают (пусть даже и с разной интенсивностью) во всех живых клетках и очень неохотно изменяются в ходе эволюции.

“Новые” же гены работали только в некоторых клетках и только на определенных этапах онтогенеза. Но при этом, как уже говорилось, они имелись у мыши и дрозофилы (а как выяснилось позже – вообще у всех многоклеточных животных, кроме губок), у всех были удивительно сходны и у всех играли важную роль в индивидуальном развитии. В частности, определенная мутация в одном из hox-генов (такое название получило семейство этих генов, открытое первым) приводила к тому, что у дрозофилы вместо усика вырастала нога. Другая мутация превращала жужжальца (рудименты второй пары крыльев у мух) в полноценные крылья. Немного позже было открыто еще одно семейство подобных генов – pax6. Гены этого семейства играют важную роль в развитии глаза у позвоночных, насекомых и головоногих моллюсков. Последний общий предок этих трех групп был, вероятно, общим предком вообще всех двустороннесимметричных животных. Были ли у него какие бы то ни было глаза – крайне сомнительно. Во всяком случае, настоящих сложных глаз точно не было: они у всех трех групп возникли независимо и устроены настолько по-разному, что ни одна из этих конструкций не может быть преобразована в другую. Но у всех у них развитие глаз контролируется похожими генами. Настолько похожими, что если в геном дрозофилы искусственно ввести несколько копий мышиного варианта гена pax6 (в дополнение к имеющемуся у мухи собственному гену того же семейства), то по всему телу мухи разовьются маленькие неправильные глазки. То есть химический сигнал, подаваемый геном млекопитающего, понятен тканям насекомого.

Когда биологи научились не только сравнивать “тексты” генов в геномах разных существ, но и отслеживать, в каких именно тканях, в какие именно моменты онтогенеза и насколько интенсивно работает тот или иной ген, исследования такого рода сложились в целое крупное направление – эволюционную биологию развития, или, как ее обычно называют, “эво-дево” (от английского evolutionary developmental biology). Сегодня это одна из наиболее бурно развивающихся областей современной биологии, непрерывно поставляющая все новые и новые удивительные открытия. Причем речь идет не только об ошеломляющих и часто противоречащих всем ожиданиям фактах, но и о концепциях – новых, но порой неожиданно перекликающихся с классическими и позволяющих по-новому взглянуть на них. Такова, например концепция генно-регуляторных сетей – ансамблей генов-регуляторов, которые, взаимодействуя друг с другом и с другими генами посредством своих продуктов (белков или РНК), координируют активность больших “коллективов” генов и управляют сложными процессами – в том числе всевозможным формообразованием в ходе онтогенеза. Моделей такого рода в генетике (и вообще в биологии) до возникновения эво-дево не было. Но именно в свете представления о генно-регуляторных сетях удалось объяснить значительную часть знаменитых корреляций – сопряженной эволюции признаков, функционально не связанных друг с другом. Аналогичным образом сложившееся в эво-дево понятие “глубокой гомологии” (когда некая структура, имеющаяся у двух далеких друг от друга групп организмов, не была присуща их последнему общему предку и, следовательно, не является гомологичной в традиционно-морфологическом смысле, однако в обоих случаях развивается благодаря активности гомологичных генов – как в вышеупомянутом случае с глазами и генами pax6) стало естественным объяснением для многочисленных случаев эволюционного параллелизма, вокруг которых в XIX и большей части XX века было сломано столько теоретических копий.

О достижениях и проблемах эво-дево, об открытых ею удивительных фактах и ее остроумных концепциях можно написать увлекательнейшую книгу – и я надеюсь, что кто-нибудь такую книгу напишет. Для нашей же темы важно, что основным предметом этого направления исследований является именно эволюция онтогенеза – наконец-то занявшая подобающее место в системе наших представлений об эволюции живого.


Шаги онтогенеза [191] | Дарвинизм в XXI веке | …и обратно?