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Foreword to the Revised Edition

In §28 there are two convenient deductive rules that cannot be
directly justified, for the good reason that they serve to deduce
conclusions from premisses insufficient to imply them. In past
printings of §28 these rules have been indirectly justified by proving
that deductions in which they are used will still turn out all right
in the end, as long as certain arbitrary-looking restrictions are re-
spected. In this new edition, §28 is rewritten. The rules and restric-
tions are now explained and justified in a way that dispels the old
air of artificiality.

Pp. 190f. and 244-248 treated of theorems of Church and Godel,
to the effect that there can be no decision procedure for quanti-
fication theory and no complete proof procedure for number theory.
This material has been rewritten, and also extended (by compressing
the adjacent text), with a view to providing a somewhat fuller
understanding.

An appendix is added proving Godel’s theorem of the complete-
ness of quantification theory and a related theorem of Léwenheim.
This is the Appendix that was enclosed as a pamphlet with part of
the third printing.

On suggestions of Mr. Donald P. Quimby and Professor William
T. Parry, I have revised pp. 31, 52, and 181 in the direction of more
freedom of classroom procedure. Lesser emendations, many of them
prompted by Mr. Quimby, have been made in pp. 21, 97, 135, 146f.,
170, 189, 200, 202, 242, and the Bibliography and Index.

Thirty small typographical or clerical errors discovered in the
first printing were corrected in the second, 1952. Also various more
substantial emendations were there made, affecting pages 44, 53,
67, 100, 116, 119, 173f., 176, 181, and 192. For calling my attention
to the need of those corrections I remain indebted to many readers,
especially Professors G. B. Burch, Alonzo Church, and A. P. Ushenko
and Messrs. M. W. Dick, R. S. Palais, and S. J. Todes.

Cambridge, August 22, 1956 W.V.Q.

Preface

Logic is an old subject, and since 1879 it has been a great one.
There is room in it for many books. But if each of five logic books
is concerned, at least in its early portions, with the elements of the
subject, and all are from the same hand, then space must be found in
the fifth for an apology. Such is the purpose for which the present
page and the next have been set aside.

This book undertakes both to convey a precise understanding of
the formal concepts of modern logic and to develop convenient tech-
niques of formal reasoning. Logic books exist which are strong in
theory and rigorous and elegant in the matter of proofs, but the
reader who would discover further proofs of his own has had pain-
fully to develop his own method of discovery. In this book, though
rigor has been preserved, the objective of inculcating technical facility
has been allowed to prevail over that of elegance.

The logic of truth functions and the logic of one-place predicates,
or monadic quantification theory, are provided here with mechanical
tests of validity. Various such tests are known, but new ones are here
presented which seem on the whole to terminate more quickly when
applied to examples.

For the broader logic of predicates, or general quantification
theory, comprehensive tests of validity are known to be impossible.
Here one must resort to proofs rather than mere tests; and the dis-
covery of proofs commonly depends on ingenuity. Here, therefore,
efficacy is served by so framing the rules of proof as to make the
discovery of proofs as easy on the average as we can. This objective,
rather than that of conciseness of rules, has prompted the systematiza-
tion of general quantification theory contained in this book.

This much makes the book a new manual of logical method. But
theory also comes in for a share. The last five sections of the book.
deal with set theory and the foundations of mathematics, others deal
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viii PREFACE

with singular terms and descriptions, others grind the old ontological
axe. These pages too turned out new in more than manner of ex-
pression.

Still, this is one more book which develops modern logic from the
ground up. Unavoidably there have been patches where points ex-
plained in my earlier writings needed to be explained again in essen-
tially the same old way. At these points I have adapted examples
and expository passages from Mathematical Logic, Elementary Logic,
and O Sentido da Nova Ldgica, preferring not to obscure genuine
points of contact by ad koc shifts of example or of phrasing. But the
points are few. §1 draws in part on §6 of O Sentido, and §3 draws in
part on §2 of Mathematical Logic. In §§4, 8, 12, and 31, examples
are borrowed from Elementary Logic but are handled differently.

About a sixth of the book is being printed small, as optional read-
ing; the rest is intended as a text for a semester college course in
deductive logic. The course in which I shall use it is not Freshman
Thought, but it is a course for the general student and it does not
presuppose Freshman Thought or other special training. Besides
being intended for the general student, the course does double duty
as a prerequisite for specialized courses in logic; and it is hoped
correspondingly that this book may be useful as a foundation for
further building. Finally, despite the presence of exercises, the book
would fail of much of its purpose if it were not also taken up as a
treatise by readers who have no commitments to a college logic course.
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Introduction

Logic, like any science, has as its business the pursuit of truth. What
are true are certain statements; and the pursuit of truth is the en-.
deavor to sort out the true statements from the others, which are
false.

Truths are as plentiful as falsehoods, since each falsehood admits of
a negation which is true. But scientific activity is not the indiscrimi-
nate amassing of truths; science is selective and seeks the truths that
count for most, either in point of intrinsic interest or as instruments
for coping with the world.

For truth ordinarily attaches to statements by virtue of the nature
of the world. It is a commonplace, inaccurate but not unfounded,
that a statement is true when it corresponds to reality, when it
mirrors the world. A fundamental way of deciding whether a state-
ment is true is by comparing it, in some sense or other, with the
world—or, which is the nearest we can come, by comparing it with
our experience of the world.

Strictly speaking, what admit of truth and falsity are not state-
ments as repeatable patterns of utterance, but individual events of
statement utterance. For, utterances that sound alike can vary in
meaning with the occasion of the utterance. This is due not only to
careless ambiguities, but to systematic ambiguities which are essential
to the nature of language. The pronoun ‘I’ changes its reference with
every change of speaker; ‘here’ changes its reference with every sig-
nificant movement through space; and ‘now’ changes its reference
every time it is uttered.

So the crucial point of contact between description and reality is
to be sought in the utterance of a statement on the occasion of an
experience which that statement utterance directly reports. The
seeing of a green patch, and the simultaneous utterance ‘Green patch
now’, constitute the sort of composite event which, in its rare occur-
rences, gladdens the heart of the epistemologist.

Such events, fundamental though they are epistemologically, are
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xii INTRODUCTION

rare because of the social nature of language. Language is a social
institution serving, within its limitations, the social end of com-
munication; so it is not to be wondered that the objects of our first
and commonest utterances are socially shared physical objects rather
than private experiences. Physical objects, if they did not exist,
would (to transplant Voltaire’s epigram) have had to be invented.
They are indispensable as the public common denominators of private
sense experience.

But utterances about physical objects are not verifiable or refutable
by direct comparison with experience. They purport to describe, not
cxperience, but the external world. They can be compared with the
cxternal world only through the medium of our experience of that
world, but the connection between our experience and the world
already involves a step of hypothesis or inference which precludes
any direct and conclusive confrontation of the utterance with its
subject matter. There is many a slip betwixt objective cup and sub-
jective lip.

So statements, apart from an occasional collectors’ item for episte-
mologists, are connected only deviously with experience. The latest
scientific pronouncement about positrons and the statement that my
pen is in my hand are equally statements about physical objects; and
physical objects are known to us only as parts of a systematic concep-
tual structure which, taken as a whole, impinges at its edges upon
experience. As far as knowledge is concerned, no more can be claimed
for our whole body of affirmations than that it is a devious but con-
venient system for relating experiences to experiences. The system
as a whole is under-determined by experience, but implies, given
certain experiences, that certain others should be forthcoming. When
such predictions of experience turn out wrong, the system has to be
changed somehow. But we retain a wide latitude of choice as to what
statements of the system to preserve and what ones to revise; any one
of many revisions will be sufficient to unmake the particular implica-
tion which brought the system to grief. Our statements about
external reality face the tribunal of sense experience not individually
but as a corporate body.

But such choice of what to revise is subject to a vague scheme of
priorities. Some statements about physical objects, e.g., ‘My pen is in
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my hand’, ‘The mercury is at 80’, are in some sense closer to possible
experience than others; and such statements must be guarded pretty
jealously once the appropriate experiences have appeared. Should
revision of the system become necessary, other statements than these
are to suffer. It is only by such an allocation of priority that we can
hope to claim any empirical content or objective reference for the
system as a whole.

There is also, however, another and somewhat opposite priority:
the more fundamental a law is to our conceptual scheme, the less
likely we are to choose it for revision. When some revision of our
system of statements is called for, we prefer, other things being equal,
a revision which disturbs the system least. Actually, despite the ap-
parent opposition between this priority and the one previously
noted, the one involves the other. For, the connection between a
statement such as ‘My pen is in my hand’ and the experiences which
are said to verify it is itself a matter of general principles central to
the system.

Where the two priorities come into conflict, either is capable of
prevailing. Statements close to experience and seemingly verified by
the appropriate experiences may occasionally be given up, even by
pleading hallucination, in the extreme case where their retention
would entail a cataclysmic revision of fundamental laws. But to over-
rule a multiplicity of such statements, if they reinforce one another
and are sustained by different observers, would invite criticism.

The priority on law, considered now apart from any competition
with the priority on statements verified by experience, admits of
many gradations. Conjectures of history and economics will be revised
more willingly than laws of physics, and these more willingly than
laws of mathematics and logic. Our system of statements has such a
thick cushion of indeterminacy, in relation to experience, that vast
domains of law can easily be held immune to revision on principle.
We can always turn to other quarters of the system when revisions
are called for by unexpected experiences. Mathematics and logic,
central as they are to the conceptual scheme, tend to be accorded
such immunity, in view of our conservative preference for revisions
which disturb the system least; and herein, perhaps, lies the “neces-
sity” which the laws of mathematics and logic are felt to enjoy.
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In the end it is perhaps the same to say, as one often does, that the
laws of mathematics and logic are true simply by virtue of our con-
ceptual scheme. For, it is certainly by virtue of that scheme that
those laws are central to it; and it is by virtue of being thus central
that the laws are preserved from revision at the expense of statements
less strategically situated.

Tt is also often said that the laws of mathematics and logic are true
by virtue of the meanings of the words ‘+’, ‘=", ‘if’, ‘and’, etc., which
they contain. This also I can accept, for I expect it differs only in
wording from saying that the laws are true by virtue of our conceptual
scheme.

* But it must now be remarked that our conservative preference for
those revisions which disturb the system least is opposed by a signifi-
cant contrary force, a force for simplification. Far-reaching revision of
the fundamental laws of physics was elected in recent decades, by
considerations of simplicity, in preference to the welter of ad hoc
subsidiary laws which would otherwise have been needed to accom-
modate the wayward experiences of Michelson and Morley and other
experimenters. Continued experiment “‘confirmed” the fundamental
revisions, in the sense of increasing the simplicity differential.

Mathematical and logical laws themselves are not immune to
revision if it is found that essential simplifications of our whole con-
ceptual scheme will ensue. There have been suggestions, stimulated
largely by quandaries of modern physics, that we revise the true-
false dichotomy of current logic in favor of some sort of tri- or
n-chotomy. Logical laws are the most central and crucial statements
of our conceptual scheme, and for this reason the most protected
from revision by the force of conservatism; but, because again of
their crucial position, they are the laws an apt revision of which
might offer the most sweeping simplification of our whole system of
knowledge.

Thus the laws of mathematics and logic may, despite all “necessity”,
be abrogated. But this is not to deny that such laws are true by virtue
of the conceptual scheme, or by virtue of meanings. Because these
laws are so central, any revision of them is felt to be the adoption of a
new conceptual scheme, the imposition of new meanings on old
words. No such revolution, by the way, is envisaged in this book;
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there will be novelties of approach and technique in these pages, but
at bottom logic will remain unchanged.

For the most part, as has been stressed in the foregoing paragraphs,
our statements relate only remotely to experience. The system of
statements as a whole has its experiential implications; but the indi-
vidual statements, apart from the peripheral few which directly
describe experience as such, are relevant to experience only indirectly
through their participation in the system. It is only by way of the
relations of one statement to another that the statements in the
interior of the system can figure at all in the prediction of experience,
and can be found deserving of revision when prediction fails. Now
of these relations of statements to statements, one of conspicuous
importance is the relation of logical implication: the relation of any
statement to any that follows logically from it. If one statement is to
be held as true, each statement implied by it must also be held as
true; and thus it is that statements internal to the system have their
effects on statements at the periphery.

But for implication, our system of statements would for the most
part be meaningless; nothing but the periphery would make sense.
Yet implication is not really an added factor; for, to say that one"
statement logically implies a second is the same as saying that a third
statement of the system, an ‘if-then’ compound formed from the
other two, is logically true or “valid.” Logical truths are statements
on a par with the rest, but very centrally situated; they are state-
ments of such forms as ‘x = x’, ‘p or not p’,'If p then p’, “If p and ¢
then ¢’, ‘If everything is thus and so then something is thus and so’,
and others more complex and less quickly recognizable. Their charac-
teristic is that they not only are true but stay true even when we make
substitutions upon their component words and phrases as we please,
provided merely that the so-called “logical” words ‘=", ‘or’, ‘not’,
‘if-then’, ‘everything’, ‘something’, etc., stay undisturbed. We may
write any statements in the ‘p’ and ‘¢’ positions and any terms in the
‘thus and so’ positions, in the forms cited above, without fear of
falsity. All that counts, when a statement is logically true, is its struc-
ture in terms of logical words. Thus it is that logical truths are com-
monly said to be true by virtue merely of the meanings of the logical
words. ‘
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The chief importance of logic lies in implication, which, therefore,
will be the main theme of this book. Techniques are wanted for
showing, given two statements, that the one implies the other; herein
lies logical deduction. Such techniques will be developed, for increas-
ingly inclusive portions of logic, as the book proceeds. The objects of
deduction, the things related by implication, are statements; so
statements will constitute not merely the medium of this book (as of
most), but the primary subject matter.

Strictly speaking, as urged earlier, what admit of meaning and of
truth and falsity are not the statements but the individual events of
their utterance. However, it is a great source of simplification in
logical theory to talk of statements in abstraction from the individual
occasions of their utterance; and this abstraction, if made in full aware-
ness and subject to a certain precaution, offers no difficulty. The
precaution is merely that we must not apply our logical techniques
to examples in which one and the same statement recurs several times
with changed meanings, due to variations in immediate context. But
such examples are easily enough adjusted to the purposes of logic by
some preliminary paraphrasing, by way of bringing the implicit
shifts of meaning into explicit form. (Cf. §8).

Logic and mathematics were coupled, in earlier remarks, as jointly
enjoying a central position within the total system of discourse. Logic
as commonly presented, and in particular as it will be presented in
this book, seems to differ from mathematics in that in logic we talk
about statements and their interrelationships, notably implication,
whereas in mathematics we talk about abstract nonlinguistic things:
numbers, functions, and the like. This contrast is in large part mis-
leading. Logical truths, e.g., statements of the form ‘If p and g then
7', are not about statements; they may be about anything, depending
on what statements we put in the blanks ‘¢’ and ‘q’. When we talk
about such logical truths, and when we expound implications, we are
indeed talking about statements; but so are we when we talk about
mathematical truths.

But it is indeed the case that the truths of mathematics treat ex-
plicitly of abstract nonlinguistic things, e.g., numbers and tunctions,
whereas the truths of logic, in a reasonably limited sense of the word
‘logic’, have no such entities as specific subject matter. This is an
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important difference. Despite this difference, however, logic in its
higher reaches is found to bring us by natural stages into mathe-
matics. For, it happens that certain unobtrusive extensions of logical
theory carry us into a realm, commonly also called ‘logic’ in a broad
sense of the word, which does have abstract entities of a special kind
as subject matter. These entities are classes; and the logical theory
of classes, or set theory, proves to be the basic discipline of pure
mathematics. From it, as first came to be known through the work
of Frege, Dedekind, Weierstrass, and their successors within the past
seventy years, the whole of classical mathematics can be generated.
Before the end of the book we shall have ascended through four
grades of logic in the narrower sense, and emerged into set theory; and
here we shall see, as examples of the derivation of classical mathe-
matics, how the concept of number and various related notions can

be defined.
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PART ONE

Truth Functions

§1. NEGATION, CONJUNCTION, AND ALTERNATION

The peculiarity of statements which sets them apart from other lin-
guistic forms is that they admit of truth and falsity, and may hence
be significantly affirmed and denied. To deny a statement is to affirm
another statement, known as the negation or contradictory of the first.
To deny “The Taj Mahal is white’ is to affirm “The Taj Mahal is not
white’. Note that this negation is opposed to the original not as black
to white, but as non-white to white; it counts as true in every case
except the case of whiteness.

The commonest method of forming the negation of statements in
ordinary language is by attaching ‘not’ (or ‘does not’, etc.) to the
main verb, asin the foregoing example. But if the verb is governed by
‘sometimes’ or ‘always’, the negation is formed rather by substituting
‘never’, or ‘not always’. If the statement is compound and thus has no
main verb, its negation has to be phrased more elaborately; e.g., ‘It
is not the case both that ... and that ...". But, despite such irregu-
larities of ordinary language, a little care suffices for constructing a
clear negation of any given statement, the guiding consideration
being simply this: the negation is to count as false if the given state-
ment is true, and the negation is to count as true under any and all
circumstances under which the given statement is false.

In logical studies it is convenient to adopt a single sign of negation,
consisting of the prefix ‘—’, applied to statements as wholes." Thus
‘—(Jones is away)’ means ‘Jones is not away’; the parentheses here
serve to group, as a single whole, the statement to which ‘=’ is
applied. The sign ‘—’ might be translated into words as ‘it is not the

Many authors prefer the tilde ‘~".



2 TRUTH FUNCTIONS [81]

case that’; briefly it may be pronounced ‘not’. When a statement is
represented as a single letter ‘¢’, as is commonly done in logical dis-
cussion, the sign of negation will be placed above instead of in front;
thus we shall write ‘p’ instead of ‘—p’ for the negation of ‘p".

Instead of affirming each of several statements we can, equivalently,
affirm a single statement which is known to logicians (in contrast to
grammarians) as the conjunction of the given statements. The con-
junction of two or more statements is commonly expressed in English
by linking the statements by ‘and’, or commas, or a combination of
the two: ‘Some are born great, some achieve greatness, and some have
greatness thrust upon them.’” In logical studies it is convenient to
express the conjunction simply by writing the component statements
in juxtaposition; e.g., ‘(some are born great)(some achieve greatness)
(some have greatness thrust upon them)’—where again the paren-
theses serve merely to mark off the component statements as wholes.
If we think of ‘p’, ‘¢’, and ‘7’ as statements, their conjunction is
represented as ‘pgr’.

The meanings of negation and conjunction are summed up in
these laws. The negation of a true statement is false; the negation of a
false statement is true; a conjunction of statements all of which are true
is true; and a conjunction of statements not all of which are true is false.

We see immediately that ‘¢’, the negation of ‘p’, will be true if
and only if ‘p’ is false, hence if and only if ‘p’ is true; so there is no
point in writing a double negation ‘¢’, amounting as it does simply
to ‘p’. It is equally evident that the conjunction ‘pp’ amounts simply
to ‘p.

Consider now ‘p(gr)’. This, being the conjunction of ‘p’ and
‘qr’, is to be true if and only if ‘¢’ and ‘g7’ are both true: and ‘g7’ in
turn is to be true if and only if ‘g’ and ‘7’ are both true. Hence ‘p(gr)’
is true if and only if ‘p’, ‘q’, and ‘7’ are all true; in other words, ‘p(gr)’
amounts simply to the three-way conjunction ‘pgr’. In the same way
it may be seen that ‘(pg)7’ amounts simply to ‘pgr’. We may therefore
drop parentheses and always write ‘pgr’, viewing this at will as the
conjunction of ‘pq’ and ‘7, as the conjunction of ‘p’ and ‘gr’, and as
the conjunction of ‘p’, ‘¢’, and ‘7. Conjunction is, in mathematical
jargon, associative: internal grouping is immaterial in ‘pgr’, just as in
the sum ‘x 4 y + 2’ or product ‘xyz’ of arithmetic. Conjunction
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contrasts in this respect with the arithmetical operation of division;
for note that the parentneses in ‘12 + (6 + 2)’ and ‘{12 + 6) + 2’
make all the difference between 4 and 1. .

Another respect in which conjunction resembles addition and mul-
tiplication, and differs from division, is that it is commutative; i.e.,
order is immaterial, there being no need to distinguish between ‘pg’
and ‘gp’.

But conjunction was lately observed to enjoy also a third conven-
ient property, not shared by addition and multiplication; viz., ‘pp’
reduces to ‘p’. Conjunction is idempotent, to persist in the jargon.
Taken together, these three properties of conjunction come simply
to this: once we have an inventory of all the distinct components of a
continued conjunction, no further details of the constitution of the
conjunction need concern us.

Having touched on negation and conjunction, which correspond to
‘not’” and ‘and’, we turn now to a third way of forming statements
from statements. It is called alternation, and corresponds to the con-
nective ‘or’, or ‘either-or’. This connective is subject in ordinary dis-
course to conflicting usages. One sense is the nonexclusive,' according
to which the compound is true so long as at least one of the compo-
nents is true. Under this usage the statement:

(Either) Jones is ill or Smith is away

is true if Jones is ill and Smith is away, true again if Jones is not ill
but Smith is away, true again if Jones is ill but Smith is not away,
and false only in case Jones is neither ill nor Smith away. The other
sense in which ‘or’ is sometimes used, called the exclusive, construes
the compound as true just in case exactly one of the components is
true. In this sense of ‘or’, the compound becomes false not only when
the components are both false (Jones neither ill nor Smith away) but
also when the components are both true (Jones ill and Smith away).

The ambiguity of ‘or’ is commonly resolved, in ordinary usage, by
adding the words ‘or both’ or ‘but not both’. Thus the nonexclusive
sense is expressible in the unambiguous fashion:

Jones is ill or Smith is away or both,

I follow Cooley in preferring this awkward term to the more usual but somewhat
misleading ‘inclusive’.
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and the exclusive sense thus:
Jones is ill or Smith is away but not both.

When we are confronted with ‘p or ¢’ by itself, we do not in
general know which interpretation to assign to it. Often the choice is
immaterial, in that either sense would serve equally. For example,
consider the expression ‘¢ < y’, i.e., ‘* < y or ¥ = ¥, It makes no
difference whether ‘or” here is understood in the nonexclusive or the
exclusive sense. The only difference between the two senses occurs in
the case where both components are true; but when the components
concerned are ‘x < " and ‘x = y’, the case of joint truth does not
arise either in fact or in the mind of the speaker.

It is a common error to believe that examples like ‘x < yorx = y’
are clear cases of the use of ‘or’ in the exclusive sense, and in conse-
quence of this error there is a tendency to overestimate the role
which the exclusive sense of ‘or’ plays in everyday language. The
clauses x < y’ and ‘x = y’ are, of themselves, mutually exclusive or
incompatible clauses; but this incompatibility, far from establishing
that the context ‘* < y or x = 3’ uses ‘or’ in the exclusive sense,
deprives us of the one case in which we might hope to distinguish
between the exclusive and nonexclusive senses. Since the clauses
‘* < y" and ‘x = y’ are already of such nature as to exclude each
other, it is immaterial whether we understand ‘or’ as repeating this
exclusion or not.

If we want to establish indisputable instances of the exclusive use
of ‘or’, we must imagine circumstances in which the person who uses
‘or’ has a positive purpose of denying, explicitly within the given
statement, the joint truth of the components. Such examples are
rare, but they exist. In an example given by Tarski it is supposed that
a child asks his father to take him to the beach and afterwards to the
movie. The father replies, in a tone of refusal, “We will go either to
the beach or to the movie.” Here the exclusive use is clear; the father
means simultaneously to promise and to refuse. But it is much easier
to find cases in which the nonexclusive interpretation is obligatory.
For example, when it is decreed that passports will be issued only to
persons who were born in the country or who are married to natives
of the country, this does not mean that passports will be refused to
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persons who were born in the country and are married to natives.
Most use of ‘or’ in everyday language is either of this type which
admits only of the nonexclusive interpretation, or of the type of
‘¢ < yorx = y, which admits both interpretations indifferently.
Latin has distinct words for the two senses of ‘or’: vel for the
nonexclusive and autz for the exclusive. In modern logic it is customary
to write ‘v’, reminiscent of ‘vel’, for ‘or’ in the nonexclusive sense:
‘v v ¢'. It is this mode of compounding statements, and only this,
that is called alternation. When the ambiguous ‘or’ of ordinary
language appears hereafter in the book, let us agree to construe it in
this nonexclusive sense. If occasions arise where the exclusive sense
of ‘or’ is really wanted, it is easy enough to express it explicitly:

p or g but not both,

or equivalently:

Either p and not g or g and not p,

i.e., in symbols:
pg v pe-

The meaning of alternation, then, is given by this rule: An alterna-
tion is true if at least one of the components is true, and otherwise false.
Whereas a conjunction is true if and only if its components are all
true, an alternation is false if and only if its components are all false.
In a metaphor from genetics, conjunction and alternation may be
contrasted thus: in conjunction, truth is recessive and falsity domi-
nant; in alternation, truth is dominant and falsity recessive.

Because the explanation of alternation is just the same as that of
conjunction except for interchanging the roles of truthand falsehood,
it is evident that the formal properties of conjunction must reappear
as properties of alternation; thus alternation, like conjunction, is
associative, commutative, and idempotent. We can render ‘(pvq) v7’
and ‘p v (¢ vr)’ indifferently as ‘p v g v7’; we can interchange P v ¢’
with ‘g v p’; and we can reduce ‘p v p’ to ‘p’. All that matters in a
continued alternation, as in a continued conjunction, is an inventory
of the distinct components.

After §3, this may be also written ‘p = 7,
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Though the grouping of components is irrelevant within a con-
tinued conjunction and within a continued alternation, it is important
where conjunction and alternation are mixed; we must distinguish,
e.g., between ‘pg v’ and ‘p(gv7)’. In §5 a systematic technique will
appear whereby all complexes of conjunction, alternation, and nega-
tion can conveniently be analyzed; meanwhile, however, it is easy to
see in advance that ‘pg v 7’ and ‘p(g v r)’ are bound to behave in
quite unlike ways. One clear point of divergence is this: ‘p(g v7)’,
being a conjunction with ‘p’ as a component, cannot be true unless
‘p’ is true, whereas ‘pg v r’, being an alternation with 7’ as one
component, will be true so long as ‘7’ is true, even if ‘p’ be false.

Grouping is likewise important when negation occurs in combina-
tion with conjunction or alternation. We are not likely, indeed, to
confuse ‘pg’ with ‘—(pq)’, nor ‘p v g’ with ‘—(p v g)’, for in the one
case only ‘p’ is negated while in the other case the whole compound
is negated. But what is less evident is that we must distinguish also
between ‘—(pq)’ and ‘p7’, and between ‘—(p v g)’ and ‘p v . Let
us see what these distinctions are, taking ‘p’ as ‘penicillin was flown
in’ and ‘q’ as ‘a quarantine was imposed’. There are four possible
situations:

pq: Penicillin was flown in and a quarantine was imposed.
$q: Penicillin was not flown in but a quarantine was imposed.
p3: Penicillin was flown in and no quarantine was imposed.
$3: Penicillin was not flown in nor was a quarantine imposed.

Now ‘—(pq)’ denies just the first of the four situations, and so comes
out true in the second, third, and fourth. Thus ‘—(pq)’ is quite
different from ‘pg’, which holds in the fourth case only. As for
‘p v 7', this holds whenever one or both of ‘p’ and ‘g’ hold; hence in
the second, third, and fourth cases. We can therefore equate ‘p v 7’
with ‘—(pg)’. Finally ‘—(p v ¢)’ holds in the one case where ‘p v ¢’
fails—hence in the fourth case alone; so we may equate ‘—(p v g)’
with ‘pg’.

So ‘—(pq)’ does not amount to ‘p7’, but to ‘Fv§;and ‘—(pvq)
does not amount to ‘p v 7', but to ‘p7’. We may distribute the nega-
tion sign of ‘— (pg)’ and ‘—(p v q)’ over ‘p’ and ‘g’ individually only
on pain of changing conjunction to alternation and vice versa.!

1These equivalences are called DeMorgan’s laws. See §10.
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A little reflection reveals the same relationship in ordinary lan-
guage. Clearly ‘67", or ‘Not p and not ¢’, may be phrased ‘Neither p
nor ¢’; and it is scarcely surprising that ‘Neither p nor ¢’ should
amount to ‘—(p v q)’, the negation of ‘Either p or 4. Again ‘—(pg)’
may be read ‘Not both p and ¢’, and from this it is no leap to ‘Either
not p or not g’.

If we read the negation sign as ‘it is not the case that’, the distinc-
tions of grouping become automatic.

—(pg): It is not the case that both p and 4.

Pg: It is not the case that p and it is not the case that 4.
—(p v q): It is not the case that either p or 4.

P v ¢: It is not the case that p or it is not the case that 4.

Of these four the first and last, we have seen, come to the same thing;
and similarly for the second and third.

EXERCISES
1. Which of the four cases:

Jones ill, Smith away,

Jones not ill, Smith away,
Jones ill, Smith not away,
Jones not ill, Smith not away

make the statement:

Jones is not ill or Smith is not away

come out true when ‘or’ is construed exclusively? nonexclusively?

2. Construing ‘p’ as ‘penicillin was flown in’ and ‘g’ as ‘the quaran-
tine was lifted’, distinguish in phrasing between ‘—(p v ¢)’ and
‘P v ¢'. Under what circumstances would one of these compounds
come out true and the other false?

§2. TRUTH FUNCTIONS

All that is strictly needed for a precise understanding of negation,
conjunction, and alternation is stated in these laws:
‘P’ is true if and only if ‘p’ is false,
‘pq...s" is true if and only if all of ‘p’, ‘¢, ..., ‘s are true,
‘Pvqv..vs istrueif and only if ‘p’, ‘¢, ..., ‘5" are not all false.
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Now it is evident from these laws that negation, conjunction, and
alternation share the following important property: in order to be
able to determine the truth or falsity of a negation, conjunction, or
alternation, it is sufficient to know the truth or falsity of the com-
ponent parts.

It is convenient to speak of truth and falsity as truzh values; thus the
truth value of a statement is said to be truth or falsity according as
the statement is true or false. What we have just observed, then, is
that the truth value of a negation, conjunction, or alternation is
determined by the truth values of its components. This state of
affairs is expressed by speaking of negation, conjunction, and alterna-
tion as truth functions. In general, a compound is called a truth function
of its components if its truth value is determined in all cases by the
truth values of the components. More precisely: a compound of
given components is a truth function of them if its truth value re-
mains unchanged under all changes of the components so long as the
truth values of the components remain unchanged.

The property of truth-functionality which is thus enjoyed by
negation, conjunction, and alternation may be better appreciated
if for contrast we examine a non-truth-functional compound:

Jones died because he ate fish with ice cream.

Even agreeing that the components ‘Jones died’ and ‘Jones ate fish
with ice cream’ are true, we may still dispute over the truth value
of this compound. The truth value of the compound is not deter-
mined simply by the truth values of the component statements, but
by these in company with further considerations; and very obscure
those further considerations are. On the other hand the truth value
of the conjunction:

Jones ate fish with ice cream and died
or of the alternation:
Jones ate fish with ice cream or died

or of the negation:

Jones did not die
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admits of no dispute whatever once the truth values of ‘Jones ate
fish with ice cream’ and ‘Jones died’ are known individually.

The compound ‘p because 4’ is shown not to be a truth function of
‘p’ and ‘g’ by the fact that it comes out true when some truths are put
for ‘p’ and ‘g’ and false when other truths are put for ‘¢’ and ‘g’
In the case of ‘p v ¢, ‘pq’, and ‘p’, on the other hand, one true com-
ponent is as good as another and one false component is as bad as
another so far as the truth or falsity of the compound is concerned.

Any particular truth function can be adequately described by pre-
senting a schedule showing what truth values the compound will take
on for each choice of truth values for the components. Our three basic
truth functions themselves, indeed, were summarily so described in
the opening lines of the present section. Any unfamiliar fourth truth-
functional symbol could likewise be introduced and adequately ex-
plained simply by saying what truth values on the part of the com-
ponents are to make the new compound true and what ones are to
make it false. A symbol ‘excl-or’ for the exclusive ‘or’, e.g., would be
fully explained by a stipulation that ‘p excl-or ¢ is to be false when
‘p’ and ‘q’ are taken as both true or both false, and true in the remain-
ing two cases (‘p’ true and ‘g’ false or vice versa).

This question now arises: do our negation, conjunction, and alter-
nation constitute a sufficient language for 4/l truth-functional pur-
poses? Given an explanation of a new truth-functional symbol (e.g.,
‘excl-or’), can we always be sure that the new symbol will be trans-
latable into our existing notation? The answer is that negation and
conjunction are always sufficient, without even alternation!

E.g., consider again ‘p excl-or ¢’. This has been explained as false
in just the case (a) where ‘¢’ and ‘g’ are both true and the case (b)
where ‘p’ and ‘g’ are both false. Therefore p excl-or g’ amounts
simply to denying, simultaneously, ‘¢’ and ‘57’; for ‘pq’ holds in
case (a) and there alone, and ‘p7" holds in case (b) and there alone.
Therefore ‘p excl-or 4’ amounts to:

—(pg) —#):
the conjunction of ‘—(pq)’ and ‘—($3)’; for this conjunction simul-

tancously denies ‘pg’ and ‘p7 and nothing more. The compound
‘p excl-or ¢ is false in the two cases where ‘—(pg) —(pg)’ is false,
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and true in the two cases where ‘—(pq) — (pq)’. is true. So the symbol
‘excl-or’ is superfluous; conjunction and negation suffice.

In the same way the symbol ‘v’ of altem,a\t'xon itself can .be }slcen to
be superfluous. The one case whefe ‘pvq isto be fa}s_c_’lsht lct;scass(e)
where ‘¢’ and ‘g’ are both false; ie, the case ‘\_wv}':ere iz ‘o_ ;—)’
instead of writing ‘p v ¢’ we may simply dt?ny pq’» writing (gq .

These two simple examples of translating truth fu.n;txonskmfto
negation and conjunction illustrate a genc.ral- method Whl}(l: ;i wo::i ;r:i
almost any truth function. Givcr? a description of'Il truth unc "
i.e., given simply a schedule showing what truth values the comtpo——we
is to take on for each choice of truth value:s for the components e
can construct a truth function out of negation an'd con]unctlor.xdw 1c.f
answers the description. The general methqd will become cv1b.cnt i
illustrated once more, this time with a less sunplc. and more ar .1traryf
example than ‘excl-or’ and ‘v’. This time a certain truth functxoix oC
‘0’,‘q’yand ‘7’ is described as follows, let us say. It is to come out tru
in the five cases:

‘p false, °q’ true, ‘’ true,
‘9 true, ‘g false, ‘r true,
‘p’ true, ‘g’ true, ‘¢ false,
‘p’ false, ‘g’ true, r’ false,
‘p false, ‘q’ false, ‘7 false

and false in the remaining three cases:
‘p’ true, ‘g true, ‘¥ true,
‘p false, ‘q’ false, ‘¥ true,

‘9’ true, ‘g false, ‘7’ false.

Now these three latter cases are the cases r'cspectivcly where ‘pgr’ 1;
true, where ‘5gr’ is true, and where ‘pg7’ is true; so the compoun
which we are seeking is obtained simply l?y simultaneously negating
these three unwanted cases, in a conjunction thus:

—(pgr) —@ar) —(#47)-
Our compound thus denies, explicitly, just those cases in which it
was to come out false; in all other cases it comes out true.

Clearly this same method will work for any ex?mple SO longda..:
there are some cases, one or More, in which the desired compound 1
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to come out false. We thus have a routine whereby almost any
described truth function can be written out in terms of negation and
conjunction. The only truth functions which our routine fails to
take care of are the ones which are to be true in al/ cases, regardless of
the truth values of the components. These trivial exceptions call,
then, for separate treatment; and a treatment is straightway forth-
coming which is correspondingly trivial. If our problem is to express a
truth function of ‘¢, ‘¢’, *, and ‘s’ (say) which will come out true
regardless of what truth values are assigned to ¢, ‘g, 7'y and ‘5, we
may solve it simply by writing:

—(ppgrs).
Clearly ‘ppgrs’ will come out false in all cases, on account of ‘PP’;
therefore ‘— (ppgrs)’ will come out true in all cases.

So it is now clear that negation and conjunction constitute a
sufficient language for all truth-functional purposes. Far from needing
ever to add further notations for hitherto inexpressible truth func-
tions, we can even drop the notation ‘v’ which is already at hand.

But we shall not drop it, for it facilitates certain technical manipula-
tions (cf. §§10-11).

It should be remarked that conjunction is really no less superfluous than
alternation; for the fact is that an adequate notation for truth functions is
constituted not only by negation and conjunction, but equally by negation
and alternation. To see this it is sufficient to observe that the conjunction
‘P’ itselfis translatable into terms of negation and alternation, as ‘— ®vy).
This expression is equivalent to ‘pg’, in the sense that it comes out true
where ‘p’ and ‘g’ are both true, and otherwise false. For, ‘— (B v g) is true
if and only if ‘6 v § is false, hence if and only if ‘5’ and ‘7’ are both false,
and hence if and only if ¢’ and ‘¢’ are both true.

In lieu of negation and conjunction, or negation and alternation, a
single connective can be made to suffice—viz., ‘", construed as follows:
‘? | 4 is to be true if and only if ¢’ and ‘g’ are not both true. ‘¢ | ¢ amounts
to what would be expressed in terms of conjunction and negation as ‘— (pgq)’;
but, if we start rather with ‘|’ as basic, we can express ‘p’ in terms of ‘|’
as‘p | p’, and ‘pq’ as ‘(p | q) [ (¢ ] 9)". Another connective which would
suffice by itselfis ‘| ’, or ‘neither-nor’. ‘¢ | ¢’ amounts to what would be
expressed in terms of conjunction and negation as ‘p7’; but, if we start
rather with ‘| * as basic, we can express ‘5 as ‘p | Pand'pgas‘(p | p) |
(g1 9).

The logic of alternation, coniunction, and negation was investigated
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systematically in ancient times by the Stoics, in the Middle Ages by
Petrus Hispanus, Duns Scotus, and others,' and in modern times mainly
by Boole (1847 onward) and Schréder (1877 onward). The concept ot
truth function becomes explicit in Frege (1879). The reductions to ‘|’ and
¢ | ? are due to Sheffer (1913).

EXERCISE
Obtain a compound of ‘’, ‘q’, and ‘7', using only conjunction and
negation, which will come out true whenever exactly two of ¢’ °¢’,
and 7 are true, and otherwise false.

§3. THE CONDITIONAL

Besides ‘and’ and ‘or’, another connective of statements which
plays an important part in everyday language is ‘if-then’. A statement
of the form ‘if p then ¢’ is called a conditional. The component in the
position of ‘p” here is called the antecedent of the conditional, and the
component in the position of ‘4’ is called the consequent.

A conjunction of two statements is true, we know, just in case both
components are true: and an alternation is true just in case one or
both components are true. Now under what circumstances is a con-
ditional true? Even to raise this question is to depart from everyday
attitudes. An affirmation of the form ‘if p then 4’ is commonly felt
less as an affirmation of a conditional than as a conditional affirmation
.of the c’onsequcnt.2 If, after we have made such an affirmation, the
antecedent turns out true, then we consider ourselves committed to
the consequent, and are ready to acknowledge error if it proves false.
If on the other hand the antecedent turns out to have been false, our
conditional affirmation is as if it had never been made.

Departing from this usual attitude, however, let us think of condi-
tionals simply as compound statements which, like conjunctions and
alternations, admit as wholes of truth and falsity. Under what circum-
stances, then, should a conditional as a whole be regarded as true, and
under what circumstances false? Where the antecedent is true, the
above account of common attitudes suggests equating the truth value
.of the conditional with that of the consequent; thus a conditional

1See Lukasiewicz, “Zur Geschichte,” cited in the Bibliography.

2] am indebted here to Dr. Philip Rhinelander. Elsewhere in this section I draw upon
§2 of my Mathematical Logic (Cambridge, Mass.: Harvard University Press, 1947,
reprint edition), by permission of the publishers.
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with true antecedent and true consequent will count as true, and a
conditional with true antecedent and false consequent will count ar
false. Where the antecedent is false, on the other hand, the adoption
of a truth value for the conditional becomes rather more arbitrary;
but the decision which proves most convenient is to regard all condi-
tionals with false antecedents as true. The conditional ‘if p then ¢, so
construed, is written ‘p D ¢’ and called the material conditional. It is
construed as true where ‘p’ and ‘g’ are true, also where ‘¢’ is false and
‘q’ true, and also where ‘p’ and ‘q’ are both false; and it is construed
as false only in the remaining case, viz., where ‘p’ is true and ‘¢’ false.
The sign ‘D’, like ‘v’, is superfluous. We know from §2 how to
construct, by means of conjunction and negation alone, a compound
which shall be false in just the one case where ¢’ is true and ‘¢’
false; viz., ‘—(pg)’. We could dispense with ‘D’ altogether, always
writing ‘—(pg)’ instead of ‘p D ¢’. Yet another rendering, readily
seen to come to the same thing, is ‘p v 4’. However, the superfluous
sign ‘D’ will prove eventually to facilitate technical manipulations.
Now consider the statement:

¢)) If anything is a vertebrate, it has a heart.

This, to begin with, is not a conditional in the sense with which we
have been concerned above, for it is not really a compound of two
statements ‘anything is a vertebrate’ and ‘it has a heart’. The form
of words ‘it has a heart’ is not « statement, true or false, which can
be entertained in its own right, and be mooted to be true in case there
are vertebrates, Rather, (1) must be viewed as affirming a bundle of
individual conditionals: If ¢ is a vertebrate, @ has a heart; if & is a
vertebrate, & has a heart; and so on. In short:

(2) Nomatter what x may be, if x is a vertebrate then x has a heart.

But it is important to note that, of the bundle of conditionals which
(2) affirms, each individual conditional can quite suitably be inter-
preted as a material conditional. For, if we reflect that the material
conditional ‘p J g’ amounts to ‘—(p37)’, and then rewrite (2) accord-
ingly, we have:

No matter what x may be, it is not the case that x both is
a vertebrate and does not have a hears.
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or briefly:
(3)  Nothing is a vertebrate and yet does not have a heart

—which does full justice to the original (1). So a generalized condi-
tional, such as (1), can in full accordance with common usage be
construed as affirming a bundle of material conditionals. Taken as a
whole, the generalized conditional is a topic for Part II; it lies beyond
the present phase of analysis, which concerns only the compounding
of statements explicitly from blocklike components which are self-
contained statements in turn.

Another use of ‘if-then’ which is certainly not to be construed in
the fashion of ‘p D ¢’ is the contrafactual conditional; e.g.:

4 If Eisenhower had run, Truman would have lost.

Whoever affirms a conditional thus in the subjunctive mood is already
prepared in advance to maintain also, unconditionally, the falsehood
of the antecedent, but still he thinks the conditional adds some
information. Surely, then, he does not consider that such a conditional
is automatically verified (like ‘p O ¢’) simply by the falsity of the
antecedent. This kind of conditional is not subject to the earlier
remark to the effect that in ordinary usage a conditional is dropped
from consideration, as empty and uninteresting, once its antecedent
proves false.

The contrafactual conditional is best dissociated from the ordinary
conditional in the indicative mood. Whatever the proper analysis of
the contrafactual conditional may be, we may be sure in advance that
it cannot be truth-functional; for, obviously ordinary usage demands
that some contrafactual conditionals with false antecedents and false
consequents be true and that other contrafactual conditionals with
false antecedents and false consequents be false. Any adequate
analysis of the contrafactual conditional must go beyond mere truth
values and consider causal connections, or kindred relationships,
between matters spoken of in the antecedent of the conditional and
matters spoken of in the consequent. It may be wondered, indeed,
whether any really coherent theory of-the contrafactual conditional
of ordinary usage is possible at all, particularly when we imagine
trying to adjudicate between such examples as these:
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If Bizet and Verdi had been compatriots, Bizet would have been
Ttalian;

If Bizet and Verdi had been compatriots, Verdi would have
been French.

The problem of contrafactual conditionals is in any case a perplexing
one,' and it belongs not to pure logic but to the theory of meaning
or possibly the philosophy of science. We shall not recur to it here.

So the material conditional ¢ O ¢’ is put forward not as an analysis
of general conditionals such as (1), nor as an analysis of contrafactual
conditionals such as (4), but, at most, as an analysis of the ordinary
singular conditional in the indicative mood. Even as an analysis of
such conditionals the version ‘p D ¢’ (or ‘—(pg)’) is sometimes felt
to be unnatural, for it directs us to construe a conditional as true no
matter how irrelevant its antecedent may be to its consequent, so
long as it is not the case that the antecedent is true and the consequent
false. The following conditionals, e.g., qualify as true:

(5) If France is in Europe then the sea is salt,
(6) If France is in Australia then the sea is salt,
@ If France is in Australia then the sea is sweet.

No doubt this result seems strange; but I do not think it would be any
less strange to construe (5)—(7) as false. The strangeness is intrinsic
rather to the statements (5)-(7) themselves, regardless of their truth
or falsity; for it is not usual in practice to form conditionals out of
component statements whose truth or falsity is already known uncon-
ditionally. The reason this is not usual is readily seen: Why affirm a
long statement like (5) or (6) when we are in position to affirm the
shorter and stronger statement ‘The sea is salt’? And why affirm a
long statement like (6) or (7) when we are in position to affirm the
shorter and stronger statement ‘France is not in Australia’?

In practice, one who affirms ‘If p then ¢’ is ordinarily uncertain as
to the truth or falsehood individually of ‘¢’ and of ‘4’ but has some
reason merely for disbelieving the combination ‘p and not 4’ as a
whole. We say:

If Jones has malaria then he needs quinine,

1See Nelson Goodman, “The problem of counterfactual conditionals.”
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because we know about malaria but are in doubt both of Jones’
ailment and of his need of quinine. Only those conditionals are worth
affirming which follow from some manner of relevance between ante-
cedent and consequent—some law, perhaps, connecting the matters
which these two component statements describe. But such connection
underlies the useful application of the conditional without needing to
participate in its meaning. Such connection underlies the useful
application of the conditional even though the meaning of the
conditional be understood precisely as ‘— (p7)’.

The situation is quite similar, indeed, in the case of the connective
‘or’. The statement:

France is in Europe or the sea is sweet

is as little worth affirming as (5)—(7) and for the same reason: we can
save breath and yet convey more information by affirming simply
‘France is in Europe’. In practice one who affirms ‘p or ¢’ is ordinarily
uncertain as to the truth or falsehood individually of ¢’ and of ‘¢,
but believes merely that at least one of the two is true because of a
law or some other manner of relevance connecting the matters which
the two component statements describe. Yet clearly no meaning need
be imputed to ‘or’ itself beyond the purely truth-functional meaning
“not both false”.

The question how well ‘¢ D ¢’ conforms to the ordinary indicative
“if-then’ is in any case one of linguistic analysis, and of little conse-
quence for our purposes. What is important to note is that p J ¢/,
the so-called material conditional, is to have precisely the meaning
‘—(pg)’ (or ‘P v ¢'); and it will become evident enough, as we pro-
ceed, how well adapted this concept is to purposes for which the
idiom ‘if-then’ naturally suggests itself. In particular, as already
noted, the material conditional is precisely what is wanted for the
individual instances covered by a general conditional of the type (1).

The idiom ‘p if and only if ¢, called the diconditional, amounts
obviously to the conjunction of two conditionals, ‘if p then ¢’ and
if g then p’. All that has been said regarding the interpretation of the
conditional applies mutatis mutandis to the biconditional; whatever
use ‘if-then’ may be put to, and whatever meaning it may be con-
ceived to have, a corresponding use and a corresponding meaning

%
R

[§4] GROUPING 17

must accrue to ‘if and only if’. When in particular the conditional
is construed as the material conditional ‘¢ O ¢’, the corresponding
biconditional is called the material biconditional and written ‘p = q'’.
Since ‘p = ¢’ may be regarded simply as an abbreviation of ‘(p D g)
(g O p)’, or ‘—(pg) —(gp)’, it is evidently false in two and only two
cases: in the case where ‘p’ is true and ‘g’ false, and in the case where
‘g is true and ‘p’ false. In other words, a material biconditional is
true if the components are alike in truth value (both true or both
false), and it is false if the components differ in truth value.

The sign ‘=", like ‘D’ and ‘v’, is dispensable; indeed, we have
already seen that ‘p = ¢’ may be expressed in terms of conjunction
and negation as ‘—(pg) —(gp)’. But, as will appear in due course,
each of these three dispensable signs plays a special part in facilitating
the techniques of logic.

The material conditional goes back to Philo of Megara. It was revived
in modern logic by Frege (1879) and Peirce (1885). The conditional sign
‘D’ was used by Gergonne as early as 1816, though not in the material
sense. The appropriateness of the material version was vigorously debated
in ancient times (cf. Peirce, 3.441 fI; Lukasiewicz, “Zur Geschichte”,
p- 116), and has become a current topic of controversy as well. The issue
has been clouded, however, by failure to distinguish clearly between the
conditional and implication (cf. §7).

EXERCISE

It was said in a footnote in §1 that ‘p or ¢’ in the exclusive sense
could be written ‘p = §'. Explain why.

§4. GrouUPING

A conspicuous type of ambiguity in ordinary language is ambiguity
of grouping. The statement:

Rutgers will get the pennant and Hobart will be runner-up if
Rzymski is disqualified,

e.g., is hopelessly ambiguous in point of grouping; there is no telling
whether Rutgers’ getting the pennant is supposed to be contingent
upon Rzymski’s being disqualified. If so the logical form is p D g7,
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and otherwise it is ‘g (p D r)’, where ‘p’ represents ‘Rzymski is
disqualified’, ‘g’ represents ‘Rutgers gets the pennant’, and 7’ repre-
sents ‘Hobart is runner-up’.

In complex statements of ordinary language the intended grouping
sometimes has to be guessed, as above, and sometimes has to be in-
ferred from unsystematic cues, as illustrated by the following exam-
ple:

(1) If the new mail-order campaign does not break the Dripsweet
monopoly and restore freedom of competition then Jones will
sell his car and mortgage his home.

The words ‘if’ and ‘then’ here are helpful in determining the group-
ing, for they frame the complex antecedent of the conditional just
as clearly as if they were parentheses. But they do not show how much
text is intended for the consequent of the conditional. Should we stop
the consequent of the conditional at the last ‘and’, or construe it as
running clear to the end? The proper answer is evident at a glance;
however, let us note explicitly why. The clauses ‘Jones will sell his
car’ and ‘Jones will mortgage his home’ have been telescoped by
omitting the repetition of ‘Jones will’; and this affords conclusive
evidence that the ‘and’ here is intended to codrdinate just these two
clauses, rather than reaching farther back to include a whole condi-
tional as one component of the conjunction. So we know that (1) is
to be construed as a conditional, having as antecedent:

the new mail-order campaign does not break the Dripsweet
monopoly and restore freedom of competition

and as consequent:
Jones will sell his car and mortgage his home.

But there remains a question of grouping within the antecedent: is
the ‘not’ to govern the whole, or is it to goven just the part preceding
‘and’? Obviously the whole. And note that the obviousness of this
choice is due to much the same telescoping device as was observed
before: the words ‘restore freedom of competition’ which follow the
‘and’ must, because of their fragmentary character, be construed as
coordinate with ‘break the Dripsweet monopoly’. So (1) is a condi-
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tional of the form ‘—(pg) D s, where ‘p’ means ‘the new mail-orde
campaign breaks the Dripsweet monopoly’, ‘¢’ means ‘the new mail-
order campaign restores freedom of competition’, 7’ means ‘Jones
will sell his car’, and ‘s’ means ‘Jones will mortgage his home’.

We all have an extraordinary finesse at ordinary language; and
thus it is that the correctness of the above interpretation of (1) is
bound to have been more immediately evident to all of us than the
reasons why. But an examination of the reasons affords some notion
of the sorts of unsystematic devices whereby ordinary language
succeeds in its indications of grouping, such times as it succeeds
at all.

We noted the effectiveness of ‘if’ and ‘then’ in marking the
boundaries of the antecedent of a conditional. In similar fashion
‘either’ and ‘or’ may be used to mark the boundaries of the first
component of an alternation; and similarly ‘both’ and ‘and’ may be
used to mark the boundaries of the first component of a conjunction.
Thus the ambiguity of:

Jones came and Smith stayed or Robinson left

can, by inserting ‘either’ at the appropriate point, be resolved in
favor of ‘pq v 7’ or ‘p(q v r)’ at will:

Either Jones came and Smith stayed or Robinson left,
Jones came and either Smith stayed or Robinson left.

Grouping may also be indicated in ordinary language by inserting
a vacuous phrase such as ‘it is the case that’, balanced with another
‘that’ to show coordination of clauses. A further device is the insertion
of emphatic particles such as ‘else’ after ‘or’, or ‘also’ or ‘furthermore’
after ‘and’; such reinforcement of a connective has the effect of
suggesting that it is a major one.

It is evident by now that the artificial notations of logic and
mathematics enjoy a great advantage over ordinary language, in their
use of parentheses to indicate grouping. Parentheses show groupings
unfailingly, and are simple to use. They have the further virtue of
allowing complex clauses to be dropped mechanically into place
without distortion of clause or of context. This particular virtue has
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been of incalculable importance; without it mathematics could never
have developed beyond a rudimentary stage.

Even so, parentheses can be a nuisance. Unless conventions are
adopted for omitting some of them, our longer formulas tend to
bristle with them and we find ourselves having to count them in order
to pair them off. Actually two conventions for minimizing paren-
theses have been tacitly in use now for some pages; it is time they
were stated. One is this: the connectives ‘v’, *D’, and ‘=" are treated
as marking a greater break than conjunction. Thus ‘pg v #* is under-
stood as having the grouping ‘(pq) v 7', and not ‘p(g v r)’—as is
well suggested by the typographical pattern itself. Similarly ‘p v g7’
means ‘p v (q7)’, ‘pqg D 7’ means ‘(pq) D 7’, etc. The other convention
to which we have been tacitly adhering is this: the negation sign is
understood as governing as little as possible of what follows it. Thus
‘—(pq)r’ means ‘(—(pq))r’, not ‘—((pg)r)’; similarly ‘—(p v g)r’
means ‘(—(p v ¢))r’, not ‘—((p v g)r)’; and so on.

An auxiliary notation of dots will now be adopted which will have
the effect of eliminating a// parentheses, so far as Part I is concerned,
except those directly connected with negation. Perhaps this expedient
will seem to reduce parentheses beyond the point of diminishing
returns; actually its main value lies in clearing the way for a new
influx of parentheses in Part II and beyond.

Dots are reinforcements. They may be thought of as a systematic
counterpart of the practice in ordinary language, noted above, of
inserting ‘else’, ‘also’, etc. To begin with, if we want to convey the
meaning ‘p(g v )’ and thus create a greater break at the point of
conjunction than at the point of alternation, we shall insert a dot
at the point of conjunction thus: ‘p . g v 7. For ‘(p v g)7 similarly
we shall write ‘p v g . 7, for ‘p(q D r)’ we shall write ‘p . g D 7', etc.

Next, if at some occurrence of ‘v’ or ‘D’ or ‘==’ we want to create
a still greater break than is expressed by the dot of conjunction, we
shall insert a dot alongside ‘v’ or ‘D’ or ‘=";thus ‘(p . qvr) = ¢
becomes ‘p . g vr .= 5. Just as the undotted ‘v’ or ‘D’ or ‘=" marks
a greater break than the undotted conjunction, so the dotted ‘v’ or
‘D’ or ‘=" marks a greater break than the dot of conjunction. The
dot which is thus added to reinforce ‘v’ or ‘D’ or ‘=" goes on the
side where the reinforcement is needed; thus ‘(p D ¢ .7) v s’ becomes

[§4] GROUPING 21

‘P g.rws,but‘pD (q.7=s) becomes‘p D.q.r=s. Again
‘P.g=r)v(p D q.r), calling for reinforcement on both sides of
the central ‘v’, becomes p.g=r.v.p D g.7.

When we want to create a still greater break at some point of
conjunction than is expressed by a dotted ‘v’ or ‘D’ or ‘=" in the
neighborhood, we shall put a double dot ‘:’ for the conjunction.
When we want to create a still greater break than this at ‘v’ or ‘D’
or ‘=", we shall put a double dot alongside ‘v’ or ‘D’ or ‘=’; and so
on to larger groups of dots. What might be written fully in terms of
parentheses as:

sv(plgd ) =(vans

£.g., is written with help of dots as follows:
svip.gldr.=.pvqg.r:t

In general thus the connectives ‘v’, ‘D’ and ‘=" fare alike. Any
group of dots alongside any of these connectives represents a greater
break than is represented by the same number of dots standing alone
as a sign of conjunction, but a lesser break than is represented by any
larger group of dots.

Parentheses will continue to be used to enclose a compound
governed by a negation sign; the notations ‘—(pg)’, ‘—(p v q)’, etc.
thus persist unchanged. Dots have no power, of course, to transcend
parentheses; in ‘—(p v ¢ . )5, e.g., the dot is powerless to group the
‘s’ with the 7.

EXERCISES
1. Show how the ambiguous statement:
John will play or John will sing and Mary will sing

could be rendered unambiguous, in each of two senses, by telescop
ing clauses.
2. Indicate and justify the appropriate grouping of:

If they either drain the swamp and reopen the road or dredge the

harbor, they will provide the uplanders with a market and
themselves with a bustling trade.
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3. Rewrite these using dots:
(plgvr) D 5) = (pg 2 5)(pr I 9),
—(@pvqg)rvs) D —(pvygs.

4. Rewrite this using parentheses:

pI.gvr.pvgsi=:.G7v.p.gv5:D p.

§5. TRUTH-VALUE ANALYSIS

In §2 a compound was said to be a truth function of its components
when its truth value is determined by those of the components; and
it was then observed that conjunction and negation constitute an
adequate notation for truth functions. In view of this latter circum-
stance it is natural and convenient hereafter to conceive the notion
of truth function in a purely notational way: the truth functions of
given components are all the compounds constructed from them by
means exclusively of conjunction and negation (and the dispensable
further connectives °v’, *J’, *="). Thus ‘%’ is a truth function of ‘p’,
and ‘= (pv7.= pq) D 7’ isatruth function of ‘p’, ‘¢’, and ‘’. We also
count ‘p’ itself a truth function of ‘p’.

A truth function of letters ‘p’, ‘¢’, etc., is strictly speaking not a
statement, of course, since the letters are themselves not actual state-
ments but mere dummies in place of which any desired statements
may be imagined. Hereafter the letters p’, ‘¢’, etc., and all truth
functions of them will be called schemara (singular: schema). More
specifically they will be called #uth-functional schemata when it
becomes necessary to distinguish them from schemata involving
logical devices of other than truth-functional kind. Schemata are
logical diagrams of statements; the letters p’, ‘¢’ etc., by supplanting
the component clauses of a statement, serve to blot out all the in-
ternal matter which is not germane to the broad outward structures
with which our logical study is concerned.

By interpretation of the letter ‘p’ (or ‘q’, etc.) may be meant
specification of an actual statement which is to be imagined in place
of the letter. By interpretation of ‘¢’ may also be meant simply
specification of a truth value for ‘p’. The two senses of ‘interpreta-
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tion’ can be used pretty interchangeably because each actual state-
ment S has a specific truth value (known or unknown) and that truth
value is all that matters to the truth value of any truth function of S.

A convenient graphic method of imposing interpretations, of the
second of the above varieties, is simply to supplant the letters in a
schema by the mark ‘T’ for truths and ‘|’ for falsehoods.” Computing
then directly with these marks, we can quickly determine what truth
value the whole schema takes on under the imposed interpretations.
Thus, suppose our problem is to determine the truth value of the
schema ‘—(pq v p3)’ for the case where ‘p’ is interpreted as true and
‘g as false. We simply put T° for ‘¢’ and ‘|’ for ‘g’ in the schema,
getting ‘—(TL vT1)". But, since T’ reduces to ‘|’ and ‘T’ to ‘T’ this
becomes ‘—(TL v IT)’. Further, since a conjunction with false com-
ponent is false, ‘T|’ reduces to ‘|” and so does ‘|T". So the whole is
now down to ‘—(| v 1)’. But, an alternation of falsehoods being
false, ‘| v |’ reduces to ‘|’; the whole thus becomes ‘T’, or ‘T". This
outcome means that our original schema ‘—(pq v pg)’ comes out true
when ¢’ is interpreted as true and ‘q’ as false.

The process whereby ‘—(T] v TI)’ was reduced to T’ will be called
resolution. The simplest of the steps involved in resolution, viz.
reduction of T’ to *|” and of ‘T’ to ‘T", will always be tacit hereafter,
we shall never write ‘T’ nor ‘T’, but immediately ‘> and ‘T’, as if the
notation of negation as applied to ‘T" and ‘|” consisted simply in
inverting. The other steps of resolution illustrated in the above
example were reduction of ‘T, ‘IT’, and ‘| v |’ to ‘]’. These steps,
and all further ones for which there might be occasion in other
examples, may conveniently be codified in the form of eight rules of
resolution:

(i) Delete ‘T’ as component of conjunction. (Thus TTT’ reduces to
TT and thence to ‘T’; ‘IT" reduces to ‘|’; etc. Reason: a conjunction
with a true component is true or false according as the rest of it is
true or false.)

(ii) Delete ‘|’ as component of alternation. (Thus ‘L v lv] re

1We need not fumble for a pronunciation of ‘|’ cordinate with the pronunciation ‘tee’
of T, for the words ‘true’ and ‘false’ themselves are short enough to serve COﬂVCfll?l‘}tly as
pronunciations of the two signs. Before deploring my preference of |’ to the initial ‘F
of “false’, note the urgent need of ‘F for other purposes in Parts II-IV.
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duces to ‘| v |’ and thence to ‘|’; ‘| v T’ reduces to ‘T’; etc. Reason:
an alternation with a false component is true or false according as the
rest of it is true or false.)

(iii) Reduce a conjunction with ‘|’ as component to *|’.

(iv) Reduce an alternation with |’ as component to ‘T’

(v) If a conditional has ‘T’ as antecedent or consequent, drop the
antecedent. (Thus T D T and ‘| D T’ reduce to ‘T’, and T D |’
reduces to ‘|’. Reason: a conditional with true antecedent is true or
false according as the consequent is true or false; and a conditional
with true consequent is true.)

(vi) If a conditional has ‘|’ as antecedent or consequent, negate the
antecedent and drop the consequent. (Thus ‘| D T and ‘| D |’ reduce
to T, and ‘T D |’ reduces to ‘|’. Reason: a conditional with false
antecedent is true, and a conditional with false consequent is true or
false according as the antecedent is false or true.)

(vit) Drop ‘T’ as component of a biconditional. (Thus T = T
reduces to ‘", and ‘T = | and ‘] = T’ reduce to ¢|’.)

(viit) Drop ‘|’ as component of a biconditional and negate the other
side. (Thus ‘| = ]’ reduces to ‘T, and T = |’ and ‘| = T’ reduce to
1)

Set up according to these rules, our original example of resolution
amounts to no more than this:

—(Lv1D
—(v]) (changing ‘T]’ and ‘|T" each to ‘|’ by (i) or (iii))
T (changing ‘| v |’ to ‘|’ by (ii))
Turning to a more elaborate example, let us determine the truth
value of ‘pg v 7 .D . g = 7’ for the case where ‘p’ and ‘¢’ are inter-
preted as false and ‘7’ as true.

UvTL.D.1l=T
vTl.D 1 (changing ‘| = T to ‘]’ by (vii) or (viii))
—(LLvTD  (by (v)
-UvD (by (iii) twice)
T (changing ‘| v |’ to ‘|’ by (ii))

Thus ‘pg v p7 .D. g = " comes out true when false statements are
put for ‘p’ and ‘¢’ and a true one for 7.
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Let us feign contact with reality by considering an actual statement
of the form ‘pg v p7 .D . g = r":

(1) Ifeither the resident and the deputy resident both resign or the
resident neither resigns nor exposes the chargé d’affaires, in either
case the deputy resident will resign if and only if the resident
exposes the chargé d’affaires.

What we have found is that (1) comes out true in the case where
neither the resident nor the deputy resident resigns and the resident
exposes the chargé d affaires.

We have evaluated the schema ‘pg v §7.D . g = 7’ for one interpre-
tation: ‘p’ and ‘q’ as false and ‘7’ as true. There remain seven other
interpretations that might be considered: ‘p’, ‘q’, and ‘7" all true,
‘p’ and ‘¢’ true and 7’ false, ‘p’ and ‘7’ true and ‘g’ false, and so on.
The eight cases can be systematically explored, with evaluation of the
schema for each case, by the following method. First we put ‘T’ for
‘p’, leaving ‘¢’ and ‘7’ unchanged, and make all possible resolutions by

(1)~ (viii):

Tgvlr.D.q=1r
gvl7.D.qg=r (changing ‘T4 to ‘q by (i))
gvl.D.g=r (changing ‘|7 to ‘|’ by (iii))
gJ.q=r (changing ‘g v |’ to ‘g’ by (i)
Then we put ‘T" for ‘g’ in this result and resolve further:
T2.T=r
T=r (by (v))
r (by (vii))

We have now found that whenever ‘p’ and ‘q’ are both interpreted as
true, our original schema resolves to ‘¥’—hence becomes true or false
according as ‘7’ is true or false. This disposes of two of the eight cases.
Next we return to our intermediate result ‘g D, g = 7’ and put ‘|’
for ‘g’
1D2.1l=r+
T (by (vi))

This shows that our original schema comes out true whenever ‘p’ is
interpreted as true and ‘g’ as false, regardless of ‘7. This disposes of
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two more of our eight cases. Now we go all the way back to our
original schema and put ‘[’ for ‘p’:

lgvT7.D.qg=r

LvTF.D.qg=1r (by (i)
T72.9=r (by (11))
7l.q=r  (by(®))
Putting ‘T’ for 7’ here and resolving further, we have:
13.9=T .
T (by (vi))

This shows that our original schema comes out true whenever p’ is
interpreted as false and ‘7 as true, regardless of ‘4’. Two more cases
are disposed of. Finally we go back to 7 D . g = 7" and put ‘|’ for 7':

T2.9=1
g=1 (by (v))
g (by (viii))

So whenever ‘¢’ and ‘7’ are both interpreted as false, our schema re-
solves to ‘g—hence becomes false or true according as ‘4’ is inter-
preted as true or false.

The foregoing analysis might conveniently have been carried out in
a single array as follows:

pavpr.o.q=r
Tgvl?.D.q=r1 lgvT7.D.q=r

gvlF.D.q=r lvi#7.D.gq=r
gvl.D.q=r T72.9=r
gl.q=r Fo.q=r
T2.T=r 12.l=r [D.9=T T2.9=l
T=r T T 7=1
r q
T 1 LT

This is called a zruth-value analysis. The general method may be
summed up as follows. We make a grand dichotomy of cases by put-
ting first ‘T’ and then ‘|’ for some chosen letter, say ‘p’. The expres-
sions thus formed are the respective headings of a bipartite analysis.

i
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Then we resolve both expressions, by (i)—(viii), until we end up with
T’ or ‘]’ or some schema. If a schema results, we then proceed to
develop, under that schema, a new bipartite analysis with respect to
a chosen one of its letters. We continue thus until all end results are
single marks — ‘T" or ‘| . Each end result shows what truth value the
original schema will take on when its letters are interpreted according
to the marks which have there supplanted them.

Actually all intermediate steps of resolution are so obvious, and
so readily reconstructed at will, that they may hereafter be left to
the imagination. Thus the above truth-value analysis would in future
be condensed as follows:

pgvpr.d.q=r
TgvlF.D.q=r lgvl#.D.g=r
gl.q=r 7O.qg=
TD.T=r 12.1l=r 12.q9
r T T q
T 1 LT
There is no need always to choose ‘¢’ as the first letter for which
to put ‘T’ and ‘|”. It is better to choose the letter which has the most
repetitions, if repetitions there be, and to adhere to this plan also
at each later stage. Thus it was, indeed, that whereas in the second
stage on the left side of the above analysis ‘q” was chosen for replace-
ment by ‘T’ and |’, on the other hand in the second stage on the
right side ‘7’ was chosen. This strategy tends to hasten the disappear-
ance of letters, and thus to minimize work.

A method of truth-value analysis which has been usual in the literature
since 1920-21 (Lukasiewicz, Post, Wittgenstein) is that of truzh tables.
Under this method all combinations of truth values for the letters of a
schema are listed, and for each combination the truth value of the schema
is computed by a process of reasoning tantamount to what I have called
resolution. This method has the shortcoming of cumbersomeness when
many letters are involved. Where ‘p’, ‘g’, and 7’ are concerned, eight
combinations of truth values have to be dealt with. Where four letters are
concerned, as in the example three pages hence, sixteen combinations have
to be dealt with. The advantage of the technique presented in the present
pages is that the various combinations of truth values concerned tend to
group themselves to form a smaller number of cases.
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EXERCISES

1. Suppose they drain the swamp but neither reopen the road nor
dredge the harbor nor provide the uplanders with a market; and
suppose nevertheless they do provide themselves with a bustling
trade. Determine, under these circumstances, the truth value of the
statement in Exercise 2 of the preceding section. Method: represent
the components as ‘p’, ‘q’, ‘7', ‘s’, ‘'; put ‘T’ and ‘|’ appropriately for
the letters; resolve.

2. Make a truth-value analysis of each of the schemata:

P2 re p2.pv4e pI.724 pI.r=4q

Present your work in full, showing intermediate steps of resolution;
afterward circle those intermediate lines for omission, to show how
the work would look in the condensed style.

3. For comparison perform two truth-value analyses of p J g .
g D 7, first following and then flouting the strategy of choosing the
most frequent letter.

§6. CONSISTENCY AND VALIDITY

A truth-functional schema is called consistent if it comes out true
under some interpretation of its letters; otherwise #nconsistent. A
truth-functional schema is called valid if it comes out true under every
interpretation of its letters. The schema ‘pg’, for example, is consis-
tent, for it comes out true when ‘p’ is interpreted as true and ‘¢’ as
false; but it is not valid, since there are other interpretations of ‘p’
and ‘g’ which make it come out false.

The way to test a truth-functional schema for validity and consis-
tency is obvious: we carry out a truth-value analysis and see whether
we get ‘T’ in every case (showing validity) or |’ in every case (showing
inconsistency) or neither. Two examples of validity and inconsistency
are respectively ‘p D p’ and ‘pp’:

pIp PP
T27 121 Tl T
T T 1 1

[86] CONSISTENCY AND VALIDITY 29

Valid schemata were already exploited at one point in the argument of
§2, where ‘— (ppgrs)’ was cited.

— (ppars)
—(Tlgrs) —UTgrs)
T T

In general, obviously, a schema is valid if and only if its negation is
inconsistent, and a schema is inconsistent if and only if its negation
is valid. Thus the negations ‘— (pp)’ and ‘— (ppgrs)’ of the inconsistent
schemata ‘pp’ and ‘ppgrs’ are valid, and the negation ‘—(p D p)’ of
the valid schema ‘p J p’ is inconsistent.

A test of validity may be stopped short, with negative outcome,
as soon as we come to a case yielding ‘[’; and a test of consistency
may be stopped, with affirmative outcome, as soon as we come to a
case yielding ‘T’ Thus the analysis of ‘pg v 7 .D . g = 7’ in §5 might,
if we had been interested only in consistency and validity, have been
discontinued in this fragmentary state:

paviF.D.g=r
TgviF.D.q=r
gl.q=r
T2.T=r
r

T 1
This much already suffices to show both that ‘pgv 57 . D.g =715

consistent and that it is not valid.

‘Validity’ is not to be thought of as a term of praise. When a
schema is valid, any statement whose form that schema depicts is
bound to be, in some sense, trivial. It will be trivial in the sense that
it conveys no real information regarding the subject matter whereof
its component clauses speak. The statement:

1) If the Bruins win then the Bruins win,

whose form is depicted in the valid schema ‘p D p’, gives us no
information about the outcome of the game; indeed, any other
clause, on any other subject matter, could be used here in place of
‘the Bruins win’ with as much and as little effect. Valid schemata are
important not as an end but as a means. We shall see in another page
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or two that simple cases of validity afford short-cuts in the truth-
value analysis of other schemata; and we shall see in the next section
that the determination of certain complex cases of validity is tanta-
mount to determining relations of equivalence and implication
between other schemata.

Though the statements illustrative of valid schemata are always
trivial in the sense noted above, they are not always trivial in the
sense of being, like (1), recognizable on sight. Valid schemata may
run to any length and any degree of complexity; and some even of
moderate length cannot be recognized as valid without substantial
computation. The same is true of consistency. Below is a schema of
quite moderate complexity which, though by no means recognizable
as valid on sight, is found to be valid by truth-value analysis.

PIVPFVNDPrvpsvarvrs

TgvTrvirvisvgrves lgviFvTrvTsvgrvs
qvrvgrvrs rvsvgrvrs
gvlvgTvls gvTvglv]s Tvsvglvls LlvsvglvTs
qvg T T SV§
Tvl LvT Tvl LvT
T T T T

The test shows validity, but unimplemented inspection would have
availed little.

Taking advantage of the really evident cases of validity and
inconsistency, however, we may speed up our truth-value analyses
hereafter. Schemata like ‘g v §' and ‘s v ¥, which emerged in the
course of the above analysis, are now known to be valid, and hence to
reduce to ‘T’ in all cases; hereafter, therefore, we may as well agree to
reduce any such result directly to ‘T’, without further ceremony.
Thus, in place of the configurations:

qvqg sSv§
Tvl LvT Tvl IvT
T T T T

which appeared in the lower corners of the above analysis, we shall in
future write simply:

qvyg svs
T T
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In general, any such patently valid schema may be reduced immedi-
ately to ‘T" whenever it occurs in a truth-value analysis, whether in
isolation or as component of a longer formula. Similarly any patently
inconsistent schema such as ‘pp’, ‘ppqrs’, ‘Gpqr’, etc. may be reduced
immediately to ‘|” whenever it turns up in an analysis.

With these shortcuts in mind, let us analyze a really complex
schema:

PVG. PV NP i=q D prvpF
Tvq.Tvg.vlg:=q.:D Jrv[7 Lvg.lvg.vIg:=q.:D rv]7

gI.rvT —(qgvq.=q)
g0T7 —(lvg.=9
T —(q=9)
1

The reduction of the left side to ‘g D. 7 v 7 proceeded by various
steps of resolution, as usual. But in the next step, using our new
shortcut, we put ‘T’ for the patently valid 7 v # and got ‘g D T,
which then resolved into ‘T". On the right-hand side of the analysis,
the reduction to ‘—(¢§ v ¢ .= ¢)’ proceeded by resolution as usual;
then, using our new shortcut, we put ‘|’ for the patently inconsistent
‘97, and got ‘— (| v .= ¢)’, which resolved in turn into ‘— (g = ¢)’.
Here, using our new shortcut again, we put ‘T" for the patently valid
‘q = ¢’ and conclude our work.

Where to draw the line between what is patently valid or incon-
sistent and what is not patently so is quite arbitrary. The ‘— (g7 v g
.= ¢q)’ in the right-hand part of the above analysis is itself an incon-
sistent schema, and so might have been supplanted immediately by
‘|’ if its inconsistency had been felt to be sufficiently obvious. Simi-
larly the ‘g D .7 v7 in the left-hand part of the analysis might have
been supplanted directly by ‘T’. For uniformity of classroom work,
we might limit the category of “patently inconsistent” schemata to
conjunctions such as ‘Gpgr’, ‘p v g .r . —(p v g)’, etc,, in which
some part appears both plain and negated as component of the con-
junction. We might limit the category of “patently valid” schemata
to these two kinds: (a) alternations such as ‘Gvpvgv?, ‘pgvryv
—(pq)’, etc., in which some part appears both plain and negated as
component of the altenation; (b) conditionals or biconditionals
whose two sides are alike, e.g., ‘g= ¢, ‘gr=4qr, pvg.o.pvq.



32 TRUTH FUNCTIONS [§6!

It is only to such schemata, then, that our shortcut is to be applied;
these, and only these, will be reduced appropriately to ‘|’ or ‘T" or
sight.

From the validity of a schema we may infer, without separate test,
the validity of any schema which is formed from it by subststution.
From the validity, e.g., of ‘¢ v 5’ we may infer the validity of the
schema ‘qr v —(gr)’, which is formed from ‘p v 7’ by substituting
‘qr’ for ‘p’. This is apparent from the definition of validity. Validity
of ‘p v " means that ‘p v ’ is bound to come out true no matter
what statement be put for ‘p’; so it follows, as a special case, that
‘gr v —(gr)’ will come out true no matter what statement ‘gr” be
made to represent—hence no matter what statements be put for
‘q’ and ‘r’. Substitution of schemata for letters preserves validity. But it
is clearly essential that ‘substitution for a letter’ be construed as
meaning uniform substitution for every occurrence of the letter.
From the validity of ‘p v 7, e.g., we are not entitled to infer validity
of ‘gr v §’, nor of ‘qr v —(gs)’. It is permissible to put the same or
different schemata for different letters, but we must always put the
same schema for recurrences of rhe same letter.

Since inconsistency of a schema is simply validity of its negation,
we may conclude further that subsiitution of schemata for letters pre-
serves inconsistency. But note on the other hand that substitution
cannot be depended upon to preserve consistency. The mere fact
that the more general schema has some true instances (which is what
consistency means) gives us no reason to suppose that the special case
will share any of the true instances. The schema ‘p v pq’, e.g., is
consistent (as may be verified by truth-value analysis), but substitu-
tion of 77 for ‘p’ therein yields an inconsistent schema ‘77 v 777’
Similarly, substitution for a letter in a nonvalid schema cannot be
depended upon to yield a nonvalid schema; it may yield a valid or
nonvalid one.

EXERCISES

1. Test each of these for validity by truth-value analysis, exploiting
the new short-cut regarding patently valid and patently inconsistent
clauses:

P D q V. g D Pv
p=qv.p=9

pvgrv.p.gvr,
pP=EquN.g=Erv.p=r,

il

[§71 IMPLICATION 33

2. In each of the above four schemata, substitute ‘p v 4’ for p’.
This is chiefly an exercise in adjusting dots to preserve proper group-
ing.

3. Given a schema, can it ever happen that by one set of substitu-
tions we get a valid schema from it, and by another set of substitu-
tions an inconsistent schema? Illustrate or explain.

§7. IMPLICATION

The most conspicuous purpose of logic, in its applications to science
and everyday discourse, is the justification and criticism of inference.
Logic is largely concerned with devising techniques for showing that
a given statement does, or does not, “follow logically” from another.
The statement ‘No dropped freshman is eligible for the Bowdoin
Prize’, e.g., follows logically from ‘No freshman is eligible for the
Bowdoin or Bechtel Prize’; and the statement ‘Cassius is not both
lean and hungry’ follows logically from ‘Cassius is not hungry’. Now
the first of these two examples lies beyond the scope of the truth-
functional part of logic with which we are concerned in Part I, but
the second example can already be treated here.

From the point of view of logical theory, the fact that the state-
ment ‘Cassius is not both lean and hungry’ follows from ‘Cassius is not
hungry’ is conveniently analyzed into these two circumstances:
(a) the two statements have the respective logical forms ‘—(pg)’ and
‘g’ (with “Cassius is lean’ and ‘Cassius is hungry’ supplanting ‘p’ and
‘q’); and (b) there are no two statements which, put respectively for
‘¢’ and ‘q’, make ‘g’ true and ‘—(pq)’ false. Circumstance (b) will
hereafter be phrased in this way: ‘g implies ‘— (pq)’. In general, one
truth-functional schema is said to imply another if there is no way of
so interpreting the letters as to make the first schema true and the
second false.

Whether a truth-functional schema S, implies another, S, , can be
decided always by taking S, as antecedent and S, as consequent of a
conditional, and testing the conditional for validity. For, according
to our definition, S, implies S, if and only if no interpretation makes
S, true and S, false, hence if and only if no interpretation falsifies the
material conditional whose antecedent is S, and whose consequent is
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S. . In a word, implication is validity of the conditional. To determine
that ‘7 implies ‘—(pg)’, e.g., we check the validity of the corre-
sponding conditional:
32 —(r9)
12 =D T2 =D
T T

Next let us note an example which turns out negatively. That

'p v ¢’ does not imply ‘pq’ is found thus:

pvqg.dpq
Tvg.2Tq
T ! 1

Once having come out with a ‘]’, we discontinue our test in the
knowledge that p v g .D pq’ is not valid; i.e., that ‘p v ¢’ does not
imply ‘pq’. This result does not mean that p v g .D pg’ does not come
out true under some interpretations of ‘¢’ and ‘q’, nor does it mean
that ‘p v 4’ and ‘pq’ themselves do not come out simultaneously true
under some interpretations of ‘p’ and ‘q’. The failure of implication
means merely that some interpretations which make ‘p v ¢’ true make
‘pq’ false; or, what comes to the same thing, that some interpretations
make ‘p v q .D pq’ false.

By reflecting briefly on our methods of testing for implication,
validity, and inconsistency, one sees that these four general laws hold:

() Any schema implies itself.
(ii) If one schema implies a second and the second a third then
the first implies the third.
(iif) An inconsistent schema implies every schema and is implied
by inconsistent ones only.
(iv) A valid schema is implied by every schema and implies valid
ones only.

An easy familiarity with simple cases of implication between truth-
functional schemata will be found to facilitate construction of proofs
at even as advanced a level of logic as §§29 ff. At that stage it will not
be enough to be able to answer raised questions of implication, which
we can do by truth-value analysis as above; we must also be able to
raise the questions. We must be able to think up schemata which
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imply or are implied by a given schema and promise well as links in a
proposed chain of argument. Such products of imagination can be
checked mechanically by truth-value analysis, but thinking them up is
an unmechanical activity. Facility in it depends on grasping the
sense of simple schemata clearly enough to be able, given a schema, to
conjure up quite an array of fairly simple variants which imply or are
implied by it. Given ‘p v ¢’, it should occur to us immediately that
‘p’and ‘g’ and ‘pg’ and ‘p D ¢’ imply itand that ‘pvgvr and ‘D ¢
are implied by it. Given ‘p D ¢, it should occur to us immediately
that each of:

B @ g Pvg §2p pOIgn pvrIg
implies it and that each of:

Pva, g2p  pI.qvn pOIgur
is implied by it. Such flashes need not be highly accurate, for we can
check each hunch afterward by truth-value analysis. What is impor-
tant is that they be prolific, and accurate enough to spare excessive
lost motion.

No doubt repertoire is an aid to virtuosity in contriving implica-
tions, but understanding is the principal thing. When simple schemata
are sufficiently transparent to us, we can see through them by the
light of pure reason to other schemata which must come out true if
these do, or which can not come out true unless these do. It is well
to reflect upon the above examples and succeeding ones until it be-
comes obvious from the sheer meanings of signs that the implications
must hold.

Readiness with implications is aided also, no doubt, by ease of
checking. Accordingly a quick implication test called the fell swoop
will now be explained which, though not general, works for an im-
portant range of simple cases.

Some schemata are visibly verifiable by one and only one interpre-
tation of their letters. E.g., ‘pg’ comes out true when and only when
‘T’ is put for ‘p’ and ‘|’ for ‘¢’. Now when S is such a schema, the
question whether S implies a schema S’ can be settled simply by sup-
planting ‘p’, ‘¢’ etc., in &’ by the values which make for truth of S,
and resolving. If we come out with T’ or a valid schema, then § im-
plies §'; otherwise not. E.g., to determine that ‘p7’ implies
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9D q.D 7 weput T for p’and ‘|’ for ‘g’ inp 3 ¢ .0 7" and
resolve the result T D | .D 7, getting T".

In particular a fell swoop will settle any question of implication
on the part of ¢’ or ‘p’. To find that ‘p’ implies ‘g O p’ we put T’ for
‘¢’ in ‘g O p’ and resolve the result ‘g D T’ to ‘T’. To find that %’
implies ¢ D ¢ .D g’ we put ‘T’ for ‘p’in ‘p D ¢ .D 4’ and resolve the
result ‘T D ¢ .D ¢’, coming out with the valid schema ‘g D ¢’. To
find that ‘G’ implies ‘—(pg)’, which was the example of Cassius, we
could have simply put ‘|’ for ‘g’ in ‘—(pq)’ and resolved the result
‘—(pl) o T

Some schemata, on the other hand, are visibly falsifiable by one
and only one interpretation of their letters. E.g., ‘“—(pr)’ comes out
false when and only when ‘T” is put for ‘p’ and #’; ‘p D 7’ comes out
false when and only when ‘T” is put for ‘p’ and ‘|’ for #’; ‘p v 7’ comes
out false when and only when ‘]” is put for p” and 7’; ‘pr D s” comes
out false when and only when ‘T’ is put for ‘p’ and ‘7’ and ‘|’ for s’;
and ‘p D. 7 v s’ comes out false when and only when T" is put for ‘p’
and ‘|’ for 7’ and ‘s’. Now when ' is a schema thus falsifiable by one
and only one interpretation, the question whether a schema S implies
8’ can be settled simply by supplanting ‘p’, ‘q’, etc. in S by the values
which make for falsity of §, and resolving. If we come out with *|’
or an inconsistent schema, then S implies §’; otherwise not. For, the
implication can fail only through truth of § where §’ is false.

E.g., to find that ¢ D ¢ . ¢ D 7" implies ‘p D 7’ we put T’ for p’
and ‘|’ for 7 in‘p D ¢q.q D 7" and resolve the result TD g.4 D [,
getting the inconsistent schema ‘¢7’. To find that ‘pvg.q D 7
implies ‘p v 7’ we put ‘|’ for ‘p’ and ‘7’ in ‘p v ¢ . ¢ D 7" and resolve,
getting ‘q7 again. To find that ‘p D ¢ . gr O s implies ‘pr D 5" we
put T’ for ‘¢’ and ¥ and ‘|’ for ‘s’ in ‘p D ¢ . gr D 5" and resolve.

In particular this backward variety of the fell swoop is convenient
when we want to know whether a schema S implies ¢, or ‘F’. To
find that ‘pg v p7" implies ‘p’ we put ‘|’ for p’ in ‘pq v pg’ and
resolve the result ‘| v 17, getting °|". To find that pvg .pv 3§
implies ‘p’ we put ‘|’ for ‘¢’ in ‘p v ¢ . p v §’ and resolve the result
‘| vq.l v7, getting the inconsistent schema ‘g7’

Fell swoops are possible only where the schema which is to do the
implying clearly comes out true under one and only one interpreta-
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tion, or else the schema which is to be implied comes out false under
one and only one interpretation. The general test of implication,
applicable in every case, is truth-value analysis of the conditional; the
full sweep as opposed to the fell swoop.

Implication may be made to relate statements as well as schemata.
When one schema implies another, and a pair of statements are ob-
tained from the schemata by interpretation, we may say by extension
that the one statement implies the other. Thus, besides saying that
‘g implies ‘—(pg)’, we may make interpretations and say that
‘Cassius is not hungry’ implies ‘Cassius is not lean and hungry’. But
it is well here to say more explicitly that the one statement implies
the other zruth-functionally, adding the adverb as a reminder that the
schemata which brought the two statements into an implication
relationship were truth-functional schemata rather than schemata
of kinds which have yet to be taken up in Part II and beyond. Truth-
functional implication is, in other words, the relation which one
statement bears to another when the second follows from the first by
logical considerations within the scope of the logic of truth functions.
The terms ‘truth-functionally valid’ and ‘truth-functionally incon-
sistent’” may be applied to statements in similar fashion.

Implication, as we have seen, is intimately related to the conditional.
Implication holds when and only when the conditional is valid. This im-
portant connection has engendered a tendency among writers on logic to
adopt ‘implies’, confusingly, as a reading of the conditional sign ‘3 itself.
Then, since ‘¢ D ¢ has been explained as coming out true whenever ‘9’ is
interpreted as false or ‘g’ as true, it is concluded with an air of paradox that
every falsehood implies every statement and that every truth is implied by
every statement. It is not perceived that ‘D’ is at best an approximation
to ‘if-then’, not to ‘implies’.

In order fully to appreciate the distinction which I intend between ‘D °,
or ‘if-then’, and ‘implies’, it is necessary to become clearly aware of the
difference between use and mention. When we say that Cambridge
adjoins Boston we mention Cambridge and Boston, but use the names
‘Cambridge’ and ‘Boston’; we write the verb ‘adjoins’ not between Cam-
bridge and Boston, but between their names. When the mentioned objects
are cities, as here, use and mention are unlikely to be confused. But the
same distinction holds when the mentioned objects are themselves lin-
guistic expressions. When we write:

The fifth word of “The Raven” rimes with the eleventh
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we mention the words ‘dreary’ and ‘weary’, but what we use are names of
them. We write ‘rimes with’ not between the riming words but between
their names. We may also write:

‘dreary’ rimes with ‘weary’,

but here again we are using names of the riming words in question—the
names being in this case formed by adding single quotation marks. It
would be not merely untrue but ungrammatical and meaningless to write:

Dreary rimes with weary.

Now when we say that one statement or schema implies another, simi-
larly, we are not to write ‘implies’ between the statements or schemata con-
cerned, but between their names. In this way we mention the schemata or
statements, we talk @bouz them, but use their names. These names are
usually formed by adding single quotation marks." Validity and consis-
tency are in this respect on the same footing with implication; we say that a
schema or statement is valid or consistent by appending ‘is valid’ or ‘is
consistent’ not to the schema or statement in question but to a name of it.

When on the other hand we compound a statement or schema from two
others by means of ‘if-then’, or ‘J’, we use the statements or schemata
themselves and not their names. Here we do not mention the statements or
schemata. There is no reference to them; they merely occur as parts of a
longer statement or schema. The conditional:

If Cassius is not hungry then he is not lean and hungry

mentions Cassius, and says something quite trivial about him, but it
mentions no statements at all. The situation here is the same as with
conjunction, alternation, and negation.

We have made a point of handling ‘if-then’ truth-functionally. Among
our topics of logical analysis, indeed, no place has been made for non-truth-
functional ways of compounding statements. But the fact remains that
implication, as a relation between statements, imputes intimate structural
connections; it involves far more than the mere truth values of the two
statements. This fact conflicts in no way with a strict adherence to truth-
functional ways of compounding statements and schemata, insofar as state-
ments or schemata are to be compounded at all. The verbs ‘implies’, ‘is
longer than’, ‘is clearer than’, and ‘rimes with’ are all on a par so far as the
present contrasts are concerned: they connect, not statements to form
compound statements, but names of statements to form statements about
statements.

1When the expression to be named is displayed in an isolated line or lines, I make a
colon do the work of single quotation marks; see above.
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EXERCISES

1. Determine which of the four schemata:

p.p29 4.72¢9  P.PI24  PI4§
imply ‘g’ and which imply ‘#’. This means eight fell swoops.

2. Determine what implications hold between these:

pOq, pvg.Or, pA.qvr.

Note that ‘p D. g v 7, like ‘p D 4’, becomes false under just one
interpretation of its letters.

3. Find as many schemata as you can, containing one occurtence
each of ¢’ and ‘¢’ and no further letters, such that each implies ‘7’
Also find as many as you can which are implied by ‘F’.

4. Determine whether either of these statements implies the other:

The company is responsible if and only if the unit was an
Interplex and installed since January.

If the unit was an Interplex, then it was installed since Janu-
ary and the company is responsible; and if the unit was not
an Interplex then it was not installed since January and the
company is not responsible.

Method: Obtain schemata representing the logical forms of these
statements by using ‘p’, ‘¢’, and ‘7’ for the component statements;
then test the schemata for implication. Be sure to use ‘p’ for one and
the same component throughout both compounds and similarly for
‘q’ and ‘. Be sure also to keep the proper groupings.

§8. WORDS INTO SYMBOLS

Logical inference leads from premisses—statements assumed or be-
lieved for whatever reason—to conclusions which can be shown on
purely logical grounds to be true if the premisses are true. Techniques
to this end are a primary business of logic, and have already begun
to occupy our attention. But whereas the connection between prem-
isses and conclusions is thus grounded in logic, ordinarily the prem-
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isses and conclusions themselves are not; and herein precisely lies the
application of logic to fields other than itself.

The premisses and conclusions may treat of any topics and arc
couched, to begin with, in ordinary language rather than in the
technical ideography of modern logic. It is as an aid to establishing
implications that we then proceed to mutilate and distort the state-
ments, introducing schematic letters in order to bring out relevant
skeletal structures, and translating varied words into a few fixed
symbols such as *D” and ‘v’ in order to gain a manageable economy of
structural elements. The task of thus suitably paraphrasing a state-
ment and isolating the relevant structure is just as essential to the
application of logic as is the test or proof of implication for which
that preliminary task prepares the way.

An example of bow such paraphrasing reduces varied idioms to
uniformity has already been noted in the notation of negation (cf. §1).
The notation of conjunction has a similar effect; for in ordinary
language conjunction is expressed not only by ‘and’ but also by ‘but’,
by ‘although’, by unspoken punctuation, and in various other ways.
Consideration of ‘but’ and ‘although’ is instructive, for it brings out a
distinction between what may be called the logical and the rhetorical
aspects of language. We are likely to say:

Jones is here but Smith is away,
rather than:

Jones is here and Smith is away,

because of the contrast between being here and being away; or, if the
contrast between ‘Jones is here’ and ‘Smith is away’ attains such pro-
portions as to cause surprise, as it might, e.g., if Jones is not in the
habit of coming except to see Smith, we are likely to say:

Jones is here although Smith is away.

But the circumstances which render the compound true are always
the same, viz., joint truth of the two components, regardless of
whether ‘and’, ‘but’, or ‘although’ is used. Use of one of these words
rather than another may make a difference in naturalness of idiom
and may also provide some incidental evidence as to what is going on
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in the speaker’s mind, but it is incapable of making the difference
between truth and falsehood of the compound. The difference in
meaning between ‘and’, ‘but’, and ‘although’ is rhetorical, not
logical. Logical notation, unconcerned with rhetorical distinctions,
expresses conjunction uniformly.

For a further example of the reduction of manifold idioms of
ordinary language to uniformity in logical notations, consider the
idiomatic variants of ‘if-then’:

If ptheng, ponlyifq, gifp, g provided thatp, gin case p.

The notation ‘p D ¢, insofar as it may be admitted as a version of
‘if p then ¢’ at all, is a version at once of all those variant idioms.

Note that the antecedent of a conditional, corresponding to the
0’ of ‘p D ¢, is not always the part which comes first in the ver-
nacular. It is the part rather that is governed by ‘if’ (or by ‘in case’,
‘provided that’, etc.), regardless of whether it comes early or late
in the conditional. Thus it is that ‘p if ¢’ goes over into ‘g D p’, not
‘¢ D ¢'. But whereas ‘if’ is thus ordinarily a sign of the antecedent,
the attachment of ‘only’ reverses it; ‘only if’ is a sign of the conse-
quent. Thus ‘p only if ¢’ means, not ‘p if ¢, but ‘if p then ¢’; not
‘g D ¢, but ‘p D ¢q'. E.g., ‘You will graduate only if your bills
have been paid’ does not mean ‘If your bills have been paid you will
graduate’; it means ‘If you will graduate, your bills (will) have been
paid’.

The reader may have found ‘if p then ¢’ awkward as a pronuncia-
tion of ‘p D ¢, because of the separation of ‘if’ from ‘then’. If so, the
above observation on ‘only if’ deserves special attention; ‘D’ may
be read ‘only if’.

It is particularly to be noted that ‘only if’ does not have the sense
of ‘=", which is ‘tf and only if’. As the words suggest, ‘p if and only
if 4’ is a conjunction of ‘p if 4’ and ‘p only if g'—hence of ‘g D p’ and
?D4.

Among the linguistic variants of ‘if p then 4’ listed above, one more
might have been included: ‘not p unless ¢’. This variant leads to the
following curious reflection: if ‘not p unless 4’ means p D ¢’, and
‘¢ D ¢’ means ‘P v ¢, then ‘not p unless g’ must mean ‘p v ¢’, which
makes ‘unless’ answer to ‘v’ and hence to ‘or’. Whatever strangeness
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there may be in equating ‘unless’ to ‘or’ is precisely the strangeness of
equating ‘if-then’ to ‘D’ It is sometimes felt that ‘if-then’ suggests a
causal connection, or the like; and, insofar as it does, so also does
‘unless’. But when we distill a truth function out of ‘if-then’ we have
*3°, and when we distill a truth function out of ‘unless’ we have
‘v, ‘or’.

The evident commutativity of ‘or’, i.e., the equivalence of ‘p or ¢’
with ‘q or p’, is less evident with ‘unless’. The statements:

¢)) Smith will sell unless he hears fiom you,

) Smith will hear from you unless he sells

seem divergent in meaning. However, this divergence may be attrib-
uted in part to a subtle tendency in ‘unless’ compounds to mention
the earlier event last when time relationships are important. Because
of this tendency, we are likely to construe the vague ‘hears from you’
in (1) as meaning ‘hears from you that he should not sell’, and in (2) as
meaning ‘hears from you that he should have sold’. But if we are to
compare (1) and (2) as genuine compounds of statements, we must
first render each component unambiguous and durable in its mean-
ing—if not absolutely, at least sufficiently to exclude shifts of meaning
within the space of the comparison. Thus we should perhaps revise
(1) and (2) to read: '

Smith will sell unless you restrain him,
Smith will be reprimanded by you unless he sells,

and so consider them to be related not as ‘p unless ¢’ and ‘g unless p’,
but mereiy as ‘p unless ¢’ and ‘r unless p’.

Thus far we have been surveying in a cursory way that aspect of
paraphrasing which turns on mere vocabulary. We have been corre-
Jating connective words of ordinary language with the connective
symbols of symbolic logic. The last example, however, has brought to
light another and subtler aspect of the task of paraphrasing: on
occasion we must not only translate connectives but also rephrase
the component clauses themselves, to the extent anyway of insuring
them against material shifts of meaning within the space of the
argument in hand. The necessity of this operation is seen more simply
and directly in the following example. The two conjunctions:
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(3) He went to Pawcatuck and I went along,
4) He went to Saugatuck but I did not go along

may both be true; yet if we represent them as of the forms ‘pg’ and
‘77, as seems superficially to fit the case, we come out with an incon-
sistent combination ‘pgrg’. Actually of course the ‘I went along’
in (3) must be distinguished from the ‘I went along’ whose negation
appears in (4); the one is ‘I went along to Pawcatuck’ and the other
is ‘I went along to Saugatuck’. When (3) and (4) are completed in
this fashion they can no longer be represented as related in the
manner of ‘pg’ and ‘77", but only in the manner of ‘pg’ and 75’; and
the apparent inconsistency disappears. In general, the trustworthiness
of logical analysis and inference depends on our not giving one and
the same expression different interpretations in the course of the
reasoning. Violation of this principle was known traditionally as the
Jfallacy of equivocation.

Insofar as the interpretation of ambiguous expressions depends on
circumstances of the argument as a whole—speaker, hearer, scene,
date, and underlying problem and purpose—the fallacy of equivoca-
tion is not to be feared; for, those background circumstances may be
expected to influence the interpretation of an ambiguous expression
uniformly wherever the expression recurs in the course of the argu-
ment. This is why words of ambiguous reference such as ‘I’, ‘you’.
‘here’, ‘Smith’, and ‘Elm Street’ are ordinarily allowable in logical
arguments without qualification; their interpretation is indifferent to
the logical soundness of an argument, provided merely that it stays
the same throughout the space of the argument.

The fallacy of equivocation arises rather when the interpretation of
an ambiguous expression is influenced in varying ways by immediate
contexts, as in (3) and (4), so that the expression undergoes changes
of meaning within the limits of the argument. In such cases we have
to rephrase before proceeding; not rephrase to the extent of resolving
all ambiguity, but to the extent of resolving such part of the ambig-
uity as might, if left standing, end up by being resolved in dissimilar
ways by different immediate contexts within the proposed logical
argument. The logical connectives by which components are joined
in compounds must be thought of as insulating each component from
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whatever influences its neighbors might have upon its meaning; each
component is to be wholly on its own, except insofar as its meaning
may depend on those broader circumstances which condition the
meanings of words in the compound as a whole or in the logical argu-
sment as a whole.

It often becomes evident, when this warning is borne in mind, that
:a compound which superficially seems analyzable in terms merely of
conjunction and negation really calls for logical devices of a more
advanced nature. The statement:

(5) We saw Stromboli and it was erupting

is not adequately analyzed as a simple conjunction, for the construc-
tion ‘was...-ing’ in the second clause involves an essential temporal
reference back to the first clause. A more adequate analysis would
construe (5) rather as:

Some moment of our seeing Stromboli was a moment of its
erupting,

‘which involves logical structures taken up in Part II.

The general enterprise of paraphrasing statements so as to isolate
their logical structures has, we have thus far seen, two aspects: the
direct translating of appropriate words into logical symbols (compris-
ing just truth-functional symbols at this level of logic), and the
rephrasing of component clauses to circumvent the fallacy of equivo-
cation. Now a third aspect, of equal importance with the other two
when our examples are of any considerable complexity, is determina-
tion of how to organize paraphrased fragments properly into a struc-
tured whole. Here we face the problem of determining the intended
grouping. A few clues to grouping in statements of ordinary language
have been noted (§4), but in the main we must rely on our good sense
of everyday idiom for a sympathetic understanding of the statement
and then re-think the whole in logical symbols. When a statement is
complex, it is a good plan to look for the outermost structure first
and then paraphrase inward, step by step. This procedure has the
double advantage of dividing the problem up into manageable parts,
and of keeping the complexities of grouping under control. E.g.,
«consider the statement:
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(6) If Jones is ill or Smith is away then neither will the Argus deal
be concluded nor will the directors meet and declare a dividend
unless Robinson comes to his senses and takes matters into his
own hands.

First we seek the main connective of (6). Reasoning as in §4, we can
narrow the choice down to ‘if-then’ and ‘unless’; suppose we decide
on ‘if-then’. The outward structure of (6), then, is that of a condi-
tional; so let us impose just this much structure explicitly upon (6),
postponing minuter analysis. We have:

(7) Jones is ill or Smith is away D neither will the Argus deal be
concluded nor will the directors meet and declare a dividend
unless Robinson comes to his senses and takes matters into his
own hands.

Next we may consider, as if it were a separate problem removed from
(7), just the long compound ‘neither ... hands’. We decide, let us
suppose, that its main connective is ‘unless’. Treating ‘unless’ as ‘v,
we turn (7) as a whole into:

(8) Jones is ill or Smith is away D. neither will the Argus deal
be concluded nor will the directors meet and declare a dividend
v Robinson will come to his senses and take matters into his
own hands.

Now we take up, as if it were a separate problem removed from (8),
the longest component not yet analyzed; viz., ‘neither ... dividend’.
The main connective here is clearly ‘neither-nor’. Reflecting then
that ‘neither 7 nor s in general goes into symbols as 7', we rewrite
‘neither ... dividend’ accordingly; (8) thus becomes:

(9) Jones is ill or Smith is away . —(the Argus deal will be con-
cluded) —(the directors will meet and declare a dividend) v
Robinson will come to his senses and take matters into his own

hands.

Directing our attention finally to the various short compounds which
remain unanalyzed in (9), we turn the whole into:

(10) Jones is ill v Smith is away .D: —(the Argus deal will be con-
cluded) —(the directors will meet ., the directors will declare a



46 TRUTH FUNCTIONS [§9]

dividend) v. Robinson will come to his senses . Robinson will
take matters into his own hands.

Put schematically, the total structure is:
(11) Pvqg.D.7—(st) vu.

EXERCISES

1. Justify inference of the conclusion:

If Smith jis away and Robinson does not come to his senses then the
Argus deal will not be concluded

from (6). Method: Find the schema which corresponds to this con-
clusion as (11) does to (6); then show that this schema is implied by

(11).
2. Determine which of these statements implies which:

Jones is not eligible unless he has resigned his commission and
signed a waiver.

Jones is eligible if he has resigned his commission or signed a
waiver.

Jones is eligible only if he has signed a waiver.

Method: Paraphrase the statements, represent their structure sche-
matically, and test the schemata. Show all steps.

3. Paraphrase inward, showing and justifying each step:

If the tree rings have been correctly identified and the mace is
indigenous, then the Ajo culture antedated the Tula if and
only if the Tula culture was contemporary with or deriva-
tive from that of the present excavation.

§9. EQUIVALENCE

Two truth-functional schemata are called eguivalent if they agree
with each other in point of truth value under every interpretation of
their letters, or in other words if they agree case by case under truth-
value analysis. In anticipation. various cases of equivalence were
noted in §§1-3:

[89] EQUIVALENCE 47
9 to P, ‘pp’,and ‘p vy, Pa.r 0P
‘g’ to ‘qp’ and ‘— (P v 3)’, ‘pvg.rto‘pv.gvr,

pvqto‘qgvp and ‘—(33)’, ‘—(pg) 0P v_q’,
‘pDqto'—(p7 andpvg, ‘—(pvg) topy,
‘p=qto'pDq.q3p and =3 —(gp)"

To test two schemata for equivalence, we might make truth-value
analyses of the two schemata and see if they agree case by case. But
there is another way which tends to be easier: we may form a bicon-
ditional of the two schemata, and test it for validity. For, according
to our definition, two schemata S, and S, are equivalent if and only if
no interpretation makes S; and S, unlike in truth value; hencF if and
only if no interpretation falsifies the biconditional whose' s.ndes are
S; and S;. Thus, just as implication is validity of the conditional, so
equivalence is validity of the biconditional."

To determine the equivalence of ‘p . g v 7’ to ‘pq v pr’, e.g., we
check the validity of the corresponding biconditional:?

p.gvr.=.pqvpr
T.qvr.=TqgvTr Logvr.=.lgvlr
gqvr.=.qvr T
T

In similar fashion it may be checked that °p’ is equivalent to each of:
) 7 2p pVP PYPL P.PVE PIVPH PVE-PVE

It has been said that the most conspicuous purpose of logi'c,. in its‘
application to ordinary discourse, is the justification an.d criticism of
inference. But a second purpose, almost as important, is transforma-
tion of statements. It is often desirable to transform one statement
into another which “says the same thing” in a different form—a
form which is simpler, perhaps, or more convenient for the particular

1 ingly the tendency to confuse ‘implies’ with ‘if-then’ (§7) carries with it 2
tem?cfg;f‘t goifusc ‘is equinlcnt to’ with ‘if and only if’. The proper contrast !xtw‘ccn
equivalence and the biconditional is quite the same as was stressed in §7 between implica-

i conditional. : o
tKMZII:-‘gngutr}sl:iam:c of the policy announced in §5, all in.tcrmedia.tc steps o‘f resolution in
this analysis are left to the reader to fill in. The reasonan intermediate stage‘qvr =.qvr
is shown in the left-hand part of the analysis is that 'the passage from this to ‘T” is not by
resolution but by the rule of patently valid clauses, §6.
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purposes in hand. Now insofar as such transformations are justifiable
by considerations purely of truth-functional structure (rather than
turning upon other sorts of logical structure which lie beyond the
scope of Part I), a technique for their justification is at hand in our
test of equivalence of truth-functional schemata. Transformation,
e.g., of:

(2) The admiral will speak and either the dean or the president will
introduce him

into:

{3) Either the admiral will speak and the dean will introduce him
or the admiral will speak and the president will introduce him,

or vice versa, is justified by the equivalence of ‘p . g v 7' to ‘pg v pr’,

and this equivalence is verified by mechanical test as above. The

statements (2) and (3) may, by an extension of terminology similar

to that made in §7, be spoken of as truth-functionally equivalent.
It is evident from our definitions and testing techniques that

(i) Equivalence is mutual implication.

From this law and (i)-(iv) of §7, these clearly follow:

(ii) Any schema is equivalent to itself.

(iii) If one schema is equivalent to a second and the second is
equivalent to a third then the first is equivalent to the third.

{(iv) If one schema is equivalent to a second then the second is
equivalent to the first. (Not so for implication!)

(v) Valid schemata are equivalent to one another and to no others;
and similarly for inconsistent schemata.

Substitution was observed in §6 to preserve validity. Since impli-
cation and equivalence are merely validity of a conditional and a
biconditional, it follows that substitution also preserves implication
and equivalence. From the equivalence of ‘p’ to each of the schemata
in (1), e.g., we may infer by substitution that ‘7 is equivalent to
each of ‘7', ‘77, Fv ¥, ‘7 v7s, etc.; also that ‘gr’ is equivalent to each
of ‘— —(gr)’, ‘Grgr’, ‘Gr v gr’, etc.; and correspondingly for any other
substitution upon ‘p’ and ‘¢’ in (1). The particular family of equiva-
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lences thus generated will be made use of later as a means of simplify-
ing schemata.

Substitution consists always in putting schemata for single letters,
and for all recurrences of the letters. When these restrictions are not
met, the putting of one schema for another will be called not substi-
tution but #nterchange. Thus interchange consists in putting one-
schema for another which need not be a single letter, and which need
not be supplanted in all its recurrences. What has been said of sub-
stitution, that it preserves implication, equivalence, and inconsis-
tency, cannot of course be said in general of interchange. But there
are useful laws of interchange, the least of which is this first law of
interchange: Think of “..p..." as any schema containing ‘¢’, and of
‘...q... as formed from ‘...p..." by putting ‘q’ for one or more occur-
rences of ‘p’; then

‘p=¢q  implies ‘.p...=...q.. .

(Similarly for any other letters instead of ‘p” and °q’.) Let us see
why the law holds. We want to show that any interpretation of
letters which makes ‘¢ = 4’ come out true will make “..p... .=,
...g... come out true. But to make ‘¢ = 4’ come out true we must
either put ‘T’ for both ‘¢’ and ‘g’ or else ‘|’ for both ‘¢’ and ‘¢’; and
in either case ‘...p..." and ‘...q...", which differed only in ‘¢’ and ‘q’,
become indistinguishable from each other, so that their biconditional
reduces to T".

Now we can establish a more important second law of interchange:.
If S, and S; are equivalent, and S} is formed from S} by putting S, for
one or more occurrences of S, , then S} and S} are equivalent. E.g.,
this law enables us to argue from the equivalence of ‘¢ D ¢’ and
‘—(p7)’ to the equivalence of ‘p D g .v7’ and ‘—(pg) v7’. The rough
idea is, in school jargon, that putting equals for equals yields equals.

This second law of interchange is established as follows. Choose
any two letters not appearing in S{ nor in S They are, let us imagine,
‘0" and ‘q’. Then put ‘p’ for the occurrences of S, in question in 57 ;
the result may be represented as “...p...", and the result of similarly
using ‘4’ may be represented as ‘.....". By the first law of inter-
change, ‘p = ¢ implies “..p... .=. ..g..". By substitution of
S, for ‘¢’ and S, for ‘¢’ in this implication, we may conclude that the
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biconditional of S, and S; implies the biconditional of S} and S} . But
the biconditional of S, and S, is valid, since S, and S, are equivalent.
Therefore the biconditional of S] and §3 is valid; cf. (iv) of §7. There-
fore S{ and S} are equivalent.

This second law assures us that we can interchange equivalents S,
and §; in any schema S without affecting the outcome of a truth-
value analysis; for, S{ and the result S} will be equivalent, and equiva-
lent schemata are schemata that agree case by case under truth-value
analysis. There thus follows this #hird law of interchange: Interchange
of equivalents preserves validity, implication, equivalence, and incon-
sistency; and, unlike substitution for letters, it even preserves
consistency, nonvalidity, nonimplication, and nonequivalence.

Substitution for letters must, we saw, be construed as uniform and
exhaustive; but there is no such requirement in the case of inter-
changing equivalents. If in the valid schema ‘p v 5’ we substitute
‘qr’ for ‘p’, we may infer the validity of ‘gr v —(g7)’ and this only;
but if in that same valid schema ‘p v " we elect rather to put ‘pp’
for its equivalent ‘p’, we are entitled thereby to infer the validity not
merely of ‘pp v —(pp)’, but equally of ‘pp v 5’ and ‘p v —(pp)’.

Since interchange of equivalents does not affect the outcome of a
truth-value analysis, it proves to be a convenient adjunct to the
technique of truth-value analysis; for, if we supplant schemata by
simpler equivalents in the course of such analyses, our computations
are reduced. In particular, accordingly, whenever a configuration of
any of the seven forms depicted in (1) makes its appearance in the
course of a truth-value analysis, let us immediately simplify it be-
fore proceeding. We are not only to put ‘p’ for its equivalents p’,
‘o0’ ‘pv P, ‘p v pq, etc., but correspondingly 7 for ‘7, 7, Fv 7,
‘Fv7s, etc., and ‘g’ for ‘— —(gr)’, ‘Grgr’, ‘Gr v §r’, etc.

With our new policy in mind let us take another turn at the long
schema which was analyzed in §6:

PVqg.pvg.vpgi=q.:D. prvpr
pvpg.=q:0p
Tvlg.=q:D7 lvig.=q:D1]
T —(g=9)

|
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Here the original schema is subjected to some simplifications before
the substitution of signs for ‘p’ is even begun. The simplifications
consist in reducing both ‘pv g .p v g and ‘pr v p7 to ‘p’s for ‘pvq .
p v 7 is the last of the schemata in (1), and ‘pr v p7’ is the next to last
with 7’ substituted for ‘q".

Next let us turn back to the first long truth-value analysis of §6.
Under the new procedure it would run rather thus:

PV TN prvpsvarvss
TgvTrvlrvlsvgrv?s lgviFvTrvTsvgrvss
qVFvgrvrs rvsvagrvis
qvrvgr rTVsSVvTs
Tvivlr LvivTr Tvsv]s LvsvTs
T Fvr T sv§

T T

In this case none of the seven forms listed in (1) is visible in the
original schema as it stands, but some emerge as the analysis proceeds.
On the left side, ‘g v 7 v gr v 75 is reduced to ‘g v 7 v gr’ by putting
% for 7 v75. On the right side, similarly, ‘7 v s v gr v 75’ is reduced to
‘r v s v7% by putting ‘7’ for ‘r v gr'.

Both of the simplifications last noted are based on the equivalence
of ‘p v pq’ to ‘p’; but they involve also a mental switching of conjunc-
tions and alternations. The clause 7 v 75" which is to give way to 7
is not even visible in ‘g v 7 v gr v 75’ until we think of the part ‘Gr v75
as switched to read 75 v §r’; nor is the clause ‘7 v gr’ visible in ‘7 v s v
gr v 75 until we think of the part ‘s v §r’ as switched to read ‘Grv s".
Even when this clause ‘7 v g’ has been isolated, moreover, its equiva-
lence to ‘7’ is not inferred from the equivalence of ‘p v pq’ to P’
merely by substitution; we have also, mentally, to reread 7 v g’ as
‘s v 7§’ by switching the conjunction. Such preparatory switching of
alternations and conjunctions involves a tacit appeal to further
equivalences: the equivalence of ‘p v ¢’ to ‘g v p” and of ‘pg’ to ‘gp’.
But these steps drop out of consciousness if we school ourselves, as
we well may, to disregard typographical order among the compo-
nents of a conjunction and of an alternation.

It is arbitrary to single out just these seven equivalences, viz., the
equivalence of ‘p’ to each of the seven schemata in (1), as a basis for



52 TRUTH FUNCTIONS [§10)

simplifications auxiliary to truth-value analyses. A further convenient
equivalence, which could in fact have been exploited in both of the
truth-value analyses last set forth, is the equivalence of p v p¢’ to
‘P v ¢’. Another convenient one is the equivalence of 0 . p v ¢’ to
‘pq’. The practical investigator will use any simplificatory equiva-
lences that occur to him. For the standardizing of exercises, a con-
venient compromise might be to allow use of the seven equivalences
singled out in (1) and the further ones assembled at the top of p. 47.

EXERCISES

1. Determine which of these are equivalent to ‘pg D 7’ and which
topvg.D 1

23.92r gI.pJr, pIDr.gqdr, pIDrw.gdr

2. Determine which of these are equivalent to ‘¢ D g7’ and which
topD.gqvr:

pAq.p2r,
3. Determine any equivalent pairs from among these:
P :) q’ ? 3 é’ ﬁ D qa

This means fifteen short tests.

PAquwpIr

qp, 42p g2Ip.

4. Making full use of the new simplification procedure, test each
of the following three pairs for equivalence by truth-value analysis
of biconditionals:

pqvprvgr pvqg.pvr.qgvr;
pqr v pgs v prs v grs, PYGVNT . PYGVS. . PVTVS.GVTVS
pqr v pqr v pgr v pqr, pvgvr.pvgvT.pvgvr.pvgvrt

§10. NORMAL SCHEMATA

The notations ‘v, ‘D’, and ‘=" are superfluous, we know, in that all
use of them can be paraphrased into terms of conjunction and
negation. The sign ‘D’, however, has been seen to have a special
utility in the testing of implication; for, to test implication we form a
conditional (with help of ‘D’) and test its validity. The sign ‘=’
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has been seen to be of similar use in the testing of equivalence. So
there is good reason for having added the strictly superfluous signs
3’ and ‘=". Now the advantages of retaining ‘v’ are of quite a differ-
ent kind, and will become evident in the course of the present section
and the next.

What are known as DeMorgan’s laws, because they were stated by
Augustus DeMorgan in the nineteenth century (as well as by William
of Ockham in the fourteenth century and by a commentator on
Petrus Hispanus in the fifteenth’), affirm the equivalence of

) ‘—(pvqgv..vs) to  ‘pg.% and
(ii) ‘—(pq..s)’ to

For the case of just ‘p’ and ‘¢’ these laws were already noted in §1.
The further cases follow by substitution and interchange. E.g., from
the equivalence of ‘—(p v g)’ to ‘67’ we have, by substitution of
‘9 v ¢ for ‘p’ and ‘" for ‘q’, the equivalence of ‘—(p v g v 1)’ to
‘—(p v q)7'; and thence, putting ‘57 for its equivalent ‘—(p v g)’, we
obtain the equivalence of ‘—(p v g v7)’ to ‘pg7".

DeMorgan’s laws are useful in enabling us to avoid negating con-
junctions and alternations. We never need apply negation to the
whole of an alternation, since ‘—(p v g v ... v s)’ is equivalent to
“63...5'; and we never need apply negation to the whole of a con-
junction, since ‘—(pq...s)" is equivalent to ‘p v 7 v ... v.¥'. Also of
course we never need apply negation to a negation, since ‘p’ is equiva-
lent to ‘¢’. For that matter, we also never need apply negation to a
conditional or biconditional; for, by the method of the preceding
section it is easy to verify the equivalence of

Pvgv..vs.

@) ‘—@Dgq t pF v and of
) ‘—@=q9" 1

So any truth-functional schema can be put over into an equivalent in
which negation never applies to anything but individual letters.
Transformation of this kind is generally conducive to easy intelli-
gibility.

=4 andto ‘p=7.

1Cf, Lukasiewicz, “Zur Geschichte.”
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E.g., consider the forbidding schema:
W  —Ar>%.0 (g3 :—[=(p) ~( 3]

(It is of some help to vary parentheses thus with brackets and braces
when they are deeply nested.) Now since (1) has the outward form
‘—(tu)’, it can be transformed by (ii) to read:

—[p33.3 (g plv——[—@p) —( 23]

Cancellation of ‘— — reduces this to:

@ —lp33.5 (gD plv—@p) = I 3.

Then by (iii) we transform the first half of (2) into:
pI23%5g.——(gDp), or

pI35g.5q D p,

so that (2) becomes:

(3) 2I3.5g2 p.v—(p) —(p D3).

By (i) again, ‘—(rp)’_here becomes 7 v 7', and, by (iii) again,

‘—(p D 5)’ becomes ‘ps’ or ‘ps’, so that (3) comes down to:

4) 223 .5gpN.FVvP.ps

in which, finally, all negation signs are limited to single letters.
(4) is far easier to grasp than (1).

Such is the advantage of confining negation to single letters. Now
it will be found in general that still further perspicuity can be
gained by confining conjunction to single letters and negations of
letters; and it will be found also that such confinement of conjunction
can, like the confinement of negation to single letters, always be
accomplished. The law which makes this possible is known as the

law of distributivity of comjunction through alternation, and runs as
follows:

‘p.gvrv..v?isequivalent to ‘pgvprv..vpr.

Regardless of the number of letters involved, the equivalence is
readily verified by the method of the preceding section:

fi

pe
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S
~

P.GVTV .. VL E.PGVPrv .. ¥
T.gvrv..vt .=.Tgv[rv...v[¢ 1.qvrv..ve.
qvrv..vt .=, gvrv..vi 1

dgvlrv..vls
L

_‘
=N

This law, like the familiar identity:
s(y+z+ .. +w)=xy+rz+ .. +aw

of algebra, authorizes the convenient operation of “multiplying out.”
Thanks to it, we need never acquiesce in a conjunction which has an
alternation as component; we can always distribute the other part of
the conjunction through the alternation, as above, so as to come out
with an alternation of simpler conjunctions.

Since order is immaterial to conjunction, such distribution can
be worked equally well in reverse: notonlyisp.gvrv..v?
equivalent to ‘pg vprv...vpf,butalso‘gvrv...vz. 2’ is equivalent
to ‘gp v rp v ... v #p’. These two sorts of distribution are indeed one
and the same, once we learn to ignore order of conjunction.

When we have a conjunction of two alternations, distribution
takes the form of the familiar “cross-multiplying” of algebra; e.g.,
‘pvt.qvrvs comesoutpgvprvpsvigviry ts’. For, we begin by
handling ‘g v7 v s’ as we might a single letter ‘%’; thus, justas ‘pv . &’
would become ‘pu v 2’ by (reverse) distribution, so ‘pvz.gvrvs
becomes ‘p . g vrvs.v.t.qvrvs. Afterward, distribution of ¢’
turns the part p . g vr v s into ‘pg v prv ps’, and distribution of 7
turns the part ‘2 . gvrv s into‘tgverves.

Let us now go back to (4) and improve it by distributing. We
thereby change the part 7 v . ps’ of (4) to Fps v pps’, so that (4)
becomes:

(5) pD35g.5q D p.vipsvpps.
We can open the way to further distribution if we get rid of ‘D’
translating ¢ D #’ in general as ‘Z v #’. Such translation turns (5)
into:

pvig.—(sq) vp .vipsvpps,
which, when ‘—(s9)’ is changed to ‘5 v 7 by (ii), becomes:

Pvsg.TvGvyp vTpsv pps.
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Now the part ‘5 v 37 .5v g vp can be “cross-multiplied,” so that
the whole becomes:

(6) PV PG v Pp v 345 v3qg v 3qp vips v pps.
We can quickly shorten this result by deleting the patently incon-

- -3

sistent clauses ‘pp’, ‘597", and ‘Bps’. We then have:
V) PEv Bg v 345 v 3qp v 7ps.
Such deletion is a case of the procedure explained in §6: each of the
patently inconsistent clauses may be thought of as supplanted by “|’,
which afterward drops by resolution ((ii) of §5).

Also we may drop any duplications from conjunctions—thus reduc-

ing ‘545" to ‘5g’. This was the second of the seven forms of simplifica-
tion noted in (1) of the preceding section. So (7) becomes:

(8) D5 v pg v3sqvigp vrps,

which wears its meaning on its sleeve. This its equivalents (1) and
(4) could scarcely have been said to do.

The result (8) has the following four noteworthy properties: *J°
and ‘=’ do not occur; negation is confined to single letters; conjunc-
tion is confined to letters and negations of letters; and no letter
appears more than once inside any conjunction. Schemata having
these four properties will be called normal.

This essentially negative characterization of normality may be
reformulated in more positive terms as follows. Let us speak of single
letters and negations of single letters collectively as Jiterals; thus
P, ‘g, ‘P, etc. are literals. Let us speak of any literal, and also any
conjunction of literals wherein no letter appears twice, as a funda-
mental schema; thus ‘pq’, ‘p%, ‘sqp’, etc., are fundamental schemata,
and so are ‘p’, ‘P, ‘¢, etc., themselves. A normal schema, finally,
may now be defined as any fundamental schema or alternation of
fundamental schemata.

Most of the process whereby (1) was transformed into its normal
equivalent (8) can be reproduced for all schemata, and all of the
process can be reproduced for most schemata. Given any schema, we
can rid it of ‘3’ and ‘=" by familiar translations: ‘¢ D ¢’ becomes
P vq and p = g’ becomes ‘pg v p7. We can confine negation to
single letters by (i)-~(iv), or simply by (i)-(ii) having first got rid of
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‘D’ and ‘=’. Finally we can confine conjunction to literals by
persistent distribution. The stage (6) can thus be reached in every
case. Now the remaining steps, eventuating in a normal schema, are
deletion of all patently inconsistent components of alternation and
deletion of duplications from conjunctions. These steps go through
uneventfully in all cases except where every one of the components of
alternation is patently inconsistent. This exception needs separate
attention because the deletion of patently inconsistent components
would in this case annihilate the whole schema.

Let us see then how the exception fares. In general, deletion of the
patently inconsistent components of alternation was explained as
consisting in their replacement by ‘|, followed by resolution. In the
extreme case where every one of the components of alternation is
patently inconsistent, this procedure reduces the whole simply to *|’.
Afterward, if we are interested in being left with a genuine schema,
we may translate ‘|’ back arbitrarily as ‘pp’; for, the reduction of our
schema to ‘|’ shows its inconsistency, and any inconsistent schema is

_equivalent to ‘pp’ by (v) of the preceding section.

So the parting of the ways occurs at the point where we have
finished confining negation to letters and conjunction to literals
and have set about deleting patently inconsistent components of
alternation. If they are all patently inconsistent, we put down ‘pp’
as our end result; if they are not all patently inconsistent, we delete
the inconsistent ones and then delete any duplications from within
the surviving conjunctions and so end up with a normal schema. We
thus have a general routine for transforming any truth-functional schema
nto an equivalent which is either ‘pp’ or normal.

Any fundamental schema is consistent; for, it comes out true when
the letters which are not negated are interpreted as true and the
others as false. E.g., ‘¢4’ comes out true when ‘p’ and ‘¢’ are inter-
preted as true; ‘5’ comes out true when ‘p’ and ‘s’ are interpreted as
false; ‘Sgp’ comes out true when ‘s’ is interpreted as false and ‘¢’ and
‘p’ as true. It then follows also that every alternation of fundamental
schemata is consistent, since whenever even one component of an
alternation is made to come out true the alternation comes out true.
Therefore every normal schema is consistent.

What was previously observed, then, viz., that our routine reduces
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every truth-functional schema to an equivalent which is either ‘pp’
or normal, may now be restated more informatively: Our routine
reduces every truth-functional schema to ‘pp’ if inconsistent and to a
normal schema if consistent.

We have a new technique, then, alternative to that of §6, for testing
a schema for consistency: transform it according to the foregoing
routine. If the end result is normal, the original was consistent;
if ‘pp’, inconsistent.

But the utility of this procedure of transformation and reduction
is more than as a new test of consistency. Normal schemata are
generally convenient because their net import is so readily grasped:
we can tell at a glance what interpretations will make them true.
E.g., an interpretation will make (8) true if and only if it either
interprets ‘p” and ‘s as false (making the first clause of (8) true), or
interprets ‘¢’ and ‘g’ as false (making the second clause true), or
interprets ‘s’ as false and ‘g’ as true, or etc.

This advantage can be enhanced by further simplifications to
which a normal schema can commonly be subjected. In passing from
(7) to (8) we used one of the seven forms of simplification which were
noted in connection with (1) of the preceding section, viz., ‘pp’ to
‘p’. But others of the seven may likewise be used to advantage, e.g.,
that of ‘p v pq’ to ‘p’. Thus, reducing ‘57 v 5gp’ to ‘54’ in (8), we get:
©) Ps v pg v sqvips.

Our technique for transforming any truth-functional schema into an
equivalent which is either ‘pp’ or normal has been one of successive trans-
formation into equivalents, and thus bears little resemblance to truth-value
analysis. It is interesting to observe, however, that truth-value analysis
itself provides an alternative channel whereby any truth-functional schema

could be reduced to ‘pp’ or a normal schema. To see this, let us go back to
(1) and perform a truth-value analysis:

—{#D3.0 —(gdp): —[=p) —(» 2 )]}
~{TDsg.0 —(¢qDT):—etc} —{LD35g.0—(sg D 1):—etc}

—[—Gg) —(75)] ———(sq)
—[—Gg) — ()] —(s9)
~[—Ug) =@ —1—q) —GD] —({9) i)
7 g g T

7 q 1
1 T T 1
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Now ‘T’ occurs as end result just four times here: once as a result of putting
T’ for ‘p’, ‘T" for ‘s, and ‘| for 7, once as a result of putting [* for ‘p’,
‘|” for “s’, and ‘T’ for ‘¢’, once as a result of putting |’ for p’, T” for ‘s,
and ‘|’ for ‘¢’, and once as a result of putting ‘|’ for ‘¢’ and ‘s’. This means
that the whole schema, (1), comes out true in just these four cases: where
‘ps7 is true, where ‘p3g’ is true, where ‘psg’ is true, and where ‘p3’ is true.
So (1) amounts to the normal schema:

(10) PpsF v p3q v Psg v Ps.

This does not happen to look like (8) or (9), but it is just as genuinely a
normal schema, and its equivalence to (9) may easily be verified by a direct
test in the manner of the preceding section.

In general, as seen in the case of (10), we may read off a normal schema
directly from a truth-value analysis, so long as there are any ‘[’s as end
results of the analysis. If on the other hand all end results are ‘|’, so that
the given schema is found inconsistent, we may directly set down pp’ as
its equivalent. So two quite different channels are now known to us where-

by, for any truth-functional schema, an equivalent may be found which is-
either ‘pp’ or normal.

EXERCISES

1. Check the equivalence of (9) to (10) by truth-value analysis.
(Mastery of small print unnecessary.)

2. By the method of successive transformation, transform each of
these into a normal schema or ‘pp’:

—(pv—{gv—=lrv—(gvpID
pIqg.qd2r.D.pIr,

pl9.2p:=p

§11. pUALITY

All logical computation at the truth-functional level is essentially
computation with ‘T" and ‘|’. Hence it is to be expected that two schemata
will be quite parallel in their behavior, at least in important structural
respects, if they are just alike under truth-value analysis except for a
thoroughgoing interchange of ‘T’ and ‘|’. Schemata so related are called
duals of each other. They behave in relation to each other according to
taws which, for their theoretical interest and occasional convenience,
warrant some notice. This matter seems to have been first treated by

Schrader (1877).
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Though duals are opposed somewhat in the manner of T’ to ‘|’, they
are not to be confused with mere contradictions or mutual negations. The
prime example of duality, rather, is conjunction versus alternation. Con-
junction and alternation are alike except for a thoroughgoing interchange of
‘T’ and ¢|’, in the following sense. Conjunction, to begin with, is describable
thus:

1st component 2nd component Result

T T
1 T
T 1
1 1

Now to interchange ‘T’ and ‘|’ merely in the last column would indeed
produce a truth function which is the negation of conjunction. Interchange
‘T" and ‘|’ throughout all three columns, however, and what you get is
precisely a description of alternation:

= b ——f

1st component 2nd component Result
1 l 1
T l T
1 T T
T T T

Such is the sense in which ‘pg’ and ‘p v ¢’ are said to be duals. In general
the relationship between dual schemata S and §’ is this: whenever each of
‘?’s ‘g, etc. is interpreted oppositely for S and §”, the truth values of S and
S’ turn out oppositely to each other.

Trivially, by this standard, ‘¢’ is dual not to ‘¢’ but to ‘¥’ itself; for,
give opposite values to ‘¢’ and you get values for ‘¢’ which are opposite
to each other.

The duality of ‘pg’ to ‘p v 4’ is evident without resort to the above
tabulation if we simply compare the original descriptions of conjunction
and alternation. A conjunction is true when its components are all true,
and otherwise false; whereas an alternation is false when its components are
all false, and otherwise true. These two descriptions are alike except for
interchange of ‘true’ and ‘false’; hence ‘pg’ and ‘p v ¢’ are bound to behave
alike except for a thoroughgoing interchange of the réles of ‘T’ and *|’—
which is what duality means. The self-duality of ‘¢’ is evident similarly
from the general description of a negation as “true or false according as its
component is false or true”; for, switch the words ‘true’ and “false’ in this
description and you simply have the description of negation over again.

More generally now, consider any schema S built up of letters by means
exclusively of negation, conjunction, and alternation (hence devoid of
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‘D’ and ‘=’"). Suppose a second schema S’ is like S except that it has
alternation wherever S has conjunction and vice versa. Then truth-value
analyses of S and S’ are bound to match except for interchange of ‘T” and
‘| throughout; for, we just saw that the explanations of conjunction and
alternation are alike except for switching ‘true’ with ‘false’, and that the
explanation of negation is unchanged by switching ‘true’ with ‘false’. So
S and §’ are duals.

What has just been established will be called the first law of duality:
Where S is any truth-functional schema devoid of ‘D’ and ‘=", the result
of changing alternation to conjunction and vice versa throughout S is dual
to S. This law affirms immediately the duality of ‘pg’ to p v ¢, and the
self-duality of ‘¢’ and of ‘p’. It affirms also the duality of ‘5 . ¢ v 7 to
‘#vq7, theduality of ‘pg v pr’ to ‘pvg . pvr, the duality of ‘pg v gr v pr’
to‘pvg.qvr.pvr,etc

So we now have a quick and graphic way of forming a dual of a schema:
interchange conjunction and alternation. This procedure depends, be it
noted, on absence of ‘D’ and ‘=’; but we can get rid of ‘D’ and ‘=’ in
advance, since p D ¢’ may be rendered as fvg’and ‘p= g as fvqg.Gvyp
or 'pq v 77

In interchanging conjunction and alternation to get duals, special care
must be taken to preserve grouping. In case of doubt, think of full paren-
theses as restored in lieu of the dot conventions. Thus ‘¢ . g v 7’ has as dual
not ‘pvgq .7 but‘pvgr. For, ‘p.qvr means ‘p(gvr)’, and ‘p v gr’ means
‘¢ v (q7)’, in which the same pattern of grouping is preserved; ‘pv g . 7,
on the other hand, means ‘(p v g)r’, and is dual rather to ‘pg v 7.

Given any schemata S and §’, now, we can test whether S’ is a dual
of S by forming an explicit dual of S according to the above method and
then checking it for equivalence to §'. In particular we can thus determine
whether a given schema S is a dual of itself; we have merely to form the
explicit dual of S by switching conjunction with alternation, as explained,
and then to test this result for equivalence to S. Apart from trivial cases,
such as ‘p’, self-duality is rather rare; but it does occur. E.g., ‘pg v prv ¢7’
is dual to itself, since it is equivalent to its own explicit dual ‘pvg.pvr.
g v7. (CL §9, Exercise 4.)

Switching alternation with conjunction is not the only convenient way
of forming a dual. Another way, which does not even require a preparatory
elimination of ‘D’ and ‘=", is provided by the second law of duality: If
in any schema you negate all letters and also the whole, you get a dual.
This law is evident from the original definition of duality; for negating the
letters has the same effect as reversing all interpretations of letters, and
negating the whole reverses the truth value of the outcome.

DeMorgan’s laws themselves (§10) are essentially duality principles,
as may be seen by rearguing them in the present context. As dual of ‘pq...s"
the first law of duality cites ‘p v g v ... v 5°, whereas the second cites rather
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‘~(pg...3)’; these two must then be equivalent to each other, and thus
DeMorgan’s first law, (i) of §10, holds. (ii) admits of a parallel argument.

A third law of duality is this: A schema is valid if and only if its dual is
inconsistent. For, if two truth-value analyses differ to the extent of a
thoroughgoing interchange of ‘T” and ‘|, clearly the one will show validity
if and only if the other shows inconsistency.

Fourth law of duality: A schema S, implies a schema S, if and only if the
dual of S, implies the dual of S; . This is seen as follows. The duals of S,
and S; behave like S, and S, , under truth-value analysis, except for a
switching of ‘true’ with ‘false’ throughout. Hence to say that no interpreta-
tion of letters makes S, true and S false is the same as saying that no
interpretation makes the dual of S, false and the dual of S, true.

Fifth law of duality: Schemata are equivalent if and only if their duals
are equivalent. This follows from the fourth law, since equivalence is
mutual implication.

The third, fourth, and fifth laws enable us, having established one
validity or inconsistency or implication or equivalence by truth-value
analysis or otherwise, to infer an additional inconsistency or validity or
implication or equivalence without further analysis. E.g., having verified
that ‘pv g .qv7.rvs implies o v 5’ (as may be done by the method of
the fell swoop, §7), we may conclude by the fourth law of duality that ‘ps’
implies ‘p7 v g7 v s’. This operation may, in contradistinction to the first,
be spoken of as the full swap. :

Either of DeMorgan’s laws, (i)—(ii) of §10, follows from the other by
the fifth law of duality. Again, from the law of distributivity of conjunction
through alternation (§10) we can, by the fifth law of duality, infer a law
of distributivity of alternation through conjunction:

‘pvgr..t isequivalent to pvg.pvr....pve.

This law shows that conjunction and alternation are in still more congenial
relations to each other than are multiplication and addition. In arithmetic
we can multiply out, thus:

t(y+z4+ .t w)=2y+ xz+ ...+ 2w,
but we cannot “add out” thus:
x4+ yzow = (x + y)(x + 2)...(x + @).

In the case of alternation and conjunction, on the other hand, distribution
works both ways.

Indeed, since by the fifth law of duality all equivalences continue to
hold when conjunction and alternation are switched, we may conclude at
once that the technique of reducing a truth-functional schema to a normal
schema (or to ‘pp’) may be reproduced entire with alternation and conjunc-
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tion switched. Thus, whereas the procedure of §10 served to reduce incon-
sistent schemata to ‘pp’ and consistent ones to normal schemata, this new
parallel procedure reduces valid schemata to ‘p v ” and non-valid ones to
“quasi-normal” schemata such as:

PVGVTr.pVvs.gvTvs

—i.e., to schemata which are like normal ones except that the rdles of
conjunction and alternation are interchanged. However, whereas the tech-
nique of reduction to normal schemata will prove useful on a couple of
future occasions (§§19, 32), no use will be made of the corresponding
technique of reduction to quasi-normal schemata,



PART TWO

Uniform Quantification

§12. CATEGORICAL STATEMENTS

There are many simple and logically sound inferences for which the
foregoing techniques are inadequate. An example is this:

No philosophers are wicked,  Schematically: No G are H,
Some Greeks are philosophers; Some F are G;
Therefore some Greeks are not wicked. . Some F are not H.

Note that ‘F’, ‘G’, and ‘H’ here stand not for statements, after
the manner of ‘¢’ and ‘¢’ in Part I, but for common nouns—or, in
logical parlance, zerms." Whether these nouns be thought of as sub-
stantive or adjective is an insignificant question of phrasing. ‘G’
appears as a substantive in the above example, viz. ‘philosophers’,
and ‘H’ as an adjective, ‘wicked’; but we could rewrite the adjective
as a substantive, ‘wicked individuals’, if we liked. In the same spirit
we can even treat intransitive verbs as terms, in effect, thus reckoning
‘Some fishes fly’ as a case of ‘Some F are G’; for the difference between
‘Some fishes fly’ and ‘Some fishes are flying things’ is purely nota-
tional. The nouns or verbs which figure as terms may also, of course,
be complex phrases such as ‘employed for ten years by Sunnyrinse’,
‘wear brass rings in their noses’, etc. Whether terms be thought of as
in the singular or the plural is also a logically insignificant question
of phrasing; thus there is no need to distinguish between ‘No philoso-
pher is wicked” and ‘No philosophers are wicked’, nor between ‘All
philosophers are wise’ and ‘Every philosopher is wise’. There is no

1What are spoken of simply as terms in the present pages may, in view of developments
in Parts III-1V, be designated more accurately as gencral absolute terms. Actually they will
come to be known in Part IIl, though with a certain shift of emphasis, as one-place
predicates. But this use of the word ‘predicate’ is not to be confused, if one can help
it, with the mediaeval use explained in the small print of §14.

64

[§12] CATEGORICAL STATEMENTS 65

need even to distinguish between ‘Some Greek is a philosopher’ and
‘Some Greeks are philosophers’, provided that, as will be our practice
here, we understand ‘some’ always to mean simply ‘at least one’.

But, for all the latitude accorded to the concept of term, it remains
clear that terms are never statements; and this is why the techniques
of Part I are inadequate to the inference exhibited above. Part I
dealt with the structures of compound statements relative only to
their component statements; statements remained the smallest units
of analysis. It is only now, in Part II, that we embark upon the analy-
sis of those component statements in turn into the still smaller parts,
not statements at all but terms, of which they are composed. Logically
sound inferences depend for their soundness on the structures of the
statements concerned, but the relevant structures may be either the
broad outward structures studied in Part I or the finer substructures
to which we are now turning. The above example is one which de-
pends on structures of the latter kind.

It is the peculiarity of a statement to be true or false. It is the pecu-
liarity of a term, on the other hand, to be #rue of many objects, or one,
or none, and false of the rest. The term ‘Greek’ is true of each Greek,
and the term ‘wicked’ is true of each wicked individual, and nothing
else. The term ‘satellite of the earth’ is true of each satellite of the
earth and nothing else, hence true of but one object, the moon. The
term ‘centaur’ is true of each centaur and nothing else, hence true of
nothing at all, there being no centaurs.

In place of the clumsy phrase ‘is true of’ we may also say ‘denotes’,
in the best sense of this rapidly deteriorating word. But I prefer here
to resist the temptation of good usage. ‘Denotes’ is so current in the
sense of ‘designates’, or ‘names’, that its use in connection, say, with
the word ‘wicked’ would cause readers to look beyond the wicked
people to some unique entity, a quality of wickedness or a class of the
wicked, as named object. The phrase ‘is true of” is less open to mis-
understanding; clearly ‘wicked’ is true not of the quality of wicked-
ness, nor of the class of wicked persons, but of each wicked person
individually.

When we are minded to speak of classes, the class of all the objects
of which a term is true may, in keeping with a long tradition, be
called the extension of the term. The extension of ‘wicked’ is thus the
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class of wicked persons; the extension of ‘satellite of the earth’ is the
class whose sole member is the moon; and the extension of ‘centaur’ is
the empty class. Terms may be said to Aave extensions, just as state-
ments have truth values; but there is no need to think of a term as
somehow a name of its extension, any more than there is to think of a
statement as a name of its truth value.® Far better not, since the use of
terms proceeds smoothly on the whole without assumption of any
special category of abstract objects called classes. It is ordinarily
sufficient to know that a given term is #rue of this and that individual
and false of the other, without positing any single collective entity
called the term’s extension. Reason to appeal to extensions arises only
in certain theoretical connections such as the general theory of
validity, §§18 ff.

Four ways of joining terms pairwise into statements have been
treated as fundamental throughout the logical tradition stemming
from Aristotle: ‘All Fare G’, ‘No Fare G, ‘Some F are G’, and ‘Somc
F are not G'. Statements of these four forms were called categorical.
The four forms were distinguished by special nomenclature and by
code letters ‘A’, ‘E’, ‘T’, and ‘O’, as follows.

A (Universal affirmative): All F are G

E (Universal negative): No Fare G
I (Particular affirmative): Some F are G
O (Particular negative): Some F are not G

The form A, ‘All F are G’, may also be phrased ‘If anything is an
F, it is a G’; thus it is recognizable as the “‘generalized conditional”
which was touched on in (1)-(3) of §3. Many other phrasings of A
also come readily to mind: ‘F are G’, ‘Each (Every, Any) Fisa G'.
‘Whatever is an F is a G, ‘F are exclusively G’, ‘Only G are F'.

E likewise has many phrasings: ‘No F is (are) G’, ‘Nothing is both
an Fand a G, ‘Nothing that isan Fisa G’, and even ‘There is (are)
no FG’ (e.g., ‘There is no black swan’), ‘FG do not exist’.

Correspondingly for I: ‘Some F is (are) G’, ‘Something is both an
Fand a G, ‘Something that isan F is a G’, “There is an FG’, “There
are FG’, ‘FG exist’. O, of course, has similar variants.

Often the terms properly answering to ‘F’ and ‘G’ are not directly
visible at all in ordinary phrasing of statements. They may be partially

ICf, Carnap, Meaning and Necessity, pp. 23-32, 96-111.
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covered up by such usages as ‘nowhere’, ‘anywhere’, ‘always’, ‘every-
one’, ‘whoever’, ‘whenever’, etc. Thus the statement ‘I go nowhere by
train that I can get to by plane’ is properly analyzable as of the form
E, ‘No F are G’, but here we must understand ‘F’ as representing
‘places I go to by train’ and ‘G’ as representing ‘places I can get to by
plane’. The statement ‘Everyone in the room speaks English’ has the
form A, ‘All F are G’, where ‘F’ represents ‘persons in this room’
and ‘G’ represents ‘speakers of English’.

In this last example the restrictions to persons implicit in ‘every-
one’ is essential, since there will be nonpersons in the room which do
not speak English. In such an example as ‘Everyone who pays his
dues receives the Bulletin’, on the other hand, ‘everyone’ is used
instead of ‘everything’ only because of a habit of language, and not
because the speaker feels any need of hedging his statement against
such absurd objects as subhuman payers of dues. It would be pedantic
to construe ‘F’ for this example as ‘persons who pay their dues’, and
quite proper to construe it as ‘payers of dues’.

In putting statements of ordinary language over into the forms A,
E, I, and O we must be on the alert for irregularities of idiom, and
look beneath them to the intended sense. One such irregularity is
omission of ‘-ever’, as in ‘Who hesitates is lost’, ‘I want to go where
you go’, ‘When it rains it pours’, ‘She gets what she goes after’. An-
other irregularity is the nontemporal use of ‘always’, ‘whenever’,
‘sometimes’, ‘never’. E.g., the statement:

The sum of the angles of a triangle is always equal to two right angles

really means:
The sum of the angles of any triangle is equal to two right angles,

and may be rendered ‘All F are G’ where ‘F’ represents ‘sums of
angles of triangles’ and ‘G’ represents ‘equal to two right angles’.

Frequently an I construction having to do with time is implicit in
the inflection of a verb; witness ‘We saw Stromboli and it was
erupting’, which comes out as ‘Some F are G’ with ‘F’ construed as
‘times we saw Stromboli’ and ‘G’ as ‘times Stromboli was erupt-
ing’. (Cf. §8, (5).) Further examples of temporal idioms which call
for a little reflection, if the logical structure is to be properly ex-
tracted, are:
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I knew him before he lost his fortune,
I knew him while he was with Sunnyrinse.

‘Before’ and ‘while’ here appear in the guise of statement connectives,
like ‘and’ or ‘or’ or *D°’. But the statements are better analyzed as of
the form I, ‘Some F are G’, where ‘F’ represents ‘moments in which
I knew him’ and ‘G’ represents in the one case ‘moments before he
lost his fortune’ and in the other case ‘moments in which he was with
Sunnyrinse’.

Reflection, indeed, should be the rule. Proper interpretation is not
generally to be achieved through slavish dependence upon a check-list
of idioms. ‘Always’ usually means ‘at all moments’, but it would be
unjust to construe ‘Tai always eats with chopsticks’ as “Tai eats with
chopsticks at all moments’. The proper interpretation of this example
is ‘All F are G’ where ‘F’ represents ‘moments at which Tai eats’ (not
simply ‘moments’) and ‘G’ represents ‘moments at which Tai eats
with chopsticks’.

The importance of reflecting upon context and the common sense
of the concrete situation, rather than looking to any mere glossary, is
manifest even in so basic a construction as ‘An F is G’. ‘A lady is
present’ is surely of the form I, but ‘A Scout is reverent’ is more
likely to be intended in the form A. Caution is similarly needed in
equating ‘any’ with ‘every’; for, whereas the statements:

John can outrun every man on the team,
John can outrun any man on the team

ueed no distinguishing, a divergence appears as soon as ‘not’ is applied:

John cannot outrun every man on the team,
John cannot outrun any man on the team.

The first two statements are indistinguishably ‘All F are G’ (where ‘F
is ‘man on the team’ and ‘G’ is ‘whom John can outrun’); the third,
however, is ‘Some F are not G’, while the fourth is ‘No F are G'.

EXERCISE

Classify the following statements as between A, E, I, and O, and
specify in each case what terms answer to ‘F’ and ‘G’.
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Blessed are the meek. We should all be as happy as kings.
All that glisters is not gold. A policeman’s lot is not an ’appy one.
There is no god but Allah.  There are smiles that make you blue.
Hope springs eternal. I journeyed hither a Boeotian road.
The rule applies to everyone. I was stopped by the door of a tomb.

§13. VENN’S DIAGRAMS

In a diagrammatic method due to Venn (1880), overlapping circles
are used to represent the two terms of a categorical statement. The
region in which the two circles overlap represents the objects which
are both F and G. This region, called a lens in geometry, is shaded in
Diagram 2. Where ‘F’ is taken as ‘French’ and ‘G’ as ‘generals’, this
region represents the French generals. Correspondingly the part of
the F-circle which lies outside the G-circle represents the objects
which are F but not G: the French non-generals, in the example.
This region, called a June in geometry, is shaded in Diagram 1. The
significance of shading is emptiness; thus Diagram 2 affirms that no
F are G, while Diagram 1 affirms that no F are other than G, or in
other words that all F are G.

F G F G

A:All Fare G E:No Fare G
Discram 1 Diacram 2

F G F G

I: Some Fare G O: Some F are not G
Diacram 3 Diacram 4
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Whiteness of a region in a Venn diagram means nothing but lack of
information. In Diagram 2 the two lunes are left unshaded not be-
cause we think there are F which are not G and G which are not F, but
because ‘No F are G’ gives us no information on the subject. All that
‘No F are G’ says is that the lens is empty, and this is all the informa-
tion that Diagram 2 records. Similarly the lens and the right-hand
lune in Diagram 1 are left unshaded merely because ‘All F are G’ gives
us no information concerning these further regions.

The great region outside both circles represents the objects, if any,
which are neither F nor G. It is left blank in Diagrams 1 and 2 be-
cause ‘All F are G’ throws no light on such objects, and neither does
‘No F are G’.

So, whereas shading means emptiness, nonshading does not assure
nonemptiness. For nonemptiness another symbol is used, viz., a
cross. Thus ‘Some F are G’, which affirms nonemptiness of the lens, is
expressed by putting a cross in the lens as in Diagram 3. Here again
the blankness of the other areas implies neither emptiness nor non-
emptiness, but represents mere lack of information.

‘Some F are not G’, finally, affirms no more nor less than that the
part of the F-circle which lies outside the G-circle has something in
it; so it is represented by putting a cross in that June as in Diagram 4.

Certain simple laws of categorical statements are graphically re-
flected in the diagrams. The symmetry of Diagram 2, and of Diagram
3, reflects the fact that in E and I the order of terms is inessential:
‘No F are G’ amounts to ‘No G are F’, and ‘Some F are G’ to ‘Some
G are F'. Such switching of terms was known traditionally as simple
conversion. The lopsidedness of Diagrams 1 and 4 reflects the fact that
simple conversion is not in general applicable to A or O: ‘All Greeks
are men’ is not to be confused with ‘All men are Greeks’, nor ‘Some
men are not Greeks’ with ‘Some Greeks are not men’.

A and O are mutual contradictories, or negations: A is true if and
only if O is false. This relationship is reflected in the diagrams by the
fact that Diagram 1 shows shading where, and only where, Diagram
4 shows a cross. With respect to blankness, or lack of information,
Diagrams 1 and 4 are alike; with respect to information they simply
and directly deny each other. Similarly E and I are mutual contradic-
tories: E is true if and only if I is false.
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A and E, ‘All F are G’ and ‘No F are G’, may also be felt to be
somehow opposite to each other; however, their opposition is no
matter of mutual negation, for we cannot say in general that A is
true if and only if E is false. On the contrary, examples chosen at
random are as likely as not to cause A and E to come out bozA false;
this happens in particular when ‘F’ is taken as ‘French’ and ‘G’ as
‘generals’. Similarly I'and O are quite commonly both true, of course,
as in this same example. But A and O are never both true nor both
false, and simila:ly for E and I; here are the pairs of contradictories,
or mutual negations.

Whereas A and E are very commonly both false and I and O are
very commonly both true, it is less common for I and O to come out
both false, or for A and E to come out both true; but these things
will happen where there are no F. Clearly, where there are no F,
‘Some F are G’ and ‘Some F are not G’ will both be false. Also, where
there are no F, ‘No F are G’ will obviously be true; and yet ‘All F are
G’ will likewise be true, in that there will be no F which is not G.
These points are brought out diagrammatically by shading the F-
circle in its entirety, as in Diagram 5, to mean that there are no F.
This diagram verifies both A and E, for it shows both of the areas
shaded which are shaded in Diagrams 1 and 2; and it falsifies both I

There are no F.
Diacram 5

and O, for it shows shading in place of both crosses of Diagrams 3 and
4.

A, ‘All F are G’, would seem at first glance to be stronger than I,
‘Some F are G’, and to imply it; but it does not, because of the possi-
bility of there being no F. Diagram 5 depicts the very situation where,
though A holds, I fails. It may happen that all my dimes are shiny
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(in that I have no dime to the contrary), and yet be false that some
of my dimes are shiny, simply because I have no dimes at all. The
most we can say is that if all F are G and there are F then some Fare G.

If the reader thinks it odd to say that all of one’s dimes are shiny
when one has no dimes, he is perhaps interpreting ‘All F are G’ to
mean, not simply ‘There is no F that is not G’, but ‘There are F and
each of them is G’. This, however, even if it be one of several de-
fensible interpretations of an ambiguous idiom, is clearly not the
interpretation which would make A the simple contradictory, or
negation, of O: ‘Some F are not G’. It is the general logical practice,
and a convenient one, to understand ‘All F are G’ simply as the con-
tradictory of O.

Diagram 5 as it stands was seen to reflect the fact that I does not
follow from A. But Venn diagrams can also be used for constructive
ends, as in showing that I follows from A supplemented with “There
are F’. To show this we set down the diagram for A, viz. Diagram 1,
and then enter ‘“There are F’ into the diagram by putting a cross in
the F-circle. The cross must go in the unshaded part of the F-circle,
since the shaded part is known to be empty. So the result, showing a
cross in the lens as it does, verifies L.

What has been said of the relationship between A and I applies
equally to E and O: from E, ‘No F are G’, we may infer O, ‘Some F
are not G’, only if we make the further assumption that there are F.
Diagram 5 shows the situation where, though E holds, O fails. But
we can show that O follows from E and ‘There are F’, by putting a
cross in the F-circle of Diagram 2 and observing that we have verified
0.

Finally let us observe a couple of simple inferences in which a con-
clusion is drawn from just a single premiss, or assumption, instead of
from two:

Some F are G,
. There are G.

There are no F,
~. No F are G.

These inferences are justified respectively by Diagrams 3 and 5; for
Diagram 3 shows a cross in the G-circle in support of the conclusion
“There are G’, and Diagram 5 shows a shaded lens in support of the
conclusion ‘No F are G'.
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EXERCISES

1. Does A, E, Ior O follow from ‘“There are no G’? Does A, E, I, or
O conflict with ‘“There are no G’? Appeal to diagrams.

2. Make a diagram for ‘All F are G and all G are F". Is this com-
patible with ‘No F are G’? Explain.

§14. syLLOGIsMS

What are spoken of traditionally as syllogisms® are arguments wherein
a categorical statement is derived as conclusion from two categorical
statements as premisses, the three statements being so related that
there are altogether just three terms, each of which appears in two of
the statements. Six examples follow; one of them was already noted
n §12.

All men are mortal,
All Greeks are men;
.~ All Greeks are mortal.

No men are perfect,
All Greeks are men;
-~ No Greeks are perfect.

All philosophers are wise,
Some Greeks are philosophers;
<. Some Greeks are wise.

No philosophers are wicked,
Some Greeks are philosophers;

. Some Greeks are not wicked.

All Greeks are men,
Some mortals are not men;

. Some mortals are not Greeks.

Some men are not Grecks,
All men are mortal;

.. Some mortals are not Greeks.

All G are H,
All F are G;
~ All Fare H.

No G are H,
All F are G;
& No Fare H,

All G are H,
Some F are G;
~» Some F are H.

No G are H,
Some F are G;
. Some F are not H.

All H are G,
Some F are not G;
.. Some F are not H.

Some G are not H,
All G are F;

~ Some F are not H.

] 1Categorical syllogisms, more specifically, to distinguish them from Ayporhetical syllo-
gisms, which are certain truth-functional arguments manageable by the methods of Part I.
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A “*valid” syllogism, ordinarily so-called, is a syllogism of such form
as to be incapable of leading from true premisses to a false conclusion.
An easy test of validity of syllogisms is afforded by Venn’s diagrams.
Three overlapping circles are used, as in Diagrams 6-7, to represent
the three terms ‘F’, ‘G’, and ‘H’ of the syllogism. We inscribe the

G G

DiacraM 6 Diagram 7

content of the two premisses into the diagram by the method ex-
plained in connection with Diagrams 1-4, and then we inspect the
diagram to see whether the content of the conclusion has automati-
cally appeared in the diagram as a result. Thus, let us test the second
syllogism of the above list. We record its first premiss, ‘No G are H’,
by shading the lens common to the G-circle and the H-circle; then
we record the second premiss, ‘All F are G’, by shading the lune
which lies in the F-circle outside the G-circle. The result is Diagram 6
It bears out the desired conclusion ‘No F are H’, since the lens com-
mon to the F-circle and the H-circle is fully shaded.

Let us next test the fourth of our six examples. We record the first
premiss, ‘No G are H’, as before, and then we record the second
premiss, ‘Some F are G’, by putting a cross in what remains of the
lens common to the F-circle and the G-circle; the result is Diagram
7. It bears out the conclusion ‘Some F are not H’, there being a cross
in the F-circle outside the H-circle.

It is left to the reader to construct diagrams verifying the remaining
four of the above six syllogisms. (In the last of them, the second
premiss should be handled first; note why.)

The diagrammatic method can be used to determine not merely
whether a given conclusion follows from given premisses, but whether

?«v:- s
S
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any conclusion at all (of a syllogistic kind) is capable of following
from given premisses. For, the conclusion—in order to be the con-
clusion of a so-called syllogism at all—must be ‘All F are H’, ‘No F
are H’, ‘Some F are H’, or ‘Some F are not H’; hence, unless the two
bottom circles of the finished diagram exhibit one of the four patterns

DiacraMm 8

DiacraMm 9

shown in Diagrams 1-4, there is no conclusion. In Diagram 8, e.g., the
bottom circles exhibit none of the four patterns of Diagrams 1-4; and
this shows that the premisses ‘All Hare G’ and ‘All Fare G’ cannot be
the premisses of any valid syllogism at all.

As a further example consider the premisses ‘All G are H’ and ‘All
G are F. These are recorded in Diagram 9; and we see that the
diagram justifies no categorical conclusion in ‘F’ and ‘H’. But this
pair of premisses is interesting in that it «/most justifies a categorical
conclusion in ‘F’ and ‘H’, viz., ‘Some F are H’. If we add just the
further premiss “There are G, to allow us to put a cross in the one
part of the G-circle that remains unshaded, we then find the conclu-
sion ‘Some F are H’ justified by a cross common to the F-circle and
the H-circle. Thus the reinforced syllogism:

All Spartans are brave,
All Spartans are Greeks,
There are Spartans;

All G are H,
All G are F,
There are G;

. Some Greeks are brave .~ Some F are H

ts valid.
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In the traditional terminology the term which plays the rbie of ‘F in
‘All Fare G, ‘No Fare G, ‘Some F are G’, or ‘Some F are not G’ is called
the subject of the statement. The other term, playing the role of ‘G’, is
called the predicate.! The predicate of the conclusion is called the major
term of the syllogism, and the subject of the conclusion is called the minor
term of the syllogism. The remaining term, occurring in both premisses but
not in the conclusion, is called the middle term of the syllogism. Thus all the
foregoing examples have been lettered in such a way as to make ‘F’ the
'minor term, ‘G’ the middle term, and ‘H’ the major term.

The premiss which contains the middle and major terms is called the
.major premiss of the syllogism. The other premiss, containing the middle
.and minor terms, is called the minor premiss. Thus all the foregoing exam-
ples have been stated with the major premiss first and the minor premiss
second.

Medieval logicians had a scheme for coding the various forms of syllo-
.gisms. They stipulated the respective forms of the premisses and conclusion
(as among A, E, I, and O) by a triple of letters; thus ‘EAO’ meant that
the major premiss was of form E, the minor premiss A, and the conclusion
‘0. This much was said to indicate the mood of a syllogism. But, even given
the mood of a syllogism, there remains the question whether the major
premiss has the major term as subject and the middle term as predicate,
or vice versa; and correspondingly for the minor premiss. The four possi-
bilities of arrangement which thus arise are called figures, and referred to
by number as follows:

Ist  2nd  3rd  4th
Major premisss GH HG GH HG
Minor premiss:  FG FG GF GF
Conclusion: FH FH FH FH

Specification of mood and figure determines the form of a syllogism com-
pletely. Thus the six examples at the beginning of the present section are
respectively AAA in the first figure, EAE in the first figure, AT in the first
figure, EIO in the first figure, AOO in the second figure, and OAO in the
third figure.

The fourth of the above six, viz. EIO in the first figure, can be given
variant forms by simple conversion (cf. preceding section) of one or both
premisses. We thus get:

No H are G, No G are H, No H are G,
Some F are G; Some G are F; Some G are F;
. Some F are not H. .. Some Fare not H. .. Some F are not H.

“These are EIO in the second, third, and fourth figures. Similarly EAE and
Allin the first figure (the second and third of the examples at the begin

YThe word ‘predicate’ will receive a different and more important meaning in §23.
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ning of the section) are carried by simple conversion into EAE in the sec-
ond figure and AIL in the third.

The four syllogisms last mentioned, viz. EAE in the first and second
figures and AII in the first and third, can be carried over into four further
syllogisms by simple conversion of each of their conclusions. If we do this,
though, we must afterward reletter ‘F’ as ‘H’ and ‘H’ as ‘F’ throughout
the results in order that ‘F’ may continue to represent the minor term and
‘H’ the major term; also we must switch the order of the premisses, so that
the major premiss may continue to appear first. The results, which the
reader will do well to reproduce, are AEE in the fourth and second figures
and IAI in the fourth and third.

Altogether, then, we have found fifteen valid forms:

First Figure Second Figure
AAA, EAE, AIL EIO EAE, AEE, EIO, AOO
Third Figure Fourth Figure

IAL AII OAO, EIO AEE, 1AL EIO

Note that no two of these fifteen have the same premisses, when differences
of figure are taken into account. We have here fifteen different pairs of
premisses, each with its appropriate conclusion. And it is readily verified by
inspection of diagrams that none of these fifteen pairs of premisses justifies
any further syllogistic conclusion in addition to the one here indicated for it.

Viewed in terms merely of combinations and without regard to the exis-
tence of a valid conclusion, there are sixty-four possibilities for the prem-
isses of a syllogism. They may be AA, or AE, or AL or AO, or EA, or EE,
etc., to sixteen possibilities, and each of these sixteen may occur in any of
four figures. In addition to the fifteen pairs of premisses which have been
found to yield valid syllogisms, therefore, there are forty-nine further pairs
to consider. Now we saw in connection with Diagrams 8-9 how to check
whether a given pair of premisses justifies any syllogistic conclusion at all.
If the reader so tests these forty-nine pairs (an hour’s pastime), he will find
that none of them justifies a syllogistic conclusion. The fifteen forms of
syllogism listed above are the only valid ones.

In addition, however, nine forms come in for honorable mention. These
nine are forms which, like the above example of the Spartans, need a small
reinforcing premiss. ‘There are F fills the bill for five of them, “There are G’
for three, and ‘There are H’ for one. Let me simply record the nine in
tabular fashion:

1st Figure  2nd Figure  3rd Figure  4th Figure  Added Premiss
AAIL EAO AEO, EAO AEO There are F
AAI EAO EAO There are G
AAI1 There are H
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Inferences involving so-called singular statements such as ‘Socrates is a
man’, e.g.:

All men are mortal,  Socrates is a man; .. Socrates is mortal,

were traditionally fitted into the syllogistic mold by treating the singular
statements as of the form A. This procedure is artificial but not incorrect;
we can construe ‘Socrates is a2 man’ as ‘All G are H’ where ‘G’ represents
‘things identical with Socrates’. The above inference thus was classified as
AAA in the first figure. But we shall end up, in Part IV, with a different
treatment of singular inference.

In traditional logic it was customary to propound various rules whereby
to test the validity of a syllogism. Examples: every valid syllogistic form
has a universal premiss (A or E); every valid syllogistic form has an
affirmative premiss (A or I); every valid one with a particular premiss
(I or O) has a particular conclusion; every valid one with a negative
premiss (E or O) has a negative conclusion. There are further rules
whose formulation depends on a concept of “distribution” which has
been omitted from the present exposition. As a practical method of
appraising syllogisms, rules are less convenient than the method of
diagrams. Indeed, the very notions of syllogism and mood and figure
need never have been touched on in these pages, except out of considera-
tion for their prominence in logic during two thousand years; for we can
apply the diagram test to a given argument out of hand, without pausing
to consider where the argument may fit in the taxonomy of syllogisms.
The diagram test is equally available for many arguments which do not
fit any of the arbitrarily delimited set of forms known as syllogisms.

EXERCISES

1. Construct diagrams verifying the remaining four of the six
syllogisms at the beginning of the section.

2. Determine by diagrams what syllogistic conclusion, if any, fol-
lows from each of the following pairs of premisses.

All who blaspheme are wicked; No saint blasphemes.

No snakes fly; Some snakes lay eggs.

Nothing that lays eggs has feathers; Some fishes have feathers.

Whatever interests me bores George; Whatever interests Mabel
bores George.

Whatever interests me bores George; Whatever interests George

bores Mabel.

3. For each of the pairs in Exercise 2 which failed to yield a syllo-
gistic conclusion, determine by diagram whether a supplementary

S e

o
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premiss of the form ‘There are F’, or “There are G, or “There are H’,
would suffice to bring forth a syllogistic conclusion.

§15. LIMITS OF THESE METHODS

The inferences to which we have thus far been applying Venn'’s dia-
grams have all been made up of categoricals A, E, I, or O plus an
occasional auxiliary of the type “There are F’. Actually the diagrams
can be used somewhat more widely; e.g., in arguing from the

Premisses: Everyone east of the tracks is either slovenly or poor,
Not everyone east of the tracks is poor
to the

Conclusion: Some slovenly persons are not poor.

We set up a three circle diagram as usual, wherein ‘F’ means ‘slovenly
persons’, ‘G’ means ‘persons east of the tracks’, and ‘H’ means ‘poor
persons’. Then the first premiss is entered in the diagram by shading
as empty just that compartment of the circle G which lies outside

Diacram 11

Dracram 10

both F and H; see Diagram 10. The compartment thus shaded is
neither a lune nor a lens, but a third shape. It represents persons east
of the tracks who are neither slovenly nor poor; and just such persons
are denied existence by the first premiss. Now the second premiss,
which saysin effect ‘Some G are not H’, is recorded as usual by putting
a cross in what remains of G outside H. The result is seen to substan-
tiate the conclusion ‘Some F are not H’, since there is a cross in F
outside H.

An innovation due to C. I. Lewis (1918) is the use of a long bar
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instead of the cross in Venn’s diagrams. The advantage of the bar is
that it can be made to lie across a boundary and thus indicate non-
emptiness of a compound region. This innovation is useful in reason-
ing, e.g., from the

Premisses: All of the witnesses who hold stock in the firm are
employees,
Some of the witnesses are employees or hold stock in
the firm
to the

Conclusion: Some of the witnesses are employees.

We set up a three-circle diagram in which ‘F’ means ‘witnesses’, ‘G’
means ‘stockholders in the firm’, and ‘H’ means ‘employees’. The
lens common to F and G, then, stands for the witnesses who hold
stock in the firm; so, on the basis of the first premiss, we shade the
part of that lens which lies outside H. (See Diagram 11.) Next, on the
basis of the other premiss, we run a bar through as much of the
unshaded F as lies within H or G. The meaning of the bar is that one
or another part of the total region marked by the bar has something
in it. But the bar lies wholly within F and H; so the conclusion is
sustained.

The utility and versatility of Venn’s diagrams are particularly
evident from these last two examples. A shortcoming of the diagrams,
however, is that they lend themselves less readily to arguments in-
volving four or more terms. A diagram of overlapping ellipses can be
constructed for four-term arguments, but it calls for careful drawing;
and matters turn increasingly awkward when we try to construct and
cope with diagrams showing higher numbers of figures in all com-
binations of overlapping. Where many terms are involved we may,
however, try to break the argument down into parts involving man-
ageably few terms. The following example is from Lewis Carroll:

Premisses: “(1) The only animals in this house are cats;

“(2) Every animal is suitable for a pet, that loves to
gaze at the moon;

*(3) When I detest an animal, I avoid it;

“(4) No animals are carnivorous, unless they prowl
at night;

e
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“(5) No cat fails to kill mice:

“(6) No animals ever take to me, except what are in
this house;

“(7) Kangaroos are not suitable for pets;

“(8) None but carnivora kill mice;

“(9) I detest animals that do not take to me;

“(10) Animals that prowl at night always love to
gaze at the moon.”

Conclusion: “I always avoid a kangaroo.”

This argument can be broken down as follows. From (1) and (5) we-
get the lemma or intermediate conclusion:

(11) All animals in this house kill mice;

this is the sort of step to which a simple three-term diagram is ade-
quate. From (8) and (11), similarly, we get:

(12) All animals in this house are carnivora.
From (4) and (12) we get:

(13) All animals in this house prowl at night.
From (6) and (13) we get:

(14) All animals that take to me prowl at night.

Step by step in this fashion we can proceed to our desired conclusion,.
never using more than a three-term diagram for any one step. (If the
reader cares to carry this through in detail, he should think of the
universe as limited for purposes of the argument to animals—thus
never bothering with ‘animals’ itself as a term.)

So we see that the purely mechanical method of diagrams proves
inadequate when an argument turns on a large number of terms; a
supplementary technique has to be invoked, such as that of resolving
the argument into parts. Now another place where the unaided
method of diagrams bogs down is where there is an admixture of truth
Junctions, as in the following example:

Premisses: If all applicants who received the second announce-
ment are of the class of ’00, then some applicants did not re-
ceive the second announcement.
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Either all applicants received the second announcement or
all applicants are of the class of "00.
Conclusion: If all applicants of the class of 00 received the
second announcement then some applicants not of the class of
’00 received the second announcement.

If we assign ‘F’, ‘G’, and ‘H’ in obvious fashion, the inference takes
on the form:

All F who are G are H D some F are not G,
All F are G v all F are H,
.~ All F who are H are G D some F who are not H are G.

Diagrams are suited to handling the components ‘All F who are G
are H’, ‘Some F are not G, etc., and the methods of Part I are suited
to ‘D’ and ‘v’; but just how may we splice the two techniques in
order to handle a combined inference of the above kind?

So it is time to address ourselves to a more comprehensive theory.
The three formulas last set forth, containing ‘F’, ‘G’, and ‘H’, are
schemata of a sort, but differ from the schemata of Part I in containing
‘F’, ‘G’, etc. and such words as ‘all’, ‘some’, ‘who are’, etc., to the
exclusion of ‘p’, ‘¢’, etc. In the ensuing sections such schemata will be
reduced to a logical notation subject to a “decision procedure”—
i.e., a mechanical routine for deciding validity, implication, consis-
tency, etc. Such a decision procedure exists for truth-functional
schemata in truth-value analysis; for the new class of schemata, how-
ever, the procedure will have to be more elaborate. Once it is at
hand, all inferences of the sort we have been considering in the present
Part—including the stubborn last example—can be adjudged me-
chanically by an implication test on premisses and conclusion.

EXERCISES

1. Check the soundness of this inference by diagram:

All of the witnesses who hold stock in the firm are employees,
All of the witnesses are employees or hold stock in the firm;
-~ All of the witnesses are employees.

2. Check the soundness of this inference by diagram:
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Everyone who knows both George and Mabel admires Mabel,
Some who know Mabel do not admire her;
- Some who know Mabel do not know George.

7 3. Check the soundness of this inference by diagram:

Everything is either a substance or an attribute,
Modes are not substances;
. Modes are attributes.

Hint: Be prepared to shade the limitless region outside all circles.
4. Finish the kangaroo argument, and supply a three-term diagram
to justify each step.

§16. QUANTIFICAT!ON

The so-called existential quantifier ‘(dx)’ corresponds to the words
‘there is something x such that’. Application of ‘(dx)’ to the expres-
sion:

1) x is a book . x is boring

in the fashion:

2 (dx)(x is a book . x is boring)

is called existential quantification of (1). Also the result, (2), is spoken
of as the existential quantification of (1). To say that (2) is true is to
say that there is at least one object in the universe such that, when
‘¢’ in (1) is thought of as naming it, (1) becomes true. Thus (2) goes
into words fairly literally as:

(3) There is something such that it is a book and it is boring;
more briefly as:
4) Something is a book and is boring;
more briefly still as:
Some books are boring.

Version (4) suggests that instead of adopting the queer and elabo-
rate notation (2) we might have invented a simpler symbolism:

(5) s is 2 book . ¢ is boring,
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where ‘s is short for ‘something’. However, this suggestion is wrong;
for, given (5), we would have no way of deciding whether to interpret
it in the manner of (4) or in the quite different manner:

©) Something is a book and something is boring.

The particular statements (4) and (6) are by chance both true, but we
get contrasting truth values if we shift our example from ‘book’ and
‘boring’ to ‘square’ and ‘round’:

7 Something is a square and is round, (false)
(8) Something is a square and something is round. (true)

One of the misleading things about ordinary language is that the
word ‘something’ masquerades as a name but deviates in its behavior
at crucial points. When a genuine name is used, the distinction noted
between (7) and (8) and between (4) and (6) evaporates; the state-
ments:

Maud is a book and is boring,
Maud is a book and Maud is boring,

e.g., are quite interchangeable. When ‘something’ is used, on the
other hand, scope becomes important: we must distinguish visibly in
one way or another between the case where the scope of ‘something’
is ‘is a book and is boring’, as in (4), and the case where ‘something’
recurs with two scopes, ‘is a book’ and ‘is boring’, as in (6). Ordinary
language effects this distinction, in the case of (4) and (6), by using a
compound predicate in (4) and not in (6). In more complex cases,
ordinary language has to resort to various circumlocutions to maintain
the distinction. In a notation adapted to purposes of logical analysis,
however, uniformity is wanted. Thus it is that the notation of quan-
tification exemplified in (2) is adopted, wherein the scope of ‘some-
thing’ is indicated explicitly by parentheses. The difference between
54) .:md (6) is maintained by writing (2) for (4) and, for (6), the fol-
owing:

9) (Hx)(x is a book) . (dx)(x is boring).

What (2) says is that at least one thing x fulfills the simultaneous
conditions ‘x is a book’ and ‘x is boring’; what (9) says, on the other
hand, is that at least one thing fulfills ‘x is a book’ and at least one
thing, same or different, fulfills ‘x is boring’.

-,
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The existential quantifier has a companion-piece in the universal
quantifier ‘(x)’, which corresponds to the words ‘each thing x (in the
universe) is such that’. Application of ‘(x)’ to the expression:

(10) x is identical with »

in the fashion:

(11) (x)(x is identical with x)

is called universal quantification of (10); and the result (11) is also
spoken of as the universal quantification of (10). To say that (11) is
true is to say that, no matter what object in the universe be imagined
named by ‘¢’ in (10), (10) becomes true. Thus (11) goes into words
fairly literally as:

(12) Each thing is such that it is identical with itself,

or more briefly:

Everything is identical with itself.
Similarly the quantification:
(13) (x)(x is a man D x is mortal)
goes into words fairly literally as:

Each thing is such that if it is a man then it is mortal,

or more briefly:
All men are mortal.

The notation of universal quantification is prompted by a struc-
tural consideration like that observed for existential quantification:
the necessity of indicating scope. We saw in (7)—(8) the necessity of
indicating just how large a portion of a statement is to be comprised
within the scope of a given occurrence of the word ‘something’. The
corresponding necessity in the case of ‘everything’ can be seen by
contrasting the truth:

(14) Everything is red or not red

with the falsehood:

{15) Everything is red or everything is not-red.
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In the notation of quantification, (14) becomes:

(16) (%)[x is red v — (x is red)]
while (15) becomes:
(17) (x)(x is red) v (x) —(x is red).

Statements of ordinary language which at first glance seem to be
conjunctions or conditionals often demand interpretation as quantifi-
cations of conjunctions or conditionals. Examples are:

(18) Sadie stole something at the Emporium and exchanged it for
a blouse,

(19) If Sadie wants anything she manages to get it.

These must be interpretated as quantifications:

(20) (Hx)(Sadie stole x at the Emporium . Sadie exchanged x for a
blouse),

(21) (x)(Sadie wants x D Sadie manages to get x),

rather than as a conjunction and conditional:

(22) (dx)(Sadie stole x at the Emporium) . Sadie exchanged it for
a blouse,

(23) (dx)(Sadie wants x) D Sadie manages to get it.

For, the ‘it’ of (18) clearly refers back across ‘and’ to ‘something’,
and correspondingly the ‘it’ of (19) refers back to ‘anything’. The
quantifiers must be made to cover the whole compound as in (20)
and (21), rather than just the first clause as in (22) and (23), so as to
reach out to a lagging recurrence of ‘¢’ in the position of ‘it’.

Universal and existential quantification are intimately connected
in meaning, through negation. If we write ‘Fx’ to mean ‘x is an F’,
then ‘(dx)Fx’ may be read:

There are F, Some things are F, F exist;

hence its negation ‘— (dx)Fx’ means

There are no F, Nothing is an F, F do not exist.
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But to say that there are ro F is the same as saying that everything is
non-F: ‘(x) —Fx’. We thus have two ways of saying that there are no
F: ‘—(dx)Fx’ and ‘(x) —Fx’.

Again, since ‘(x)Fx’ may be read:

All is F, Everything isan F,
Each thing isan F, There is nothing but F,

its negation ‘— (x)Fx’ means:

Not everything is an F, There are non-F,

which may equally well be rendered ‘(dx) —Fx’. Thus the combina-
tion of signs ‘— (dx)’ has the same effect as ‘(x) —’, and the combi-
nation ‘— (x)’ has the same effect as ‘(dx) —. It follows that we could
get along without universal quantifiers altogether, adhering to exis-
tential ones; for, instead of writing ‘(x)Fx’ we could always write the
negation ‘—(dx) —Fx’. Equally we could get along without existen-
tial quantifiers, adhering to universal ones; for, instead of writing
‘(dx)Fx’ we could always write ‘—(x) —Fx’. Retention of the two
kinds of quantifiers is dictated only by convenience.

Next let us survey the categorical forms A, E, I, and O (§12) in
terms of quantification. A, to begin with, is expressed as ‘(x)(Fx 2
Gx)’, as already seen in the example (13) above. (This formulation,
by the way, follows precisely the lines of what was called a “general-
ized conditional” in §3; cf. especially (2) of §3.) This being the case,
beginners commonly make the mistake of concluding that I must
become ‘(Fx)(Fx D Gx)'. Since ‘All F are G’ and ‘Some F are G’ are
alike verbally except for ‘All’ and ‘Some’, it is expected that their
formulations in terms of quantification will be alike except for ‘(x)’
and ‘(dx)’. Actually the proper formulation of I is rather ‘(x)(Fx .
Gx)’—as seen in (2) above. The words ‘Some F are G’ and ‘All F are
G’, insofar as they suggest parallelism of structure, are misleading;
the proper contrast of structure is better brought out by the expanded
phrasings ‘Some things are both F and G’, ‘Everything is, if an F,
aG.

To discourage the erroneous rendering ‘(dx)(Fx D Gx)’ of I once
and for all, let us stop to see what ‘(dx)(Fx D Gx)’ really says.
‘Fx D Gx’, to begin with, holds for any object x for which ‘Fx . —Gx’
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fails; thus it holds for every object x which is non-F, and it holds also
for every object x which is G. Hence ‘(dx)(Fx D Gx)’ says only that
there is at least one object which is non-F or G; and this is bound to
be true, regardless of how ‘F’ and ‘G’ are interpreted, except in the
one extreme case where ‘F’ is true of everything in the universe and
‘G’ is true of nothing. The form ‘(dx)(Fx D Gx)’ is so trivial, so
rarely false, as to be seldom worth affirming,

Correct versions of E and O are straightway discoverable from
those of A and I. E, ‘No F are G’, amounts to ‘All F are non-G’ and
thus becomes ‘(x)(Fx D —Gx)’; whereas O, paralleling I, becomes
‘(dx)(Fx . —Gx)’. Thus, to sum up:

A:All Fare G
(x)(Fx D Gx)

I: Some Fare G
(dx)(Fx . Gx)

E:No Fare G
(x)(Fx D —Gx)
O: Some F are not G
(Hx)(Fx . —Gx)

If we think of the universe as limited to a finite set of objects
a, b, ..., h, we can expand existential quantifications into alterna-
tions and universal quantifications into conjunctions; ‘(Ax)Fx’ and

‘(x)Fx’ become respectively:
FavFbv...vFh, Fa.Fb.....Fh

The distinction between (2) and (9) then comes out quite clearly;
‘(dx)(Fx . Gx)’ becomes:

Fa.Ga v.Fb.Gb .v. ...
whereas ‘(dx)Fx . (3x)Gx’ becomes:
FavFbv...vFk.GavGbv ... vGh

.v. Fh . Gh,

The distinction between (16) and (17) comes out equally clearly.
Furthermore the interchangeability of ‘—(x)’ with ‘(Ix) —’ and of
‘—(Hx)’with ‘(x) —’ turns out to be a mereapplication of DeMorgan’s
laws (§10); for, ‘~(x)Fx’ and ‘(dx) —Fx’ become respectively:

—(Fa .Fb. ... . Fh), —Fav —Fbv ... v —Fh,
and ‘—(Hdx)Fx’ and ‘(x) —Fx’ become respectively:

—(FavFbv...vFh), —Fa.—Fb....,L—Fh

T -
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It thus appears that quantification could be dispensed with alto-
gether in favor of truth-functions if we were willing to agree for all
purposes on a fixed and finite and listed universe 4, &, ... , 4. How-
ever, we are unwilling; it is convenient to allow with some explicitness
for variations in the choice of universe. This is convenient not only
because philosophers disagree regarding the limits of reality, but also
because—as already noted in the preceding section in connection
with the kangaroo problem—some logical arguments can be simplified
by deliberately limiting the “universe of discourse’ to animals, say,
or to persons, or to the employees of a given firm, for the space of the
problem in hand." For most problems, moreover, the relevant uni-
verse comprises objects which we are in no position to list in the man-
ner of a, &, ... , h. For many problems the relevant universe even
comprises infinitely many objects; e.g., the integers. Thus it is that
quantification is here to stay.

EXERCISES

1. Rewrite these with help of quantifiers:

John cannot outrun any man on the team,
John cannot outrun every man on the team.

2. Rewrite the premisses and conclusion about the slovenly and the
poor (§15) with help of quantifiers. Similarly for the other examples
in §15 and in the exercises to §15.

3. Supposing the universe to comprise just 4, &, ... , h, express
these truth-functionally:

(dx)(Fx v Gx),
(Jx)Fx v (Hx)Gx,

(x)(Fx v Gx),
(x)Fx v (x)Gx,

(x)(Fx . Gx),
(x)Fx . (x)Gx.

Which come out equivalent to one another?

§17. UNIFORM QUANTIFICATIONAL SCHEMATA

The letter ‘x’ as used in quantification is merely a mark for cross-
reference to a quantifier; no deeper significance is to be sought for it.
In general quantification theory, as we shall see in Part III, further

1The notion of universe of discourse goes back to DeMorgan (1847).
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letters *y’, 2, etc. will be needed to the same purpose. Meanwhile,
however, we can do a good deal of logic without such further inroads
on the alphabet.

Expressions such as:

(1) x is a book, x = x, x isa man D x is mortal,

which are like statements except for containing ‘x’ without a quanti-
fier, are called open sentences.* They are fragmentary clauses, neither
true nor false as they stand, and of interest only as potential parts of
closed sentences such as:

(dx)(xisa book), (¥)(x=1x), (x)(risaman D xismortal).

Closed sentences are what have hitherto been called statements; it is
just these that have truth values. Open sentences are not statements.
The analogue of an unquantified ‘x’ in ordinary language is a pronoun
for which no grammatical antecedent is expressed or understood; and
the analogue of an open sentence is a clause containing such a dangling
pronoun. E.g., the open sentences (1) correspond to ‘it is a book’,
‘it is identical with itself’, and ‘if it is a man then it is mortal’. Open
sentences may, as notational forms, be described as differing from
various closed sentences only in lacking a quantifier; or they may be
described equally well as differing from various other closed sentences
only in containing ‘¢’ in place of a name of a specific object.

Open sentences are neither true nor false, but they mayj, like terms
(cf. §12), be said to be zrue of and false of various objects. The open
sentence ‘x is a book’ may, like the term ‘book’ itself, be said to be
true of each book and false of everything else; and ‘x is a book ., x is
boring’ may be said to be true of each boring book and false of every-
thing else. ‘x = x” and ‘x is a man D x is mortal’ are true of every-
thing. In general, to say that an open sentence is true of a given object
is to say that the open sentence becomes a true statement when ‘x’ is

11 follow Carnap in this terminology. In previous writings I have called them mazrices,
using this word in a sense unrelated to the mathematical sense of the word. But “matrices”
in the mathematical sense have proved to have more relevance to certain researches in the
field of logic itself than I had counted on, so that my use of the word to refer to open sen-
tences proves unfortunate. Logicians having for the most part wisely eschewed my use of
the word, my switching to Carnap’s phrase involves a minimum of betrayal. The older
term for the purpose is ‘propositional function’, or ‘statement function’; but this is to be

avoided because, in the more basic mathematical sense of the word, a function is a certain
type of relation rather than a notation.
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reinterpreted as a name of that object. The notion of the exzension
of a term (§12) likewise carries over to open sentences: the extension
of an open sentence is the class of all the objects of which the open
sentence is true.

The schematic letters ‘p’, ‘q’, etc. of Part I, and ‘F’, ‘G’, etc. of the
present part, differ basically in function from ‘x’. Whereas ‘¢’ can
appear in sentences—even in closed sentences, with help of a quanti-
fier—on the other hand ‘p’, ‘4", etc. and ‘F’, ‘G’, etc., cannot appear
in sentences at all;* they are merely dummy sentences and dummy
terms, used in schemata which depict outward forms of sentences.

The schemata with which we were occupied in Part I were truth-
functional schemata: truth functions of just the schematic letters
‘¢’s ‘g, etc. But the notation now at hand engenders schemata of
further kinds. The schematic letters ‘F’, ‘G’, etc., standing in place
of terms, combine with ‘¢’ to form ‘Fx’, ‘Gx’, etc. (‘xisan F’, ‘x is a
G, etc.). These expressions and all truth functions of them, e.g.:

— Fx, Fx . Gx v Fx, —Fx =, Gx D Hx,

will be called uniform open quantificational schemata or briefly open
schemata. Finally the quantifications of open schemata, and all truth
functions of such quantifications, are uniform closed quantificational
schemata. Examples are:

(x)Fx, (dx)Fx, (x)(Fx D Gx), (¥)Fx D (dx)(Fx.—Gx).

These will usually be spoken of briefly as closed schemata. The truth-
functional schemata are indeed likewise closed (through lacking ‘x’
altogether), but the phrase “truth-functional schemata” will serve to
segregate them such times as they continue to come into considera-
tion. The reason for the qualifier ‘uniform’, as applied above to open
and closed quantificational schemata, is that the category of quanti-
ficational schemata both open and closed is due to be vastly extended
in Part III. But the qualifier will often be omitted in the present
pages.

Schemata are the medium of our technical work, but it is in sen-

1Exception, for the record: they may appear within quotation marks in sentences.

But any meaningless mark may appear within quotation marks in a sentence. The
quotation as a whole is a meaningful name of the meaningless mark.
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tences that the results of such work find their application. Hence, if
the technical developments are not to lose meaning for us, we must
keep the relationship of correspondence between sentences and
schemata clearly in mind. Roughly the relation is that ‘F’, ‘G’, etc,,
represent terms; but more needs to be said.

A term may, as remarked in §12, be thought of indifferently as
singular oc plural and as substantive, adjective, or verb. Thus,
though a tendency to think of terms mainly as substantives has no
doubt persisted, grammatical distinctions irrelevant to logic have been
overcome to some degree. But there is another linguistic limitation,
of a less purely grammatical kind, which must likewise be overcome
in thinking of terms; viz., the limitation to conveniently unified
phrases. Every open sentence, no matter how complex, must admit of
being treated as of the form ‘Fx’. When the sentence is ‘x is red’, the
term represented by ‘F’ is not far to seek: ‘is red’, or ‘red’, or ‘red
things’. When the sentence is:

{2) x used to work for the man who murdered the second husband
of x’s youngest sister,

however, we come out after some effort with:

(3) former employee of own youngest sister’s second husband’s
murderer.

Such linguistic gymnastics are inappropriate as an adjunct of logical
analysis, and are also unnecessary. Since under our present notation
‘F’, ‘G’, etc. never occur except in the fashion ‘Fx’, ‘Gx’, etc., we may
dismiss all thought of terms and simply think of ‘Fx’, ‘Gx’, etc., as
representing open sentences. Instead of speaking of interpretation of
‘F’ as (3), we may speak directly of interpretation of ‘Fx’ as (2). So
the sentences which a uniform quantificational schema depicts are
those which are obtainable by putting open sentences for ‘Fx’, ‘Gx’,
etc. E.g., the premisses and conclusion of the inference about the
class of >00 in §15 are depicted by the respective closed schemata:

(4) (x)(Fx . Gx .D Hx) D (dx)(Fx . —Gx),
(5) (x)(Fx O Gx) v (x)(Fx D Hx),
{6) (x)(Fx . Hx .D Gx) D (dx)(Fx . —Hx . Gx).
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Here ‘Fx’, ‘Gx’, and ‘Hx’ are interpreted as the respective open sen-
tences ‘x is an applicant’, ‘x received the second announcement’, and
‘x is of the class of *00’.

If statements are compounded by truth functions to form a longer
statement, the truth value of the compound will depend, we know,
on no features of the component statements beyond their truth values.
Now a parallel law holds also at the quantificational level of logic, as
follows: if open sentences are compounded by truth functions and
quantification into a statement, the truth value of the compound will
depend on no features of the component open sentences beyond their
extensions. For, it is evident from the meaning of quantification that
the truth value of a quantification depends on no more than the
extension of the open sentence under the quantifier: a universal
quantification is true or false according as that extension exhausts
the universe or not, and an existential quantification is false or true
according as that extension is empty or not.

Thus, just as in a truth-functional schema two interpretations of
‘p’ are indifferent to the truth value of the whole if they have the
same truth value, so in a quantificational schema two interpretations
of ‘Fx’ are indifferent to the truth value of the whole if they have the
same extension. Whether we interpret ‘Fx’ as ‘x has a backbone’ or as
‘¢ has a heart’ will matter none to the resulting truth value of any
quantificational schema in which ‘Fx’ occurs, unless there be in fact
some vertebrates without hearts or some hearted creatures without
backbones.

Because interpretations of ‘p’, ‘¢q’, etc., are indifferent when
alike in truth value, in Part I we commonly interpreted such letters
by specifying mere truth values rather than actual statements.
At the present stage of logic, correspondingly, we might with equal
justice interpret ‘Fx’, ‘Gx’,etc., by specifying appropriate extensions
rather than actual open sentences. Interpretation may be viewed
either way. But whereas in the case of truth values it was quicker to
cite T’ or ‘|’ than to supply an actual statement, on the other hand in
the case of extensions no difference is perceptible; for there is no
easier way to specify a class as extension of ‘Fx’ than to supply an
actual open sentence whose extension is that class. Thus ‘Fx’, ‘Gx’,
and ‘Hx’ in (4)-(6) may be said to have been interpreted by specifying
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as their respective extensions the class of applicants, the class of
receivers of the second announcement, and the class of ’00; but noth-
ing is gained over simply supplying the open sentences ‘x is an appli-
cant’, etc.

The sundry matters which have been touched upon in this section
and the preceding one are contributory or incidental to the main
business of developing a test of soundness for all inferences at the
present level of logic: all inferences of the sorts exemplified in §§12-
15, including the one about the class of ’00. The task in each case is to
test for implication; to justify the inference concerning the class of
’00, e.g., what we have to do is show that the conjunction of (4) and
(5) implies (6). So the general problem before us is twofold: to define
implication, validity, etc., appropriately for uniform closed quanti-
ficational schemata, and then to devise a decision procedure—a rou-
tine whereby implication, validity, etc., can be mechanically decided.

EXERCISES

1. Complete this observation: An open sentence is true of every-
thing if and only if its universal quantification is ... , and an open
sentence is . .. if and only if its existential quantification is false.

2. Compose schemata depicting the forms of the various statements
obtained in Exercise 2 of the preceding section.

§18. vaLipITY

A truth-functional schema was defined to be valid when true under
all interpretations of ‘p’, ‘q’, etc. (§6). Similarly a uniform closed
quantificational schema may be defined to be valid when true under
every interpretation of ‘Fx’, ‘Gx’, etc. But we must look more closely
into this phrase ‘every interpretation’.

It is immaterial, we have seen, whether we think of the actual
specifying of an interpretation of ‘Fx’ as consisting in specifying an
open sentence as substitute for ‘Fx’ or a class as extension of ‘Fr’.
But a subtle difference can arise when, rather than specifying some par-
ticular interpretation of ‘Fx’, we speak in a general theoretical way
of every interpretation of ‘Fx’. Here it might matter whether we mean
“every available open sentence as substitute for ‘Fx’ ”* or “every class
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as extension of ‘Fx’. ” For, there is no assurance that each class of
objects in our universe corresponds as extension to some open sen-
tence constructible from the words of our language. This question
depends on our choice of universe, and also on how rich a vocabulary
we assume there to be at our disposal over and above our logical
notations of truth functions and quantification.® The situation here
contrasts with that of truth values, for whereas our classes may outrun
our open sentences, our truth values do not outrun our statements;
even the poorest language has a true statement and a false one.

So in the foregoing definition of validity for closed quantificational
schemata let us understand ‘for every interpretation’ in the strong
sense: for every class as extension.” In this way the concept of validity
becomes independent of the limits of any particular vocabulary.
When we are engaged actually in giving interpretations, on the other
hand, e.g. so as to illustrate a schema or so as to show its non-validity
by producing a counter-example, we still may quite well interpret
simply by citing open sentences; for any open sentence cited de-
termines a class as its extension.

It is convenient, as remarked earlier, to allow the choice of universe
of discourse to vary from problem to problem. Now the concept of
validity, though just now rendered independent of the limits of any
particular vocabulary, has been left dependent upon the choice of
universe of discourse. For, clearly for each choice of universe we shall

1By reasoning based on work of Cantor (1890) it can be shown that no vocabulary can
be rich enough to yield an open sentence for every class of objects of an infinite universe.
The point is not that we are limited to finitely many expressions; on the contrary, a nota-
tion is available e.g. for every one of the integers, infinitely numerous though the integers
be. But Cantor’s work shows that, given any vocabulary, there must be some unspecifiable
infinite classes of integers. See my Mathematical Logic, page 273, footnote.

2t is sound policy to confine the assumption of philosophically contested entities, in
particular of abstract entities such as classes, to those portions of theory which need them.
The theory of validity of quantificational schemata is, at the stage of exposition repre-
sented by the next few sections, such a theory. In §21, however, we shall arrive at a mechan-
ical test of validity of uniform quantificational schemata, comparable to that already at
hand for truth-functional schemata in §6. Our preliminary standard of validity which
appeals to classes could thereupon be viewed as superseded by an equivalent criterion
which makes no such appeal. Note that the practice in Part I of talking as if there were
two unitary objects called truth values, to correspond respectively to the true statements
and to the false ones, was an insignificant matter of convenience of phrasing and could
always be eliminated by dint of some awkward sentence structure. The assumption of a
realm of classes, unlisted and unlimited in variety, is philosophically of a very different
order.
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want to admit as extensions for ‘Fx’, ‘Gx’, etc., only subclasses of that
universe, i.e., only classes whose members belong to the universe.
Let us then refine our definition of validity so as to take cognizance
of possible variations of universe: A uniform closed quantificational
schema is valid if and only if, no matter what nonempty universe U
be chosen, the schema comes out true under all interpretations of
‘Fx’, ‘Gx’, etc. within U; i.e., true for all subclasses of U as extensions
of ‘Fx’, ‘Gx’, etc.

Some schemata which are valid in the above sense fail when the
universe is construed as empty; others continue to hold. One which
fails is:

1) (x)Fx O (Hx)Fx.

Though true under all interpretations of ‘Fx’ in nonempty universes,
(1) turns false when the universe is empty. For, ‘(x)Fx’ is bound to
come out true for the empty universe (there being no objects for ‘Fx’
to be false of), whereas ‘(dx)Fx’ is bound to come out false.

An obviously valid schema which, unlike (1), suffers no exception
on the score of the empty universe, is:

@) (Ax)(Fx . Gx) D (dx)Fr.

It is in order not to withhold the status of validity from such
schemata as (1) that the qualifier ‘nonempty’ was inserted into the
above definition of validity. Usually the universe relative to which an
argument is being carried out is already known or confidently be-
lieved not to be empty, so that the failure of a schema in the sole case
of the empty universe is usually nothing against the schema from a
practical point of view.

Usually, indeed, the universe wanted in arguments worthy of
quantification theory is known or believed to have not merely some
members, but many. In the definition of validity, then, instead of
saying ‘every nonempty choice of universe’ why not say ‘every
choice of universe of more than eleven members’? The reason for not
doing so is that 7o new schemata would be added to the category of
valid schemata by such a liberalization of the definition. If a schema
comes true under all interpretations of ‘Fx’, ‘Gx’, etc. in a large uni-
verse, it also comes true under all interpretations of ‘Fx’, ‘Gx’, etc.
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in every smaller nonempty universe." So, happily, the only exception
which there is any occasion to make in defining validity is that of the
empty universe.

We must not underestimate this exception, for occasionally an
argument may most conveniently be carried through under a choice
of universe whose nonemptiness is open to question. Still there is no
need to cover the empty universe in our general theory of validity,
because the question whether a schema holds for the empty universe
is easily handled as a separate question. To decide whether a schema
comes out true for the empty universe we have merely to put T" for
all universal quantifications and ‘" for all existential ones and resolve.

The above definition of validity of closed schemata does not admit
of simple extension to open schemata, for we cannot speak of an open
schema as coming out true under interpretations of ‘Fx’, ‘Gx’, etc.
When we interpret an open schema we get an open sentence, and open
sentences have no truth values. However, we can define an open
schema as valid when, under every nonempty choice of universe U
and all interpretations of ‘Fx’, ‘Gx’, etc. within U, the schema comes
out true of every object in U. Clearly this is the same as stipulating
that

(i) An open schema is valid if and only if its universal quantification is.

An example of a valid open schema is ‘Fx D Fx’; for, since it exhibits
the form of a valid truth-functional schema ‘p D p’, it will come out
true of any object x no matter whether ‘Fx’ be interpreted as true or
as false of that object. By the same reasoning, more generally,

(i) Substitution of quantificational schemata for ‘p’, ‘q’, etc. in valid
truth-functional schemata yields valid results.

Law (i) has been stated without restriction to open schemata,
because clearly it holds also for closed ones. E.g., since we can obtain:

1Why this is so may warrant brief indication here for curious readers. Suppose, in
interpreting ‘Fx’, ‘G, etc., in a large universe, we cause a large group of objects of the
universe to march always together: all or none of those objects are accorded to the exten-
sion of ‘Fx’, all or none to the extension of ‘Gx’, and so on. The truth value which will
accrue to any quantificational schema through such interpretation is the same as if the
grouped objects were one. Thus it is that whenever a schema is falsifiable by an interpre-
tation in a small non-empty universe, an interpretation to the same purpose can be
devised in any larger universe. Cf. Hilbert and Ackermann, p. 92.
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(3) (x)Fx . (Hx)Gx .D (x)Fx

by putting ‘(x)Fx’ for ‘p’ and ‘(dx)Gx’ for ‘¢’ in the valid truth-
functional schema ‘pg D p’, we may rest assured that (3) is valid.
For, since ‘pg D p’ comes out true under every interpretation of
‘> and ‘¢, it follows that (3) must come out true no matter what
truth values accrue to its components ‘(x)Fx’ and ‘(Hx)Gx’ through
interpretation of ‘Fx’ and ‘Gx’. Closed schemata such as (3) and open
ones such as ‘Fx D Fx’ may be said to be valid by truth-functions
alone, or truth-functionally valid; they are valid by virtue simply of
their external truth-functional structures and independently of the
meaning of quantification.

The earlier examples (1) and (2) are of quite another kind. The
best we can do toward depicting the general truth-functional struc-
ture of (1) or (2) is ‘p D ¢’, which of course is not valid; yet (1) and
(2) are nevertheless valid. We can falsify ‘p O ¢’ by putting a truth
for ‘p’ and a falschood for ‘4", but the corresponding falsification of
(1) or (2) is obstructed by properties of the clauses ‘(x)Fx’, ‘(Hx)Fx’,
and ‘(dx)(Fx . Gx)’ themselves which prevent our so interpreting
‘Fx’ and ‘Gx’ as to make ‘(x)Fx’ or ‘(dx)(Fx . Gx)’ true and ‘(dx)Fx’
simultaneously false. Thus it is that though (1)-(3) are alike valid,
they are unlike in that (3) is valid by truth functions alone while (1)
and (2) are valid by higher considerations having to do with quanti-
fiers and the interiors of quantifications.

With open schemata the situation is simpler: those which are not
truth-functionally valid are not valid at all. E.g., consider ‘Fx D Gx’.
If we so interpret ‘Fx’ and ‘Gx’ that ‘Fx’ becomes true of a certain
object a and ‘Gx’ does not, clearly ‘Fx DO Gx’ will be false of a; for,
‘T D |’ resolves to ‘|’. But such interpretation of ‘Fx’ and ‘Gx’ is
easy: interpret ‘Fx’ as true of everything in the universe and ‘G’ as
true of nothing. So it is not the case that every interpretation of
‘Fx’ and ‘Gx’ makes ‘Fx D Gx’ come out true of every object in the
universe; in a word, ‘Fx D Gx’ is not valid. Similar reasoning applies
to any open schema, as long as some way of putting T’ and ‘|’ for
‘Fx’, ‘Gx’, etc., in the schema resolves it to ‘|’; as long, in other words,
as the schema is not truth-functionally valid.

So the treatment of validity of open schemata is now complete,
even to a mechanical test: treat ‘Fx’, ‘Gx’, etc., as if they were ‘p’,
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‘g, etc., and test for validity by truth-value analysis. Open schemata
behave just like truth-functional schemata so far as validity is con-
cerned. Tt is a sad fact that validity of closed schemata, which is what
we are really interested in, cannot be handled thus briefly.

Law (ii) above is one of two laws of substitution useful in generating
valid quantificational schemata. It says that the quantificational
schemata resulting from substitution for ‘¢’ and ‘4" in valid truth-
functional schemata are valid. Now the other law allows for substitu-
tion rather in quantificational schemata:

(iii) Substisution of open schemata for ‘Fx’, ‘Gx’, etc. in valid schemata
yields valid results.

Substituting ‘Hx v Kx’ for ‘Fx’ in the valid schema (2), e.g., we
may infer the validity of:

©) (dx)(Hx v Kx . Gx) D (dx)(Hx v Kx).

For, given any interpretation of ‘Gx’, ‘Hx’, and ‘Kx’ in (4), we can so
interpret ‘Fx’ and ‘Gz’ in (2) as to make (2) say the same thing as
(4). We have merely to give ‘Fx’ in (2) the extension which has
accrued to the substituted ‘Hx v Kx’ in (4), and give ‘G#’ in (2) the
same interpretation as in (4). Since (2) comes out true under all
interpretations, so must (4).

We shall be interested in (iii) only for purposes of substitution in
closed schemata, since the validity of open schemata is already so well
taken care of. But it is obvious enough that (iii) holds also for open
schemata, since open schemata have been seen to behave just like
truth-functional schemata so far as validity is concerned.

Appropriate definitions of consistency, implication, and equiva-
lence are evident now that the definition of validity is at hand. Just
as a closed schema is valid when it comes out true under a// interpre-
tations in every nonempty universe, so a closed schema is consistent
when it comes out true under some interpretations in some nonempty
universe. One closed schema zmplies another if, in every nonempty
universe, whatever interpretations make the one schema come out
true make the other come out true. Two closed schemata are equiva-
lent if, in every nonempty universe, all interpretations make the two
schemata come out alike in truth value. Parallel definitions hold for
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open schemata, if we simply reconstrue ‘interpretation’ to include
assigning any object of the universe to ‘x .

Or, what comes to the same thing, inconsistency is validity of the
negation, implication is validity of the conditional, and equivalence
is validity of the biconditional. Thus (1)-(3) already afford examples
of implication: ‘(x)Fx’ implies ‘(dx)Fx’, ‘(dx)(Fx . Gx)’ implies
‘(dx)Fx’, and ‘(x)Fx . (dx)Gx’ implies ‘(x)Fx’.

Open schemata were seen to behave exactly like truth-functional
ones so far as validity is concerned. It follows that they behave just
like truth-functional schemata also as regards consistency, implica-
tion, and equivalence. All such matters can be decided for open
schemata by truth-value analysis as in Part I, treating ‘Fx’, ‘Gx’, etc.
simply as ‘p’, ‘q’, etc. Likewise the fell-swoop tests of implication in §7
carry over to open schemata; they will in fact prove useful in §20.

Various laws of implication and equivalence were noted in (i)-(iv)
of §7 and (i)~(v) of §9: that equivalence is mutual implication, that
valid schemata imply only valid ones, etc. We were concerned at that
time with truth-functional schemata; but obviously any such laws
must carry over to open quantificational schemata, since open sche-
mata behave just like truth-functional ones in matters of validity
and the rest. Moreover, the laws can easily be seen to hold also for
closed schemata. E.g., take the law that valid schemata imply only
valid ones. Let us think of ‘---’ as representing a valid closed schema
which implies a closed schema ‘----’. This implication means that
‘--- D «.-.7 is valid. Therefore any interpretations of ‘Fx’, ‘Gx’,
etc. make both ‘---"and ‘--- D -..-’ come out true, and hence also
‘...’ since a true conditional with true antecedent has a true con-
sequent.

The other laws may be seen with equal readiness to carry over to
closed quantificational schemata. Accordingly one or another of them
will be used occasionally in subsequent reasoning without special
notice. Also one more related law, not mentioned before, will prove
important soon: One schema implies another if and only if the one in
conjunction with the other’s negation is inconsistent. 1.e., again imagining
‘---"and ‘- -’ to be schemata, to say that ‘---" implies ‘- -’ is ta
say that the conjunction:

=)
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is inconsistent. For, inconsistency of this conjunction is validity of
its negation:

e =
ie., validity of the conditional ‘--- D ...’ In Part I the main way
of establishing implication was by establishing validity of the condi-
tional; but in §21 we shall find it convenient to establish implications
rather by way of inconsistencies, in conformity with the above law.

EXERCISE

Appealing only to (i)-(iii), (2), and validity tests of truth-functional
schemata, show that each of the following schemata is valid. Describe
any substitutions in full.

(x)(Fxr D Gx . Gx D Hx .D.Fx D Hx),
(x)Fx D (x)Gx . (x)Gx D (x)Hx .D. (x)Fx D (x)Hx,
(dx)(Fx O Gx . Gx D Hx) D (dx)(Fx D Gx).

§19. EQUIVALENCE. CANONICAL SCHEMATA

This section will carry us half way to a decision procedure. We shall
see how to put any closed schema through a series of transformations
which are bound to eventuate in a result of one of three kinds: ‘T’, ‘|,
or a schema of a special kind called canonical. The result ‘T” will mean
that the schema with which we started was valid, and the result ‘|’
will mean that it was inconsistent. If the result is rather a canonical
schema, we shall see in the next section how to test it for consistency.
Since validity is inconsistency of the negation, and implication is
inconsistency of a certain conjunction (as lately remarked), and
equivalence is mutual implication, we shall then have arrived at a full
decision procedure.

The transformations which are the main business of the present
section turn upon equivalence, so let us begin with a closer examina-
tion of equivalence.

Simple examples of equivalence have already been anticipated in
§16:

(i) “(dx) —Fx w0 ‘—(x)Fx,
‘(dx)Fx’ 20 ‘—(x) —Fx,

‘—(dx)Fx’ to ‘(x) —Fx,
‘—(dx) —Fx’ te ‘(x)Fx’.
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Another example, equally obvious, is:
(i1) ‘(Hx)(Fx v Gx)’ 20 ‘(dx)Fx v (dx)Gx’.

“There are things which are either F or G’ is equivalent to “There are
F or there are G’. This neat distribution law of existence and alterna-
tion is particularly noteworthy in view of the fact, stressed in connec-
tion with (2)-(9) of §16, that the corresponding law for conjunction
fails: ‘(dx)(Fx . Gx)’ is not equivalent to ‘(dx)Fx . (Hx)Gx’. On the
other hand, just as ‘(8x)’ may be distributed through alternation, so
‘(x)’ may be distributed through conjunction; the equivalence of

(iii) ‘(©)(Fx . Gx) to ‘(x)Fx.(x)Gx’

is evident. To say that each thing has mass and takes up space is the
same as saying that each thing has mass and each thing takes up space.
But ‘(x)’ cannot in general be distributed through alternation, as
was seen in contrasting (16) and (17) of §16.

Substitution of two kinds was seen in (ii)-(iii) of the preceding
section to transmit validity: substitution for ‘p’, ‘¢, etc. in valid
truth-functional schemata and substitution for ‘Fx’, ‘Gx’, etc., in
valid quantificational schemata. We can make use of both kinds of
substitution now also in the assurance that they will transmit equiva-
lence; for, equivalence is merely validity of the biconditional. Thus
substitution of ‘Fx v Gx’ for ‘Fx’ and ‘Hx’ for ‘Gx’ leads from the
above equivalence (ii) to the equivalence of

‘(dx)(Fx v Gx v Hx)' 0 ‘(dx)(Fx v Gx) v (Hx)Hx’.

The interchangeability of equivalents was established, for purposes
of the logic of truth functions, under the name of the “second law of
interchange” in §9. The law carries over to uniform quantificational
schemata:

(iv) If 8, and S, are equivalent and S is like S| except for containing
S3 in place of one or more occurrences of S, , then S and S} are equivalent.

Case 1: S, and S, are closed. Then S} is a truth function of S, and
perhaps other components. Put ‘p’ for the occurrences of §; in ques-
tion, and ‘7, ‘s, etc. (excluding ‘q’) for the other components, and
represent the result as “...p...". Form ‘...q..." similarly using ‘q’ instead

of ‘p’. By the first law of interchange in §9, ‘¢ = 4’ implies “...p... .=,
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6,9 ¢ 9 ¢

...q...". By substitution for ‘p’, ‘q’, ‘7', etc., then, we conclude that the
biconditional of S, and S, implies the biconditional of S and §;
(“truth-functionally”; see preceding section). Hence if the former
biconditional is valid, so is the latter. I.e., if S; and S, are equivalent
so are S] and S} .

Case 2: S, and S, are open. Let us represent themas *---"and -+ - .7,

and let us represent their contexts S; and §j as --—-—and
) «++.. —. Next choose any two capital letters not appearing in
these expressions. Suppose they are ‘H’ and ‘K’. Clearly

‘(x)(Hx = Kx)’ implies ° Hx = Kx ’s

for, no classes as extensions of ‘Hx" and ‘Kx’ will make ‘(x)(Hx = Kx)’
true unless they are one and the same class, one and the same in-
terpretation. Hence, by substitution,

3 kd
seve

‘(x)(---= +---) implies ——- =,

But, since S; and S, are equivalent, ‘~--~ = ---.” is valid. Hence, by
(i) of the preceding section, so is ‘(x)(--- = ----)’. Hence, by the
above implication, so is:

fl

Le., 8] and S} are equivalent.
How the laws now at hand combine to yield further equivalences
may be illustrated by proving the equivalence of:

(v) ‘(Hx)(Fx v Gx v Hx)’ to ‘(Hx)Fx v (dx)Gx v (x)Hx’.
Substitution in (ii) shows ‘(3x)(Fx v Gx v Hx)’ to be equivalent to:
(dx)(Fx v Gx) v (dx)Hx,

which in turn is found equivalent to:
(dx)Fx v (dx)Gx v (dx)Hx

by putting the one side of (ii) for the other according to the law of
interchange (iv).

Clearly the series of distribution laws begun by (ii) and (v) can be
continued indefinitely by continuation of the reasoning which led
from (ii) to (v). Corresponding extensions of (iii), for distribution of
the universal quantifier through continued conjunctions, can be
derived by parallel reasoning.
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Preparatory to the next developments we must remind ourselves ot
what were called “fundamental” and “‘normal” schemata in §10. A
fundamental schema was any literal (‘p’, ‘7', ‘¢, etc.) or any conjunc-
tion of literals in which no letter appeared twice; and a normal schema
was any fundamental schema or alternation of such. These are better
referred to now as fundamental truth-functional schemata and normal
truth-functional schemata, for in analogy to them it will be con-
venient to speak also of fundamental open schemata and normal open
schemata. These are like the fundamental and normal truth-functional
schemata except for having ‘Fx’, ‘Gx’, etc., instead of ‘p’, ‘¢, etc.
The following, e.g., are fundamental open schemata:

Fx, —Fx, —Gzx ., Hzx, Fx . —Gx . Hx.

Examples of normal open schemata are the above and also the
alternation:
—Fxv. —Gx . Hx . Fx . Gx.

We saw in §10 how any truth-functional schema could be trans-
formed into an equivalent which was either normal or ‘pp’. Simply
copying that procedure, we can now transform any open schema into
an equivalent which is either normal or ‘Fx , —Fx’. Equivalence is
bound to hold, for we know that substitution of ‘Fx’, ‘Gx’, etc. for
‘P’, ‘q’, etc., in equivalents yields equivalents.

Now the scheme of transformations which was promised at the
beginning of the section can be presented. The steps of the routine
will be explained and simultaneously applied to a running example.

Consider, then, any closed schema S, . Example:

1) (dx)(Fx . Gx . —Hzx) = (x)(Hx D.Fx . Gx) .v
(Hx)[Gx . —(Gx v Hx)].

First step: Get rid of universal quantifiers by translating any
universal quantifications into terms of existential quantification and
negation, according to (i). Also, for brevity, we may as well suppress
‘e’ everywhere; no ambiguity can result, for we have merely to
understand an ‘#’ after each capital letter and each ‘d"." Also we may

The joy which this short notation brings is short-lived, for in Part III we shall need to
quantify with respect to distinctive letters ‘z’, ‘y’, etc., and so shall not be able unambigu-

ously to omit such letters. It is only for the sake of engendering habits of thought useful
for Part IFI that ‘x’ has been carried in the schemata of Part IT at all.
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as well drop parentheses from ‘d’. Call the result S, . Example:
A(FGH) = —4 —(H D FG) v d[G —(G v H)].

Second step: Within each quantification, transform the entire open
schema into an equivalent which is normal or ‘FF’ (i.e., ‘Fx . —Fx’).
This is the operation remarked upon a couple of paragraphs back.
Call the result S, . Example, showing stages:

A(FGH) = —3[H — (FG)] .v 4(GGH)
A(FGH) = —A(H . F v G) .v A(FF)
A(FGH) = —A(HF v HG) .v 4(FF)

Third step: Put ‘|’ for any occurrence of “A(FF)’ and resolve.
Result: T or |’ or a schema S, which is a truth function of existen-
tial quantifications of normal open schemata. Example:

A(FGH) = —A(HF v HG).

Clearly ‘d(FF)’, or ‘(dx)(Fx . —Fx)’, comes out false under any
interpretation of ‘F’ within any universe. Therefore S is bound to
take on the same truth value as S, , under any interpretation of ‘Fx’,
‘Gx’, etc. within any universe; in short, S; 1s equivalent to S, . Or,
if the result of the third step is ‘T’ rather than a schema S, , it shows
that S, is bound to come out true under any interpretation within
any universe; i.e., S, is valid. If the result is |’, S, is inconsistent.

Now if the third step has issued in a schema S, rather than bringing
the whole process to an abrupt end in ‘T or ‘|, we proceed to the

Fourth step: Distribute existential quantifiers through alternations,
as illustrated in (ii) and (v). Result: a schema S, which is a truth
function of existential quantifications of fundamental open schemata.
Example:

) A(FGH) = —[A(HF) v A(HG)].

A schema will be called canonical if it is like a normal truth-
functional schema, as of §10, except that in place of each sentence
letter it has an existential quantification of a fundamental open
schema. A canonical schema is the usual outcome of the

Fifth step: Handling the whole quantifications in S, as if they were



106 UNIFORM QUANTIFICATION [§19]

‘s ‘q, etc, transform Ss by the method of §10. Result: “L" or a
canonical schema S; . Example:

A(FGH) . —[A(HF) v A(HG)] .v. —A(FGH) . A(HF) v A(HG),

(3) A(FGH) . —A(HF) . —4A(HG) .~v. —3(FGH) . 3(HF) .v.
—A(FGH) . A(HG).

Such, then, is the general method whereby any closed schema S,
can be transformed until it collapses to ‘T” or ‘|’, indicating validity
or inconsistency, or else gives way to a canonical schema. In the
next section we shall arrive at a consistency test for canonical sche-
mata, and therewith a method of deciding not only consistency but
implication, equivalence, and validity for closed schemata generally.

For reduction of work, the routine of transformation set forth
above should in practice be varied in several ways. The second step
should be interrupted in favor of the third step the moment ‘d(FF)’
appears; for the third step may bring great simplifications, or even
put an end to the work altogether. Furthermore any observed
opportunities for simplification of a truth-functional kind should be
exploited promptly on sight; e.g., reduction of ‘GG’ to ‘G’ or of
‘A(FG) v d(FG)’ to ‘4(FG)’.

The fifth step can often be facilitated by temporarily putting
‘0, ‘g, etc., for the quantifications. Thus we might have abstracted
the outward truth-functional structure of (2) as ‘p = —(g v r)’ and
then transformed this into a normal schema through the stages:

p—gvr)v.p.qvn paT v pq v pr,
afterward restoring quantifications so as to get (3). In cases more
complex than this one, such a detour through sentence letters is
helpful.

Sometimes considerable saving of labor and simplification of results
can be brought about by rearranging the contents of quantifications
50 as to put the capital letters of each in alphabetical order. This step
should be performed with the fourth. Quantifications which were
alike except for internal permutations thus come to be alike, and so
the way is opened for incidental simplifications of truth-functional
kind in the course of the fifth step. E.g., if S, contains ‘T(HF) .
A(FH)’ as a part, alphabetization will turn the part into ‘A(FH) .
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A(FH)’; and this in turn will boil down to ‘A(FH)’ when the fifth
step is begun. Or, to take a more striking case, suppose S, contains
“d(HF) . —A(FH)’ as a part; alphabetization will turn this part into
something of the form ‘pp’, thereby perhaps facilitating the fifth step
to the point of trivialization.

The concept of duality explained in §11 carries over to quantification
theory. The extension is accomplished by treating universal and existential
quantification as dual to each other, as is suggested by the close relationship
of universal and existential quantification respectively to conjunction and
alternation; cf. end of §16. Where S is any quantificational schema
devoid of ‘D’ and ‘=", the result of interchanging alternation with con-
junction and ‘(3lx)’ with ‘(x)’ throughout S is construed as dual to S. The
third, fourth, and fifth laws of duality can be re-established for this broader
domain. The equivalences (ii) and (iii) above, e.g., are related by the ex-
tended fifth law of duality.

EXERCISES

1. On the basis of (ii) and (iii) of the preceding section and (i) and
(iv) of this, establish the equivalence of ‘(x)(Fx D Gx)’ to ‘—(dx)
(Fx . —Gx)'. Make use of the fact that the validity of ‘—(Fx D Gx)
= Fx . — Gx’ means the equivalence of ‘— (Fx D Gx)’ to ‘Fx . —Gx’.

2. Reduce each of these to a canonical schema or ‘T’ or ‘|, adhering
to the described routine.

(x)(Fx D —Gx .Gx D —Hx .Hx D —Jx .Jx D —Fx),
—[(dx){(—Fx . Gx) v (dx)(—Fx . Hx) .D (x)(Fx J.Gx . Hx)],
(qx)[—Fx . —(Fx D Gx)] D (x)(Fx v Gx).

§20. TESTING FOR CONSISTENCY

Our task in the present section is to devise a test of consistency for
canonical schemata. Let us begin by classifying the possible forms of
canonical schemata into six, as follows.

Form (i): An existential quantification of a fundamental open
schema. Example: (3x)(Fx . —Gx . Hx).

Form (ii): A negation of a schema of form (i).

Form (iii): A conjunction of schemata of form (i).

Form (iv): A conjunction of schemata of form (i1).
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Form (v): A conjunction of schemata of forms (i) and (ii).

Form (vi): An alternation of schemata of any one or more of the
forms (i)-(v).

A fundamental open schema, it will be recalled, is any of ‘Fx’,
‘—Fx’, ‘Gx’, *— Gx’, etc., or a conjunction of such without repetitions
of capital letters. Given any fundamental open schema S, and any
object 4, we can easily so interpret ‘Fx’, ‘Gx’, etc., as to make S,
come out true of 2; we have merely to interpret those of ‘Fx’, ‘Gx’,
etc., as true of 2 which occur affirmatively in S, , and the others as
false of a. E.g., we make ‘Fx . —Gx . Hx’ true of a by interpreting
‘Fx’ and ‘Hx’ as true of & and ‘Gz’ as false of a.

Since any fundamental open schema S, can thus be made true of
any desired object by suitable interpretations, it follows that the
existential quantification of S, can be made zrue (in a nonempty uni-
verse) by suitable interpretations. In other words, any schema of
form (1) is bound to be consistent.

It is equally easy to see that any schema of form (ii) is bound to be
consistent. E.g., consider:

(1) —(dx)(Fx . —Gx . Hx).

We can make this come out true, in any desired universe, by inter-
preting ‘Fx’ as true of nothing (and interpreting ‘Gx” and ‘Hx’ as we
please). For, ‘Fx . —Gx . Hx’ then becomes true of nothing, and so
(1) becomes true. In general, similarly, given any schema S of form
(i), pick out a capital letter—say ‘F’. If, in the fundamental open
schema which follows the quantifier, ‘Fx’ appears affirmatively, then
interpret ‘Fx’ as true of nothing; the schema S as a whole will there-
upon come out true, as seen in the above example. If on the other
hand ‘Fx’ appears negatively, then interpret ‘Fx’ rather as true of
everything in the universe, so that ‘—Fx’ becomes true of nothing;
then again, clearly, S as a whole will come out true.

So far as forms (i) and (ii) are concerned, therefore, there is no
preblem of testing for consistency; a schema of either of these forms
is #pso facto consistent. Now the same is true also of form (iii). This
is seen as follows. A schema S of form (iii) is a conjunction of
existential quantifications of fundamental open schemata §, , ...,
S. . We have seen how, by interpreting ‘Fx’, ‘Gx’, etc., we can make
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S; true of a chosen object 4, ; also how we can make S, true of a
chosen object «, ; and so on. By keeping a, , 2., ..., a, distinct so
as to avoid conflict, we can so interpret ‘Fx’, ‘Gx’, etc., as to make
$15 82, ..., Swsimultaneously true respectively of @, , @5, ... , @, ;
and then the conjunction § of existential quantifications comes out
true.

E.g., consider:

()  (dx) —Fr.(@x)(Fx . —Gx) . (x)(Fx . Gx . —Hx).

We pick three distinct objects 4, , @, , @, . Then we make ‘—Fx’ true
of 4, by interpreting ‘Fx’ as false of 4, ; we make ‘Fx . — Gx’ true of
a. by further interpreting ‘Fx’ as true of 4, and ‘Gz’ as false of a, ;
and we make ‘Fx ., Gx . —Hx’ true of a, by further interpreting
‘Fx’ and ‘Gx’ as true of 4, and ‘Hx’ as false of a, . This much suffices
to make (2) come out true, however the interpretations of ‘Fx’,
‘Gx’, and ‘Hx’ be fixed in relation to the rest of the objects of the
universe.

So a schema of any of the forms (i)-(iii) is consistent. Now let us
examine form (iv), beginning with the example:

(3 —(Hx)(—Fx.Gx).—(Hx)(Fx.—Gx) . —(dx)(Fx .Gz . Hx).

To make this come out true we must so interpret ‘Fx’, ‘Gx’, and ‘Hx’
as to make each of the open schemata ‘—Fx , Gx’, ‘Fx . —Gx’, and
‘Fx . Gx . Hx’ true of nothing. This can of course be done by taking
the universe as empty; but our problem, in establishing consistency,
is to achieve the same effect in some nonempty universe. Our prob-
lem is to find an interpretation of ‘Fx’, ‘Gx’, and ‘Hx’ which will
cause ‘—Fx , Gx’, ‘Fx . —Gx’, and ‘Fx . Gx . Hx’ all to be false of all
the objects of a nonempty universe. In other words, our problem is
to find an interpretation of ‘Fx’, ‘Gx’, and ‘Hx’ which will cause the
conjunction:

@ —(—Fx.Gx) . —(Fr . —Gx) . —(Fx . Gx . Hx)

to be #rue of everything in a nonempty universe. Note that (4) is
just (3) with quantifiers deleted. More generally, suppose that S is
any schema of form (iv), and that 8" is what remains of S when quan-
tifiers are deleted; then, as in the above example, the problem of show-
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ing S consistent reduces to the problem of so interpreting ‘Fx’, ‘Gx’,
etc., as to make 8’ true of everything in a nonempty universe.

Let us then address ourselves to the reduced problem: interpreta-
tion of ‘Fx’, ‘Gx’, etc., such as will make S’ true of everything in a
nonempty universe. A convenient first step is truth-value analysis
of §'; or, in the example, truth-value analysis of (4):

—(—Fx . Gx) . —(Fx . —Gx) . —(Fx . Gx . Hx)

- (1.Gx).—(T.— Gx).— (1.Gx.Hx) —(].Gx).—(1.— Gx).—(1.Gx.Hx

Gx . —(Gx . Hx) —Gx
T.-(T.Hy) |.-(lL.Hs) 1 T
—Hx 1
1 T

Next we fix our attention upon an arbitrary one of the cases which led
to ‘T’; one such, in the above example, is the case of ‘Fx’ and ‘Gx’
true and ‘Hx’ false. (4), the analysis has shown, is true of anything
x of which ‘Fx’ and ‘Gx’ are true and ‘Hx’ false. Therefore we can
make (4) true of everything, in any universe, by interpreting ‘Fx’ and
‘Gx’ as true of everything and ‘Hx’ as true of nothing. So (3) has been
found consistent.

Clearly what we have done with (4) can be done with any example
S’ unless &', unlike (4), yields no T’ at all under truth-value analysis.
In this event (viz., inconsistency of §'), naturally there is no hope
of so interpreting ‘Fx’, ‘Gx’, etc., as to make S’ true of everything in
a nonempty universe; and in this event, consequently, S is inconsis-
tent.

We have therefore arrived at a simple decision procedure for con-
sistency of schemata of form (iv); viz., delete all quantifiers and test the
remaining open schema for consistency. The test of consistency for open
schemata, we know, is mere truth-value analysis.

Next let us take up form (v), beginning with the example:

(5) (dx)(Fx . Gx) . (dx)(Fx . Hx) . —(dx)(Fx . Gx . Hx) .
— (dx)(Fx . —Gx . Hx).

To make this come out true we must so interpret ‘Fx’, ‘Gx’, and ‘Hx’
as to make ‘Fx . Gx’ come out true of something @, and make ‘Fx , Hx’
come out true of something 4, and make ‘Fx . Gx . Hx’ and ‘Fx .
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—Gx . Hx’ come out true of nothing. But this is impossible; for, if
‘Fx ., Hx’ is to be true of 4, clearly ‘Fx . Gx . Hx’ or ‘Fx . —Gx . Hx’
will be true of 4. So (5) is inconsistent.

Consider now a second example of form (v):

6) (dx)(Fx . Gx) . (dx)(Fx . —Hx) .
—(3x)(Fx . Gx . —Hx) . —(dx)(Fx . —Gx . Hx).

We can make this come out true by interpreting ‘Fx’ as true of two
objects, @ and &, and interpreting ‘Gx’ and ‘Hx’ as true of just a.
Then ‘Fx . Gx’ becomes true of a; ‘Fx . —Hx’ becomes true of 4;
and ‘Fx . Gr . —Hx’ and ‘Fx , —Gx . Hx’ become true of nothing.
(6) comes out true under these interpretations, and is therefore
consistent.

A general criterion of consistency of schemata of form (v) may,
subject to justification in the next paragraph, be formulated as fol-
lows. Let S be a schema of form (v);let S, , ..., S, be the open
schemata which are affirmatively quantified in S; and let S7, ...,
S! be the open schemata which are negatively quantified in S. Then
S is consistent if and only if no one of S, , ... , S implies the alternation
of St ..., S (or implies 87, if z is 1). E.g., the source of the incon-
sistency of (5) is that ‘Fx . Hx’ implies:

Fx . Gx ,Hx v, Fx . —Gx . Hx.
(6) is consistent because neither ‘Fx . Gx’ nor ‘Fx . —Hx’ implies:

Fx . Gx . —Hx .v. Fx . —Gx . Hx.

For testing implication between any such open schemata, truth-func-
tional methods are known to suffice.
In general the justification of the above consistency criterion is as
follows. If one of S, , ... , S., say S, , implies the alternation of
{, ..., S, then we cannot make S, true of an object without mak-
ing at least one of S, ... , S}, true of that object. In this case, there-
fore, we cannot make all the quantifications affirmed in S come out
true without also making some of the quantifications denied in S come
out true; so S is inconsistent. If on the other hand noneof S, , ..., S,
implies the alternation of S}, ..., S., then we can find interpreta-
tions of ‘Fx’, ‘Gx’, etc., which will make S come out true. as follows.
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We take a universe of just m objects, @1, ..., @m- Now since S; does
not imply the alternation of 57, ... , Si, there is some way of assign-
ing T’ and ‘|’ to ‘Fx’, ‘Gx’, etc,, which causes S; to resolve to T’
and yet causes S , ... , S, all to resolve to ‘|’. Let us interpret each
of ‘Fx’, ‘Gx’, etc., as true of 4, or false of 4, in conformity with that
particular way of assigning ‘T’ and ‘|’; then S, comes out true of 4 ,
while all of S, ..., S’ come out false of 4, . Similarly, since S, does
not imply the alternation of S, ..., S’ , we can further interpret
‘Fx’, ‘Gx’, etc. in relation to @, so as to make S, come out true of a,
while 87, ..., S’ all come out false of @, . Continuing thus to S, and
4. , we end up with interpretations of ‘Fx’, ‘Gx’, etc., which make
S.,...,S.comeout trueofa,, ...,an respectively, while 57, ...,
S’ come out false of all these objects—hence false of all objects in the
universe. Then the existential quantifications affirmed in § all come
out true while those denied in S all come out false; and thus S comes
out true.

We can now make short work of form (vi). An alternation of given
components is consistent if and only if at least one of those com-
ponents is consistent; for, any interpretation which verifies even one
of those components verifies the alternation. To test a schema of
form (vi) for consistency, therefore, we examine each of the compo-
nents of forms (i)-(v) until we find a consistent one; failing such, we
adjudge the whole inconsistent.

A full decision procedure for consistency of canonical schemata is
now at hand. Let us sum it up.

Form (i): An existential quantification of a fundamental open
schema. Always consistent.

Form (ii): A negation of a schema of form (i). Always consistent.

Form (iii): A conjunction of schemata of form (i). Always consis-
tent.

Form (iv): A conjunction of schemata of form (ii). Consistent if and
only if the result of deleting its quantifiers is consistent.

Form (v): A conjunction of schemata of forms (i) and (ii). Con-
sistent if and only if none of S, , ... , Sn implies the alternation of

..y 84 (or implies 87 , if 7 is 1).

Form (vi): An alternation of schemata of one or more of the forms
()-(v). Consistent if and only if at least one of those components is
consistent.
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Let us test the canonical schema (3) of the preceding section for
consistency. It is of form (vi), so we begin by testing the part:

(7) A(FGH) . —4(HF) . —4A(HG),

which is of form (v). We have to decide whether ‘FGH’ implies
‘HF v HG’. A negative answer is reached in a fell swoop:

Iivll
L

So (7) is consistent. Hence (3) of the preceding section is consistent.
Hence so is (1) of that section.

Note that amenability to the fell swoop is no peculiarity of the
above example. Questions of implication on the part of fundamental
schemata can always be settled thus.

We now have a consistency test not merely for any canonical schema,
but for any closed schema whatever: transform it by the method of the
preceding section, and if it does not thereby reduce to ‘T” or ‘], thus
showing its validity or inconsistency, then test the resulting canonical

schema for consistency.
EXERCISES

1. Test each of the following two schemata for consistency.
—34(FG) . —4(JG) . A(JF) . —I(GH),
—34(FGH) . 4(G)) . A(GK) . —A(FJ) . —A(HK).

2. Do likewise for the canonical schemata obtained in Exercise 2
of the preceding section.

3. Schematize the following statement, then transform the schema
as in the preceding section, and finally test for consistency.

Some who take logic and Latin take neither physics nor Greek, but
all who take either Latin or chemistry take both logic and Greek.

§21. TESTING FOR IMPLICATION

The test of consistency at which we have arrived affords, as a by-
product, a test of validity: we can test a schema for validity by testing
its negation for inconsistency. But the most useful consequence is an
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implication test: zo decide whether a premiss or conjunction of premisses
implies a conclusion we put the premisses into conjunction with the nega-
tion of the conclusion and test for inconsistency. (Cf. §18, end.) To test
for equivalence, finally, we may test forwards and backwards for
implication.

For a simple illustration of the implication test, let us take the
syllogism:

(x)(Gx D —Hx), (Jx)(Fx.Gx); . (dx)(Fx.—Hx).

We have to test the conjunction:

(x)(Gx D —Hx) . (dx)(Fx . Gx) . —(dx)(Fx . —Hx)

for inconsistency. By the technique of §19 we turn it into a canonical
schema.

-4 —(G D H) . d(FG) . —A(FH) (lst step)
—3A(GH) . A(FG) . —A(FH) (2d step; 3d-5th not needed)

Finally we test this for inconsistency in conformity with the preceding
section.
‘FG  implies ‘GH v FH'?
THvTH
HvH Yes.

But we could use Venn diagrams for such problems. Let us turn
now to a more serious example: that of the class of *00. The schemata
to be tested for implication here are (4)—(6) of §17. To test them for
implication we test the conjunction:

(x)(Fx .Gx .D Hx) D (Hx)(Fx.—Gx) . (x)(Fx D Gx) v (x)(Fx D Hx)
. —[(x)(Fx . Hx .D Gx) D (dx)(Fx . —Hx . Gx)]
for inconsistency. We begin by transforming it successively in con-
formity with §19. First step:
—4 —(FGD H) D 4(FG) . -4 —(F D G)v—a —(FD H),
—[=3 —(FH D G) D> d(FHG)].
Second step, accompanied by alphabetical rearrangements:

—d(FGH) D A(FG) . —3(FG) v —4(FH) . —[—-3(FGH) >
A(FGH)).
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Third and fourth steps: none. Fifth step:

pPAg9.3vF.—(F D p)

Pvq.qvr.sp,

Pgvprvqq v qr . sp,

pavprvqr.5p,

P3P v P75P v 475P,

q7sp. _ _ _ _

H4(FG) . —4(FH) . —4(FGH) . —d(FGH).
Finally we test this according to the preceding section.

‘FG’ implies ‘Fl‘z vFGH v FGI;?’?
THv TTHvTIH
HvH Yes.

The existence of such a test for implication, validity, and the rest is
philosophically significant in relation to the question of admitting
classes as entities. For, validity and the related concepts were defined
in §18 in a way which appealed to an unlimited realm of classes. But
what we now have is an equivalent criterion consisting in a mechanical
test, which can be described from beginning to end without assump-
tion of classes. However necessary it may be for other purposes to -
assume classes, this is one place where the assumption has proved
eliminable.

In Part IIT (§§27 ff.) we shall come upon another technique of
proving implication, validity, and the rest, which will apply not only
to all the problems to which our present method applies but also to
others which are beyond the reach of uniform quantificational sche-
mata. Some of the problems within the reach of our present method
can be handled more briefly by the later method, others less so. In
any case the present method has a great virtue which that of Part III
will lack: it is mechanical. Under the method of Part III the process of
discovering a proof for a given purpose may, as in mathematics fairly
generally, turn on factors of luck and ingenuity not reducible to
prescribable routine. One may, in hopes of quick success, try that
method on a problem which could be done by the present mechanical
method; in case of failure to find the desired proof, however, the
present unfailing method stands in reserve. Unfortunately, no
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similarly unfailing routine of mechanical test is possible for the whole
generality of problems covered in Part IIL.

Lowenheim (1915) was the first to present a mechanical test of validity
for what I have called uniform quantificational schemata. Various alterna-
tive techniques to the same purpose have since appeared." Some of these
alternative methods cover a territory which is broader in several respects
than the realm of uniform quantificational schemata. Our present method
will now be extended in one of those respects. Extension in another
respect, which is essentially notational, will take place in §32.

A sharp division has been preserved between the schemata of Part I and
those of Part II, those of Part I being truth functions of sentence letters
while those of Part II are truth functions of quantifications. By mixing
these ingredients, however, we get a new class of schemata which allow for
the handling of additional problems. One such problem is this:

Premisses: If the Bissagos report is to be trusted then the chargé d affaires
is a mere tool of the sisal interests and none of the natives really
favored the coupon plan.

If the chargé d affaires is a mere tool of the sisal interests then
some of the natives either really favored the coupon plan or were
actuated by a personal animosity against the deputy resident.

Conclusion: If the Bissagos report is to be trusted then some who were
actuated by a personal animosity against the deputy resident did
not really favor the coupon plan.

Putting ‘p’ for ‘the Bissagos report is to be trusted’, ‘g’ for ‘the chargé d'af-
faires is a mere tool of the sisal interests’, ‘Fx’ for ‘x is a native’, ‘Gx’ for
‘¢ really favored the coupon plan’, and ‘Hx’ for ‘x was actuated by a
personal animosity against the deputy resident’, we can represent the
premisses and conclusion by the mixed schemata:

pI.q.(x)(Fxr D —Gx),
g D (dx)(Fx . Gx v Hx),
p D (x)(Hx . —Gx).

Let us translate ‘(x)’ into ‘— (dx) — and then omit “x” everywhere, also
simplifying ‘—(F 2 G)’ to ‘FG’; then the conjunction of the premisses
with the negation of the conclusion runs thus:

1See my paper “On the logic of quantification™ for one such and for references to
others. The method of the present pages derives partly from that paper, and both ap-
proaches are reminiscent of procedures developed by Behmann (1922) and Parry (1932).
Another method, due mainly to Herbrand, appears in my O Sentido (pp.126-129), but that
method tends in application to run to greater length than the present one. For a lucid
expositiop using the same principle as O Sentido see von Wright (1949).
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1) pI.q.—I(FG):¢D IA(F.GvH).—[pD AHG)].

So this is the conjunction to test for inconsistency.

The appropriate sense of ‘inconsistency’ for such mixed schemata is evi-
dent enough, for we have merely to combine the concepts of inconsistency
for truth-functional schemata and for closed quantificational schemata.
Thus a mixed schema may be said to be inconsistent if, for every choice of
a nonempty universe U, it comes out false under all interpretations of ‘Fx’,
‘Gx’, etc. within U and all interpretations (truth values) of ‘p’, ‘g’, etc.

Clearly then a mixed schema will be inconsistent if and only if, whenever
we put ‘|’s and ‘T’s for ‘p’, ‘q’, etc., and make all possible reductions by
resolution (§5), we end up either with |’ or with an inconsistent quantifi-
cational schema. So, to test a mixed schema for inconsistency we may begin
by constructing a preliminary truth-value analysis under it as it stands.
This analysis proceeds just as in Part I: the most frequent sentence letter
is replaced first by ‘T’ and then by |, and resolutions are made; then each
result is treated similarly; and so on, until either ‘[’ is obtained (in which
case we stop work, with a verdict of consistency) or each case has yielded
‘|’ or an unmixed quantificational schema. (Note that in the course of this
process the substitutions of ‘" and ‘|’ are made only for sentence letters
‘P’ ‘q’s etc., not for quantifications or capital letters.) Finally each of the
resulting quantificational schemata may be tested separately for inconsis-
tency, by the method lately developed. As soon as one of them is found
consistent we may stop, knowing that the original mixed schema is con-
sistent.

In the case of (1) the preliminary truth-value analysis, which will be
omitted here, issues in ‘|’ in each case but one; and in this case it issues in
the schema:

@ —3J(FG) . 4(F . G v H) . —4(HG).

What then remains to be done is to transform (2) into a canonical schema
and check for inconsistency.

EXERCISES

1. Test (2) for inconsistency. (Mastery of small print unnecessary.)
2. Check various inferences of §15, as has been done above for the

one about the class of ’00. Also, for quick drill, those of §§13-14.
3. Check the following argument.

Premisses: The persons responsible for the recent kidnappings
are experimental psychologists.
If no experimental psychologists are known to the police,
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then none of the former bosses of the bootleg ring are
experimental psychologists.

Conclusion: If any of the former bosses of the bootleg ring are
responsible for the recent kidnappings then some experi-
mental psychologists are known to the police.

Hint: Represent the conclusion as ‘(dx)(Fx . Gx) D (dx)(Hx . Jx)’.
4. Test each of these pairs for equivalence, by an implication test
in each direction.

(x)Fx, (%) (Fx’v Gx) . (x)(Fx v —Gx);
(x)Fx, (x)(Fx . Gx) v (x)(Fx . —Gx);
(dx)Fx, (Hx)(Fx v Gx) . (x)(Fx v —Gx);
(dx)Fx, (3x)(Fx . Gx) v (dx)(Fx . —Gx).

PART THREE

General Theory of Quantification

§22. QUANTIFICATION EXTENDED

In the logical tradition terms are distinguished into two kinds, relatin,
and absolute. The characteristic of a relative term is that it describes
things only relatively to further things which have afterward to be
specified in turn. Thus ‘father’ as in ‘father of Isaac’, and ‘north’ as in
‘north of Boston’, are relative terms. What were spoken of as terms
in §12, on the other hand, are absolute terms. Words capable of be-
having as relative terms can regularly be used also as absolute terms,
through what amounts to a tacit existential quantification in the
context; thus we may say absolutely that Abraham is a father, mean-
ing that there is something of which Abraham is a father.

In English a convenient earmark of the relative use of a term is the
adjoining of an ‘of’-phrase or possessive modifier whose sense is not
that of ownership. Thus ‘father of Isaac’, or ‘Isaac’s father’, has
nothing to do with proprietorship on Isaac’s part, but means merely
‘that which bears the father-relation to Isaac’. We can appreciate the
distinction between the possessive ‘my’ and the relative ‘my’ by recall-
ing what Dionysodorus said to Ctesippus with reference to the latter’s
dog:* .. heis a father, and he is yours; therefore he is your father’
(Plato, Euthydemus).

A relative term, like an absolute one, may occur indifferently as
substantive, adjective, or verb. In ‘x is a helper of y° we use the
substantive, in ‘x is helpful toward y’ the adjective, and in ‘x helps
9’ the verb; but logically there is no need to distinguish the three.
Logically the important thing about relative terms is that they are
true of objects pairwise. Whereas ‘man’, ‘walks’, etc., are true of
Caesar, Socrates, etc., one by one, on the other hand the relative term
‘helps’ is true of Jesus and Lazarus as a pair (or, true of Jesus with

119
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respect to Lazarus), and true of Farley and Roosevelt as a pair (or,
true of Farley with respect to Roosevelt), and so on. If as in the
foregoing pages we write ‘Fx’ for ‘x is an F’, then the analogous nota-
tion in connection with relative terms should be ‘Fxy’, ‘x is F to y'.

The order of ‘x’ and ‘y’ in ‘x helps ¥’ is in one respect accidental:
‘¢ helps ¥ can as well be phrased ‘y is helped by x°. But in another
respect the order is essential: ‘x helps y’, e.g., ‘Jesus helps Lazarus’, is
not equivalent to ‘y helps x’. So the sentence ‘x helps 3’ may be de-
scribed equally as of the form ‘Fxy’ and as of the form ‘Fyx’, but the
interpretations thus successively imposed on ‘F’ are then distinct
from each other—as distinct as ‘helps’ and ‘is helped by’. ‘Fxy’ cannot
in general be equated with ‘Fyx’.

Besides relative terms in the sense just now touched upon, which
are dyadic, we may recognize also #riadic ones, tetradic ones, and so on;
e.g., ‘Gxyz’ may mean ‘x gives y to 2’, and ‘Hxyzs’ may mean ‘x pays
y to z for .

There are forms of inference, logically no less sound than those dealt
with in Part II, which are insusceptible to the methods of Part II
simply because their analysis calls for recognition of relative terms.
An example, of medieval vintage, is:

All circles are figures; .. All who draw circles draw figures.

The premiss can be represented in our previous notation as
‘(*)(Fx D Gx)’, but the conclusion presents difficulties. We can
indeed represent the conclusion as ‘(x)(Hx D Jx)’, interpreting ‘Hx’
as ‘x draws a circle’ and ‘Jx’ as ‘x draws a figure’, but then the sche-
mata ‘(x)(Fx D Gx)’ and ‘(x)(Hx D Jx)’ bear no visible interconnec-
tion which could justify inference of the one from the other. What
we must do is extend our category of quantificational schemata to
admit such forms as ‘Hyx’ for ‘y draws x’. Then ‘y draws a circle’ can
be represented as ‘(dx)(Fx . Hyx)’, and ‘y draws a figure’ as ‘(dx)
(Gx . Hyx)’; thereupon our conclusion as a whole, ‘All who draw
circles draw figures’, becomes:

1) (»)[(@x)(Fx . Hyx) O (dx)(Gx . Hyx)]

and thus exhibits an unaccustomed ‘y’ in its universal quantifier.
Quantification theory needs to be extended in such a way as to enable
us to show, among other things, that ‘(x)(Fx D Gx)’ implies (1).

[§22] QUANTIFICATION EXTENDED 121
Another example of the need of thus extending quantification
theory is this:

Premiss:  There is a painting that all critics admire;
Conclusion: Every critic admires some painting or other.
With ‘Gx’ interpreted as ‘x is a critic’, and ‘Hxy’ as “x admires y’, we
way represent ‘all critics admire y’ as ‘(x)(Gx D Hzxy)’. So, interpret-
ing ‘Fy’ as ‘y is a painting’, we may represent the above premiss as:

@ (y)[Fy . (x)(Gx O Hxy)].

Further, since ‘x admires some painting or other’ becomes ‘(dy)
(Fy . Hxy)’, the conclusion as a whole takes on the form:

©) (®)[Gx O (Ty)(Fy . Hay)].

One more example:
Premiss:  There is a philosopher whom all philosophers contradict,
Conclusion: There is a philosopher who contradicts himself.

The premiss here has a form closely similar to (2).

©) (@y)[Fy . (x)(Fx 3 Gzy)].

The conclusion is simply ‘(3x)(Fx . Gxx)’. ‘

We saw in §16 and §19 how differences in grouping could affect
the meaning of a quantification; ‘(x) (Fx v Gx)” had to be distinguished
from ‘(x)Fx v (x)Gx’, and ‘(dx)(Fx . Gx)’ from ‘(dx)Fx . (dx)Gx’.
Considerations of this kind come to loom larger now that we allow
quantifications within quantifications. Thus, let us reflect next on the
expression:

®) (®)[Fx D (dy)(Fy . Gxy)].

If we interpret ‘Fx’ as ‘x is a number’ and ‘Gxy’ as ‘x is less than y',
then (5) comes to mean:

Every number is such that some number exceeds it,

or briefly ‘Every number is exceeded by some number’. This might
carelessly be rephrased ‘Some number exceeds every number’ and
then be put back into symbols as:

(dy)(y is a number . y exceeds every number),
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i.e., (4). But actually there is all the difference between (5) and (4)
that there is between truth and falsity. (5) says that for every number
there is a larger, which is true, whereas (4) says there is some great
number which, at once, exceeds every number. This last is false on
two counts: for there is no greatest number, and even if there wers
it would not exceed itself.

The distinction in form between (3) and (2) is the same as just now:

stressed between (5) and (4). The wording of the premiss and con-
clusion about paintings illustrates again the awkwardness of ordinary
language in keeping the distinction clear. The notation of quantifica-
tion is handier in this respect.

The mathematical concept of limit provides, for readers familiar with it,
an apt further illustration of the above distinction. A function f(x)is said to
approach a limit 4, as x approaches £, if for every positive number ¢ there
is a positive number 8 such that f(x) is within ¢ of 4 for every x (54%)
within 8 of %. In terms of quantifiers this condition appears as follows:

(){e>0.D (A)[8>0.(x)(0< Jr— k| <8.D.]f(x) — 4| < &)]}.

As textbooks rightly emphasize, we must think of e as chosen first; for each
choice of e a suitable 8 can be chosen. This warning is, in effect, a warning
against confusing the above formula with the essentially different one:

(A8){8 > 0. ()[e>0.D ()(0< |r— k| <8.D.|f(x) — ] < )]}

The distinction between these two formulas will be recognized as identical
with that between (5) and (4), and between (3) and (2).

The essential contrast between (5) and (4), and between (3) and
(2), becomes simpler and more striking when we compare:

(6) @ (@)Fzy, (Fy)(x)Fxy.

Suppose we interpret ‘Fxy’ as ‘x and y are the same thing’, so that the
schemata (6) become:

@) (x)(3y)(x and y are the same thing),

(8) (dy)(x)(x and y are the same thing).

For each chosen object x, clearly there will be an object which is the
same (viz., the chosen object x itself). Of each object x, therefore, the
sentence:

(dy)(x and y are the same thing)
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is true. So (7) is true. On the other hand, as long as there are more
objects than one in the universe, no one object can be the same as
each; i.e., no one object y can be such that

(x)(x and y are the same thing).

So (8) is false.

In general ‘(x)(dy)Fxy’ says that once any object whatever x is
fixed upon, an object y is forthcoming such that Fxy. Different choices
of x may bring forth different choices of y. On the other hand ‘(dy)
(x)Fxy’ says that some object y can be fixed upon such that, for this
same fixed y, ‘Fxy’ will hold for all comers x.

Supposing a limited universe of objects 4, &, - - - , A, let us see how
‘(x)(Ay)Fxy’ and ‘(dy)(x)Fxy’ compare when the quantifications are
<xpanded into conjunctions and alternations (cf. end of §16).

‘(x)(dy)Fxy’ becomes first:
(3y)Fay . (3y)Féy . --- . (3y)Fhy
and then:
Faa v Fabv --- v Fah . Fba v Fbb v -+ v Fbh . -+ .,
Fha v Fhb v - - - v Fhh.
On the other hand ‘(dy)(x)Fxy’ becomes first: ‘
(x)Fxa v (x)Fxb v -+ v (x)Fxh
and then:
Faa .Fba ., --- . Fha .v.Fab .Fbb . --- .Fhb .v. -+ .v.
Fah . Fbh . --- . Fhh.

It was remarked in §16 that though in ordinary language the words
‘something’ and ‘everything’ masquerade as substantives, their be-
havior deviates from that of genuine substantives. Further examples
of such deviation are provided by (7) and (8). For, (7) might be put
into words as ‘Everything is identical with something’, and (8) as
‘Something is identical with everything’. If ‘everything’ and ‘some-
thing’ really behaved like names, we should expect these two state-
ments to be equivalent—and in fact we should expect both to be
false. But actually, as seen, (7) is true and (8) false. Further, if ‘noth-
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ing’ and ‘everything’ were genuine names we should certainly expect
‘Nothing is identical with everything’ to be false; actually, however,
this statement simply denies (8) and hence is true. Also we might
expect ‘Everything is identical with everything’ to be equivalent to
the truth ‘Everything is identical with itself’, whereas actually it
expresses the falsehood:

9 (x)(y)(x is identical with y).

One reason why quantificational analysis aids clear thinking is simply
that the spurious substantives ‘something’, ‘everything’, and ‘nothing’
(and their variants ‘somebody’, ‘nobody’, ‘everybody’) give way to a
less deceptive idiom.

The combination ‘(x)(y)’ in (9) is not to be thought of as some-
how a double quantifier; ‘(x)(y)Fxy’ is simply a quantification of
‘(y)Fxy’ as a whole. Whereas (1)-(8) show existential quantifications
within universal ones and vice versa, (9) shows universal within
universal. For another example of the latter kind, consider the
statement:

Whoever bets on every horse in the race loses little.
This becomes:
(x)(x bets on every horse in the race D x loses little),
wherein ‘x bets on every horse in the race’ gives way in turn to:
(y)(y is a horse in the race D x bets on y).
So the whole has the form:
(®[O)Fy O Gxy) O Hzl.

The following example, on the other hand, leads to existential quanti-
fication within existential:

Sadie stole something at the Emporium and exchanged it for some-
thing.

It becomes first:

(dx)(Sadie stole x at the Emporium , Sadie exchanged x for some-
thing)
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(cf. (20) of §16); then ‘Sadie exchanged x for something’ gives way in
turn to:

(dy)(Sadie exchanged x for y).

So the whole has the form:
(dx)[Fx . (dy)Gxy).

Clearly we must extend a quantification over a whole compound,
in representing the logical structure of a verbal statement, when the
statement contains a pronoun in the farther component which must
be construed as referring back to the quantifier. This point was illus-
trated in §16, (18)—(23). The point is brought out again by the
statements:

If you own any houses then you should sell them,
If you own any houses then your taxes will be high,

which become respectively:
(10) (x)(you own x . x is a house .D you should sell x),
(11) (Hx)(you own x . x is a house) D your taxes will be high.

These have the respective forms ‘(x)(Fxr D Gx)’ and ‘(Hx)Fx D p’.

But let it not be concluded that a quantification may cover a com-
pound only if both components refer back to the quantifier. On the
contrary, clauses lacking reference to the quantifier will also be per-
mitted hereafter within quantifications. Thus the statement:

(12) (dx)(you own x . x is a house .D your taxes will be high)

is to be admitted as legitimate along with (11), but must be distin-
guished from it; it has the form ‘(dx)(Fx D p)’ rather than ‘(dx)Fx O
#'. (12), unlike (11), comes out trivially true regardless of taxes as
long as there are things at all in the universe besides your houses.
For, the conditional:

you own x . x is a house .D your taxes will be high

which appears within (12) is true of all things other than your houses
simply because its antecedent is false of such things. (12) expresses an
unnatural but straightforward enough thought, and goes into un-
natural words as:
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There is something such that if it is a house of yours then your taxes
will be high.

Quantifiers are subject, in point of grouping, to the same conven-
tion which governs the negation sign (§4): a quantifier applies to the
shortest possible ensuing sentence or schema. In ‘(Hx)(Fx D p)’, or
(12), the quantifier is required by the parentheses to apply to the
whole conditional; in ‘(dx)Fx D p’ or (11), on the other hand, the
quantifier is understood as lying within the antecedent and applying
only to it. The distinction between ‘(dx)(Fx D p)’ and ‘(Hx)Fx D p’
can be reproduced generally in words thus:

There is something x such that if Fx then p,
If there is something x such that Fx then p.

It is just as essential to distinguish between ‘(x)Fxr D p’ and
‘(x)(Fx D p)’ as between ‘(dx)Fx D p’ and ‘(dx)(Fxr O p)’. In due
course we shall find, indeed, that ‘(x)Fx D p’ is equivalent to ‘(dx)
(Fx D p)’, whereas ‘(x)(Fx D p)’ is equivalent to ‘(Hx)Fx D p.’
However, this is a good point at which to stop anticipating formal
developments. The moral to be carried away from the present com-
ments is merely that parentheses are not to be lightly dismissed.

EXERCISES

1. Supposing the universe limited to @, &, « - - , 4, expand the quan-
tifications into alternation and conjunction in each of the following
examples:

®O)Fey,  (Ax)(TyFry,  (Tx)(Fx D p),  (T0)Fx D p.
Do each of the first two in two stages.
2. Rewrite these with help of quantification:

Every solid is soluble in some liquid or other,
There is a liquid in which every solid is soluble.

3. Rewrite this example (DeMorgan’s) with help of quantification:

If all horses are animals then all heads of horses are heads of animals.

4. Express, with help of quantification, the likeliest interpretation
of the statement:
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She had a ring on every finger.

5. Where ‘F’ means ‘harms’, and the universe is mankind, put this
unambiguously and idiomatically into words:

(®)[(»)(Fyx D Fxy) O Fxx].

Hint: As a first step put just the inside quantification into words,
retaining ‘x’.

6. Supposing the universe to comprise just the points on an endless
line, judge each of these three statements as to truth value and explain
your reasoning.

(x)(y) (=) (x is between y and 2),
(y)(dx)(d2)(x is between y and z),
(3x)(3z)(y)(x is between y and 2).

7. Express each of these statements with help of quantification, and
indicate its truth value:

Nothing is identical with nothing,
Something is identical with something,
Everything is identical with nothing,
Nothing is identical with anything.

§23. QUANTIFICATIONAL SCHEMATA AND PREDICATES

Throughout Part II the one letter used in quantification was ‘4’. It
served as a pronoun, for cross-reference to quantifiers. No letters
beyond ‘x* were needed because, in Part II, quantifications never
occurred within quantifications. Since each occurrence of ‘x’ stood
thus in a unique quantification, there could be no doubt as to which
occurrence of ‘(x)” or ‘(dx)’ a given occurrence of ‘x” referred back to.
With the advent of quantifications within quantifications, however, it
has become necessary to use distinctive letters ‘¢’ and ‘y’ to keep
cross-references straight. Quantifications can pile up in such a way as
to demand recourse also to ‘2’ and further letters.

Such letters are called variables. Care must be taken, however, to
divorce this traditional word of mathematics from its archaic conno-
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tations. The variable is not best thought of as somehow varying
through time, and causing the sentence in which it occurs to vary
with it. Neither is it to be thought of as an unknown quantity, dis-
coverable by solving equations. The variables remain mere pronouns
for cross-reference to quantifiers; just as ‘2’ in its recurrences can
usually be rendered ‘it’ in verbal translations, so the distinctive vari-
ables ‘x’, ‘y’, ‘2’, etc., correspond to the distinctive pronouns ‘former
and ‘latter’, or ‘first’, ‘second’, and ‘third’, etc. The statement:

(dx)[Sadie stole x at the Emporium . (dy)(Sadie exchanged x for )]
corresponds fairly literally to the words:

There is something such that Sadie stole it at the Emporium and
such that there is something such that Sadie exchanged the
former for the latter.

An occurrence of a variable in a sentence is called free in that sen-
tence when it is unquantified; i.e., when it neither stands in, nor
refers back to, any quantifier within the limits of the given sentence.
Thus the occurrences of ‘x’ in:

@) xisaman D xismortal,  xisa book . x is boring

are free therein, but the occurrences of ‘x’ in:
(x)(x is a man D x is mortal), (Hx)(x is a book . x is boring)
are bound, i.e. not free, in these sentences. In the sentence:

(2 (dx)(y is uncle of x)

the occurrence of ‘y’ is free, there being no ‘(y)’ or ‘(dy)’ present;
but the occurrences of ‘x’ are bound, because of ‘(Hx)’. One and the
same occurrence of ‘x’ may be bound in a whole sentence and free in a
part; the final occurrence of ‘%’ in (2), e.g., is bound in (2) but free
in the part ‘y is uncle of «°. In one and the same sentence, moreover,
one occurrence of ‘¢’ may be free and others bound; this happens in
the conjunction:

(3) x is red , (x)(x has mass),

in which the quantifier has to do only with the second clause. (3)
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means ‘x is red and everything has mass’, and could just as well be
written with distinct variables:

4) x is red . (y)(y has mass).

The sentences (1)-(4), in which one or more variables are free
(i-e., have free occurrences), are called open sentences; others are
closed. The notion of open sentence is broader now than in Part II,
but only in the ways necessitated by the broadening of quantifica-
tion: there are now other variables than ‘x’ to consider, and there is
now the phenomenon of quantification within quantification. A
sentence S can now contain a quantification and still have a free
variable, this variable being preparatory to the eventual imposition
of another quantifier covering S as a whole. Thus it is that we have
open sentences (2)—(4) containing quantifiers, whereas in Part II
only closed sentences were thought of as containing quantifiers.

By starting with ‘p’, ‘¢, ‘F¥’, ‘Gx’, ‘Fy’, ‘Gxy’, etc., and applying
quantifiers and the truth-functional notations, we obtain a category
of schemata which will be called guantificational schemata. These
include all the “uniform” quantificational schemata, i.e. the quantifi-
cational schemata of Part II, and they also include a wide variety of
further forms such as (1)-(6) of the preceding section. They also
include such mixtures as ‘(dx)Fx D p’ and ‘(dx)(Fx O p)’; and,
continuing to the extreme, they even include as a special case the
purely truth-functional schemata of Part 1. Just this restriction is to
be imposed: no one capital letter is to be allowed to recur in a schema
with different numbers of occurrences of variables attached, as in
‘(x)(Fx O Fxx)’ or ‘(x)(Fx O (dy)Fxy)’. Such combinations are
excluded because they would raise special questions of interpretation,
and there is no need of them.

Quantificational schemata, like sentences, will be called open if
they contain one or more free variables, and otherwise closed. Thus
the schema:

®)[Fx 3 (2y)(Gy . Hy)]
is closed, but its parts:

Fx D (dy)(Gy . Hyx),  (dy)(Gy.Hyx),  Gy.Hyx
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are all open. What were called open and closed schemata in Part II
are clearly still open and closed schemata, respectively, in the present
sense. Truth-functional schemata, e.g., ‘¢ D ¢’, count as closed.

In interpreting uniform quantificational schemata we found it con-
venient in §17 to dismiss all thought of ‘F’, ‘G’, etc. as representative
of terms, and to think of ‘Fx’, ‘Gx’, etc., rather in their entirety
as representing any open sentences. But this easy course is now at an
end, because of such examples as the one in the preceding section
about the philosopher:

5) (3y)[Fy . (x)(Fx D Gxy)] O (dx)(Fx . Gxx).

We cannot view ‘Fx’ and ‘Fy’ here as representing simply any pair of
open sentences having the respective free variables ‘x’ and ‘y.
Rather, if we construe ‘Fx’ as ‘x is a philosopher’ we must construe
‘Fy’ as ‘y is a philosopher’; if we construe ‘Fx’ as “x is a number’ we
must construe ‘Fy’ as ‘y is a number’. The admissible interpretations
of ‘Gxy’ and ‘Gxx’ in (5) are similarly tied together: if we interpret
‘Gxy’ as ‘x contradicts y’ we must construe ‘Gxx’ as ‘x contradicts x’.

A retreat to the view of capital letters as representing terms,
absolute and relative (cf. preceding section), thus seems indicated.
When a capital letter occurs monadically, i.e., with variables attached
singly (cf. ‘F’ in (5)), we may interpret it as representing an absolute
term; when it occurs dyadically, i.e., with variables attached pairwise
(cf. ‘G’ in (5)), we may interpret it as representing a dyadic relative
term; and so on. Thus ‘F’ and ‘G’ in (5) may be explained for purposes
of the example of the philosopher as representing respectively the
absolute term ‘philosopher’ and the dyadic relative term ‘contradicts’.

But, as stressed in §17, every open sentence having ‘x’ as sole free
variable must admit of being treated as of the form ‘Fx’. Likewise
every open sentence having ‘¢’ and ‘y’ as sole free variables must
admit of being treated as of the form ‘Gxy’; and so on. Thus, while
the terms appropriate to the philosopher example happened to be
readily specifiable in a word apiece, ‘philosopher’ and ‘contradicts’,
we find some awkwardness in fashioning a term which as interpreta-
tion of ‘F* will cause ‘Fx’ to represent:

(6) x used to work for the man who murdered the second husband
of x’s youngest sister
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(to recur to the example of §17); and the awkwardness involved verges
on genuine difficulty when we try to devise a reiative term which as
interpretation of ‘G’ will cause ‘Gxy’ to represent:

(7) x used to work for the man who murdered y and y was the second
husband of x’s youngest sister.

The best course now seems to be rather this third one: to supplant
the notion of term by that of predicate,* conceiving predicates arti-
ficially in the image of sentences as follows: a predicate is like a
sentence except that it contains the arbitrary sign ‘@', or ‘@’ and
‘@, or ‘@, ‘@), and ‘®)’, etc., in some places appropriate to free
variables. Then, where ‘Fx’ is to mean ‘x is red’, we explain ‘F’ not
as the term ‘red’ but as the predicate ‘@ is red’; where ‘Fx’ is to
mean (6) we explain ‘F’ as the predicate:

(8) @ used to work for the man who murdered the second husband of
@’s youngest sister;

and where ‘Gxy’ is to mean (7) we explain ‘G’ as the predicate:

(9) @ used to work for the man who murdered @) and @) was the
second husband of @’s youngest sister.

The circled numerals are merely numbered blanks showing where
the variables are to be put in passing from ‘F’ to ‘Fx’, or ‘Fxy’, etc.:
the leftmost of the variables is to be put for ‘@), the next for ‘@),
and so on.

If a meaning for these strange expressions called predicates be
demanded, e.g., for (8), an answer is ‘former employee of own young-
est sister’s second husband’s murderer’; for circled numerals may be
viewed simply as a supplementary device, more convenient and syste-
matic than those existing in ordinary language, for abstracting com-
plex terms out of complex sentences. Thus the shift which we have
made from terms to predicates can be viewed as a case merely of im-
proving and renaming the idea of term.

So far as our work is concerned, however, we can as well view these
predicates merely as auxiliary diagrams useful in specifying what

1If the reader has not yet forgotten the medieval sense of ‘predicate’ explained in the
small print of §14, let him do so now.
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open sentences are to be put for ‘Fx’, ‘Fy’, etc., or for ‘Fxy’, ‘Fyz’,
etc., in a schema. We shall not use predicates themselves as actual
parts of sentences, since the variables to which the predicates are
applied take the place of the circled numerals. Where ‘F’ is inter-
preted, e.g., as:

(10) (@ amuses @ more than y amuses ),
the schema:

(11) (dx)Fxy v (dx)Fyx .D (dx)Fxx
becomes:

(12) (3x)(y amuses x more than y amuses y) v
(dx)(x amuses y more than y amuses x) .D
(dx)(x amuses ¥ more than y amuses x).

The importance of the predicate (10) is as an intermediary diagram,
or so to speak a template or stencil, helpful in determining just what
combinations of sentences can legitimately be put, e.g., for ‘Fxy’,
‘Fyx’, and ‘Fxx’ in (11). It would be harder, without appeal to (10),
to detect the essential relationship between the arrangement of vari-
ables in (12) and that in (11).

1The use of “'predicates” in the form here described, as well as the notion of “introduc-
tion” taken up in the next paragraph, come from my Elementary Logic (pp. 119 ff.), where
they figured as devices for simplifying the formulation of substitution in quantification
theory. I used the word ‘stencil’ there instead of ‘predicate’; but I find the latter word
apter and more instructive, both because of its linguistic connotations and because of its
currency in modern logical writings to mean, in a vague way, that which a statement says
about something.—There is a use of circumflexed variables ‘€, ‘§’, etc., as old as Whitehead
and Russell’s Principia Mathematica (I refer to the internal usc as of Part I, Section B, not
to the circumflexed prefixes of Section C) which is surely best construed as amounting to
this present use of circled numerals; the formulas of Principia which contain such circum-
flexed variables might likewise, therefore, be spoken of as predicates. Whitehead and
Russell called such formulas “propositional functions,” in one of several ill-distinguished
senses of this phrase. At points they view those formulas as names of attributes, but identi-
fication of them with predicates in my sense need not affect this debatable point of philo-
sophical attitude. Accordingly, preferring old symbols to new, I should like to use ‘2”, ‘2,
‘¢, etc., instead of ‘@’, ‘@', ‘@, etc., and am deterred only by the fact that the circum-
flexed variables are harder to work with. Consider, e.g., the transformation of (11) into
(12): at cach occurrence of ‘F’ the positionally first variable following ‘F’ supplanted the
‘@’ of (10) and the positionally second supplanted ‘@)’. Using ‘@’ and ‘€’ instead of ‘@’
and ‘@’ in (10), we should have had to say that the positionally first variable after ‘F’ is to
supplant the alphabetically carliest circumflexed variable and the positionally second is to
supplant the alphabetically second; and this, though straightforward enough, would in
practice invite confusion.

[§23] QUANTIFICATIONAL SCHEMATA, PREDICATES 133

The complex operation of supplanting an occurrence of a predicate
letter’ and its attached variables by a predicate, and then putting
those successive variables for ‘@', ‘@, etc., in the predicate, will
be called sntroduction of the predicate az that occurrence of the predi-
cate letter. Such, then, is the operation whereby an interpretation
of a predicate letter in a schema is put into effect; not by just putting
the chosen predicate for all occurrences of the predicate letter, but by
introducing it at all occurrences of the letter.

But “introduction” is still imperfectly formulated. Consider, e.g.,
the predicate of being a mother, viz. ‘@ is a mother’, or more fully
‘(dx)(® is mother of x)’. When this is introduced at an occurrence of
‘F’, we want the effect to be that simply of interpreting ‘F’ as the
predicate of being a mother. Thus we want introduction of the predi-
cate to turn ‘Fx’, ‘Fy’, etc., into ‘x is a mother’, ‘y is a mother’, etc,
In the case of ‘Fy’ the result is indeed as planned; introduction of
“(dx)(® is mother of x)’ gives ‘(dx)(y is mother of x)’, meaning
‘y is a mother’. But in the case of ‘Fx’ the result is not as planned;
introduction of ‘(dx)(@® is mother of x)’ turns ‘Fx’ into the quite
irrelevant falsehood ‘(dx)(x is mother of x)’, devoid of free ‘x’ and
remote in meaning from the intended ‘x is a mother’. So the notion of
introduction must be subjected to this first restriction: Variables
entering the predicate in place of the circled numerals must not be
such as to be captured by quantifiers within the predicate.

Predicates, like sentences, will be called oper when they contain
free variables, and otherwise closed. Thus (10) is open, because of the
free ‘y’, whereas (8), (9), and ‘(dx)(® is mother of x)’ are closed.
Now introduction of an open predicate, say ‘@ caused y’, at an occur-
rence of ‘F’ is intended to turn ‘Fx’, ‘Fy’, etc., into ‘x caused y’,
‘y caused y’, etc., the indeterminancy of ‘y’ being retained. Corre-
spondingly it is intended to turn ‘(Hx)Fx’ (or ‘F something’) into
‘(dx)(x caused y)’ (or ‘Something caused y’). All these things turn
out, certainly, as planned. But difficulty arises when in place of
‘(dx)Fx’ we have ‘(dy)Fy’; for though this has quite the same mean-
ing as ‘(dx)Fx’ (viz. ‘F something’), the effect of introducing ‘®
caused 3 here is the quite irrelevant statement ‘(Hy)(y caused y)’,

n the past dozen sections, care has been taken to favor ‘F’, ‘G, etc., with no better
name than ‘capital letters’. Hereafter we may call them predicate letters.
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devoid of free ‘y’ and remote in meaning from the intended ‘Some-
thing caused y’. So the notion of introduction must be subjected still
to this second restriction: Variables free in the predicate must not be
such as to be captured by quantifiers in the schema into which the
predicate is introduced.

We may sum up the two restrictions symmetrically thus: Quanti-
fiers of the introduced predicate must not capture variables of the
schema in which the introduction takes place, and variables of the
introduced predicate must not be captured by quantifiers of the
schema in which the introduction takes place. These restrictions
simply ward off confusions of variables which, if allowed, would cause
“introduction” to deviate from its intended purpose of interpreting
predicate letters.

In turning quantificational schemata into sentences we have not
only predicate letters but also sentence letters to reckon with. For
sentences the appropriate operation of “introduction” is simpler,
there being no question of putting variables for circled numerals.
Introduction of a sentence at an occurrence of a sentence letter consists
merely in putting the sentence for the occurrence of the letter. The
first of the two restrictions set forth above, moreover, no longer has a
place, there being no circled numerals. But the second restriction
carries over: Variables free in the introduced sentence must not be
such as to be captured by quantifiers in the schema into which the
sentence is introduced. This restriction merely makes explicit the
understanding which governed the discussion of ‘(x)(Fx D p)’ and
‘(dx)(Fx D p)’ at the end of the preceding section; viz., that ‘p’
represents a sentence devoid of free ‘z’.

EXERCISES

1. Introduce each of the predicates:

@ is ashamed of x, x is ashamed of @), @ is ashamed of @

at the occurrence of ‘F’ in ‘Fx’. Compatibly with the restrictions on
introduction, which of these predicates can be introduced at the
occurrence of ‘F’ in ‘(dx)Fx’? What does the resulting statement
mean?
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2. Find a predicate which, introduced at the occurrences of ‘F’ in
‘Fxy D Fyx’, will yield:
Y=xy+y.D. x5 =y+x

3. Decide which of the following predicates may, compatibly with
the restrictions on introduction, be introduced at the occurrence of
‘F’ in ‘(dx)Fxy’:

@ praised (@ to @, @ praised y to @,
@ praised @ to @), (I9) (@ praised y to @),
@ praised x to @, (32)(@ praised z to @).

Put the results of those legitimate introductions into words, suppos-
ing the universe limited to mankind.

§24. VALIDITY OF QUANTIFICATIONAL SCHEMATA

The phrases ‘true of® and ‘false of® were adopted in §12, to begin
with, in connection with absolute terms. In §17 they were carried
over to open sentences, insofar as open sentences were there recog-
nized: sentences with ‘x” as sole free variable. Henceforward, however,
the useful application of those phrases is rather to predicates; for it is
predicates henceforward that the letters ‘F’, ‘G, etc., are thought of
as representing.

A predicate is called a one-place predicate if it contains ‘@)’, to any
number of recurrences, but no further circled numerals; a zwo-place
predicate if it contains ‘@’ and ‘@’ but no higher; and so on.' Now
a one-place predicate which is closed (devoid of free variables) may
be said to be zrue of or false of a given object according as the predi-
cate becomes a true or a false statement when ‘@’ is imagined to name
that object. Likewise the phrases ‘true of” and ‘false of’ may be used

1Predicate letters are said to occur monadically when followed by variables singly,
dyadically when followed by variables in pairs, and so on. The words ‘dyadic’, ‘triadic’,
etc., have been applied also to relative terms. But it is through no caprice that the words
‘monadic’, ‘dyadic’, etc., are being withheld from predicates in favor of ‘one-place’, ‘two-
place’, etc. In the next section we shall have occasion to speak of one-place “predicate-
schemata,” two-place predicate-schemata, etc., referring thereby (as in the present usage
in connection with predicates) to the number of circled numerals present; but we also

have occasion to speak of monadic and polyadic schemata, referring thereby rather to the
absence or presence of polyadically occurring predicate letters.
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of closed two-place predicates substantially as they were used of
dyadic relative terms (§22): a closed two-place predicate is true or
false of a given pair of objects according as the predicate becomes
true or false when ‘@’ and ‘@’ are imagined to name those respective
objects. Correspondingly for three-place predicates and higher. On
the other hand an open predicate cannot be said to be true or false of
an object, any more than an open sentence can be said to be true ot
false.

Likewise we may speak of extensions (cf. §§12, 17) of closed predi-
cates. The extension of a closed one-place predicate is the class of all
the things of which the predicate is true; the extension of a closed
two-place predicate is the class of all the pairs of which the predicate
is true; and so on. Open predicates have no extensions, just as open
sentences have nc truth values.

When we speak of “all interpretations™ it can make a difference,
we saw in §18, whether we mean all interpretative expressions or all
possible extensions, all classes. This matter is not changed by our
having switched to predicates. The point is relevant primarily, here as
in §18, to the definition of validity; and indeed the definition of
validity in §18 may, as far as it goes, be carried over directly to present
purposes. A schema is valid if and only if, for every choice of a
nonempty universe U, it comes out true under all interpretations
within U of its predicate letters; i.c., true for all subclasses of U as
extensions of its predicate letters. This definition does not yet cover
quantificational schemata in which predicate letters occur polyadic-
ally (i.e., followed by more than single variables), nor does it cover
quantificational schemata in which there are sentence letters or free
variables: first, however, let us pause for examples devoid of those
features. The ones devoid of those features are mostly just the ones
covered in §§18-21 under the head of uniform quantificational sche-
mata, but not entirely so. Here are four valid quantificational
schemata which, though devoid of polyadic letters and sentence
letters and free variables, still fall outside the category of uniform
quantificational schemata. As a group they show an interesting sym-
metry. All four will prove of basic importance to the next two sec-
tions.

1) O)=)Fx 2 B) (3) (@y)iFy O (x)Fxl.
@) G)Fy D (dx)Fx}, () @)[Ex)Fx D Fyi
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Suppose ‘F’ means ‘has mass’. (I.e., suppose ‘F’ interpreted as the
predicate ‘@ has mass’, or as having the class of objects with mass as
its extension.) Then ‘(x)Fx’ in (1) means ‘everything has mass’; and
accordingly (1) as a whole says that each object, no matter how se-
lected, is bound to be such that if everything has mass then 7 (the
selected object) has mass. Again ‘(dx)Fx’ in (2) says that something
has mass; accordingly (2) as a whole says that each thing is such that
if it has mass then something has mass.

(3) is less evident. It says there is something such that, if it has
mass, everything has mass. To see the truth of this statement clearly,
we must keep the meaning of the material conditional in mind. Now
if there is anything y lacking mass, the conditional ‘Fy D (x)Fx’
becomes true for such y (simply because of falsity of antecedent);
hence, if there is anything lacking mass, (3) becomes true. If on the
other hand everything has mass, ‘Fy D (x)Fx’ becomes true (by
truth of consequent) of each thing; so again (3) becomes true (pro-
vided merely that there is anything y in the universe at all).

(4), finally, says there is something such that, if there are any
objects at all that have mass, it has. Now if no objects have mass,
‘(dx)Fx D Fy’ becomes true (by falsity of antecedent) of each thing;
so (4) then becomes true (provided merely that there is anything y in
the universe at all). If on the other hand some object y does have
mass, ‘(x)Fx D Fy’ becomes true for such y (by truth of consequent),
a1d accordingly (4) again becomes true.

Next let us examine (1)—(4) in terms directly of the definition of
validity which preceded them. Actually the reasoning will be largely a
repetition of that which we have just now been through. To see that
(1) is valid, consider any universe and any interpretation, within that
universe, of ‘F’. Case 1: ‘F’ is interpreted as true of everything in the
universe. Then, for each object y in the universe, ‘(x)Fx D Fy’
becomes true because of true consequent; so (1) comes out true.
Case 2: ‘F’ is interpreted otherwise. Then, for each object y in the
universe, ‘(x)Fx D Fy’ becomes true because of false antecedent; so
(1) comes out true.

To see that (2) is valid, consider again any universe and any
interpretation of ‘F’. Case 1: ‘F’ is interpreted as true of nothing.
Then, for each object y, ‘Fy D3 (dx)Fx’ becomes true because of false
antecedent; so (2) comes out true. Case 2: ‘F’ is interpreted otherwise.
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Then, for each object y, ‘Fy D (dx)Fx’ becomes true because of true
consequent; so (2) comes out true.

To see that (3) is valid, consider any nonempty universe and any
interpretation of ‘F’. Case 1: ‘F’ is interpreted as true of everything.
Then, for each object y in the universe, ‘Fy D (x)Fx’ becomes true
because of true consequent; therefore (3) comes out true, there being
objects in the universe. Case 2: ‘F’ is not so interpreted. Then there is
an object y in the universe for which ‘Fy’ becomes false, and hence
‘Fy D (x)Fx’ true; so (3) comes out true.

The argument for (4) is left to the reader.

The broadening of our definition of validity to allow for polya-
dically occurring predicate letters offers no difficulty. Just as any
class of members of a universe U counts as an interpretation within U
of a monadically occurring predicate letter, so any class of pairs of
members of U counts as an interpretation within U of a dyadically
occurring predicate letter, and so on. Provision for sentence letters
likewise presents no difficulty, these being interpretable as usual by
assignment of truth values. So, postponing still a little the question of
free variables, we may define validity generally for closed quantifica-
tional schemata thus: A closed schema is valid if and only if, for every
choice of a nonempty universe U, it comes out true under all inter-
pretations within U of its predicate letters and all interpretations, by
truth-value, of its sentence letters.

The added clause concerning sentence letters in this definition
was irrelevant to the foregoing examples, there being no sentence let-
ters present. Moving now to the opposite extreme, consider any
schema which contains sentence letters to the exclusion of predicate
letters, and is hence merely a truth-functional schema as of Part L
It is now the other clause, that about predicate letters, that ceases to
be relevant; so our definition says merely that the schema counts as
valid if and only if it comes out true under every assignment of truth
values to its sentence letters. So validity under our new definition is
the same as in Part I so far as truth-functional schemata are concerned.

To turn next to an example involving both a predicate letter and a
sentence letter, the schema:

(5) (x)(Fx D p) =.(dx)Fx D p
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is valid. To see this, consider any universe, any interpretation of ‘F’
therein, and either truth value for ‘p’. Case 1: ‘p’ as true. For each
object x of the universe, ‘Fx D p’ comes out true (having true con-
sequent); so ‘(x)(Fx D p)’ comes out true. But ‘(dx)Fx D p’ also
comes out true, having true consequent. Case 2: ‘¢’ as false. By
resolution, ‘(Hx)Fxr D p’ becomes ‘—(Hx)Fx’. Likewise, for each
object x of the universe, ‘Fx D p’ amounts to ‘—Fx’, so that
‘(x)(Fx D p)’ amounts to ‘(x) —Fx’ and hence to ‘— (dx)Fx’.

Validity of (5) means equivalence of ‘(x)(Fx D p)’ to ‘(3x)Fx D p'.
This, it will be recalled, is one of the two equivalences which were
promised at the end of §22. Its significance is that a universally quan-
tified conditional, whose consequent lacks the variable in question,
can be rewritten with the quantifier confined to the antecedent pro-
vided it be changed to existential. Later (§29) we shall come upon a
whole set of such laws of confinement of quantifiers.

Our definition of validity still applies only to closed schemata
—schemata without free variables. But insertion of one more clause,
following the line of our definition of validity for open uniform
schemata in §18, yields finally a general definition: A quantificational
schema is valid if and only if, for every choice of a nonempty universe,
the schema comes out true under all interpretations within that uni-
verse of its predicate letters, all interpretations of its sentence letters,
and all choices of objects of the universe as interpretations of its free
variables.

Clearly then an open schema is valid if and only if its universal
closure, a closed schema formed from it by subjecting the whole to a
universil quantifier for each of its free variables, is valid. In particular
we may conclude that the open schemata:

(x)Fx D Fy, Fy D (dx)Fx
are valid, since (1) and (2) are their universal closures.

The above observation on universal closures is the extension to
general quantification theory of the law (i) of §18, which equated
validity of an open uniform schema with validity of its universal
quantification. But note that a law yet more closcly resembling (i)
itself in outward form also holds: A4 wuniversal quantification S' of an
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open schema S, with respect to any one of the free variables of S, is valid
if and only if S is valid. For, if there are no further free variables then
S’ is the universal closure of S; if on the other hand there are further
free variables, then some one closed schema is a universal closure both

of S’ and of S.

EXERCISES

1. Show that (4) is valid.
2. Do (1)-(4) go into valid schemata when ‘(y)’ is changed to
‘(dy)’ and ‘(Ay)’ to ‘(y)’? Justify your answers in detail.

§25. SUBSTITUTION IN QUANTIFICATIONAL SCHEMATA

We have known since §18 that substitution of truth-functional or
quantificational schemata for ‘p’, ‘¢’, etc., and of open schemata for
‘Fx’. ‘Gx’, etc., in valid schemata can be depended upon to yield
valid schemata. But when these matters were examined, quantifica-
tional schemata were being understood exclusively as uniform quanti-
ficational schemata.

In quantificational schemata in the general sense now at hand the
letters ‘F’, ‘G’, etc., may occur followed by other variables than ‘«’,
and even by several at a time. For this reason we were led in §23 to
abandon our old integral view of ‘Fx’, ‘Gx’, etc., in favor of treating
the separate letters ‘F’, ‘G’, etc. as representative of predicates.
Correspondingly we must now abandon the notion of substituting
schemata for ‘Fx’, ‘Gx’, etc., as wholes, and speak rather of substitu-
tions for ‘F’, ‘G’, etc.

But if, instead of speaking, e.g., of substitution of the schema
‘Gx v (dz)Hzx’ for ‘Fx’, we are to phrase the operation as somehow a
substitution for ‘F’, what sort of thing are we to regard as substituted
for ‘F'? Clearly a predicate-schema, ‘G® v (dz)Hz@)'. Predicate-
schemata are doubly artificial expressions conceived in the image of
sentence schemata (or ordinary quantificational schemata) but con-
taining circled numerals. Just as a predicate is like a sentence except
for containing ‘@', or ‘@’ and ‘@', etc., in some places appropriate
‘to free variables, so a predicate-schema is like a sentence schema ex-
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cept for containing ‘@’, or ‘@’ and ‘@, etc., in some places appro-
priate to free variables.

Substitution of a predicate-schema for a predicate letter is substi-
tution in an indirect sense: the sentence schema resulting from the
substitution does not actually contain the predicate-schema with its
circled numerals, any more than a sentence contains a predicate with
its circled numerals. Substitution of a predicate-schema for a predi-
cate letter in a sentence schema, e.g., ‘GQ@ v (d2)Hz(®’ for ‘F’ in
‘(x)Fx D Fy’, consists in introducing the predicate-schema at each
occurrence of the predicate letter, thus:

1) (x)[Gx v (H2)Hzx] D. Gy v (3z)Hzy.

The notion of “introduction” involved here corresponds exactly to
that in §23, and is subject to corresponding restrictions. Let us trans-
fer those formulations explicitly to our new sphere of activity:

Introducing a predicate-schema at an occurrence of a predicate
letter consists in supplanting that occurrence of the letter and its
attached variables by the predicate-schema with ‘@', ‘@), etc.,
changed respectively to those successive variables. Introducing a
sentence schema at an occurrence of a sentence letter consists merely
in putting the schema for that occurrence of the letter.

First restriction: Quantifiers of the introduced predicate-schema
must not capture variables of the schema in which the introduction
takes place.

Second restriction: Variables of the introduced predicate-schema or
sentence schema must not be captured by quantifiers of the schema
in which the introduction takes place. Finally

Substitution of a predicate-schema or sentence schema for a predi-

IThere will be little occasion to speak of predicate-schemata beyond the limits of the
present section. On the other hand sentence schemata, such as have been known up to
now as “quantificational schemata” and commonly just as “schemata,” will continue to
be the focus of attention for many sections to come. It would be unfortunate if references
to these latter had hereafter to be encumbered always with adjectives in order merely
to avoid confusion with the present transitory phenomenon of predicate-schemata. In
order that this may not be necessary, the double precaution will be taken of never referring
to predicate-schemata simply as schemata, but always by full title, and of hyphenating
the title as a reminder of its indissolubility. The word ‘schema’ without modifter will there-
fore continue to mean sentence schema as heretofore. Such time as predicate-schemata
continue to be in the air, however, the contrasting phrase “sentence schema™ will be
feld to for emphasis.
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cate letter or sentence letter consists in introducing the schema at all
occurrences of the letter. Only one-place predicate-schemata are to
be substituted for monadically occurring predicate letters (predicate
letters followed by single variables); only two-place predicate-sche-
mata are to be substituted for dyadically occurring predicate letters;
and so on.

One example of substitution was seen to lead to (1). Another exam-
ple, viz., substitution of ‘GO v —H®’ for ‘F’ and ‘Gy’ for ‘p’, leads
from:

2 (©)(Fx D p) =.(Ix)Fx O p ((5) of §24)

to:
(3) (x)(Gx v —Hx .D Gy) =. (Hx)(Gx v —Hx) D Gy.

In general the utility of substitution, here as in Parts I-1I, is as a
means of generating valid schemata from valid schemata. E.g., since
(1) and (3) were got by substitution in schemata which were seen in
§24 to be valid, we conclude that (1) and (3) are valid.

Substitution can be depended upon to transmit validity for essen-
tially the reasons already noted in §6 and §18. But it will be well to
review the matter now in the new setting. To begin with let us see
why it is that the above substitution in (2) yields a valid result.
Validity of the result (3) means truth under all interpretations of
‘G’ and ‘H’ and the free variable ‘y’, within any nonempty universe.
Suppose the universe fixed, then, and consider any particular choice
S of such interpretations; what we want to see is that (3) comes out
true under &. To see this we derive from & the following interpreta-
tions for the schematic letters of (2): we interpret ‘F” as having the ex-
tension which ‘GQ@) v — H@)’ comes to have under &, and we interpret
‘p’ as having the truth value which ‘Gy’ comes to have under J.
Being valid, (2) must come out true under these interpretations;
hence (3), which simply repeats (2) under these interpretations,
comes out true too.

More generally, suppose a sentence schema S’ obtained by sub-
stitution in S. Each free variable and each schematic letter in S has
a correspondent among the materials of S’; this correspondent is in
each case either the same letter over again, or else a substituted
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sentence schema or predicate-schema. Now given any choice ¥ of
interpretations for the free variables and schematic letters of §', let us
adopt as interpretation of each free variable or schematic letter of S
the same object or truth value or extension which has already accrued
to its correspondent through &. S, so interpreted, matches S’ as
interpreted by &. Since this works for each choice of §, we see that
$’ is valid (or true for all interpretations) if S is.

The function of the two restrictions on introduction is to assure
that the correspondents just now spoken of really correspond (cf. §23).
Let us now have some examples showing how substitution can fail to
transmit validity when the restrictions are violated.

Substitution of ‘(fy)G@y’ for ‘F’ in ‘(x)Fx D Fy’, in violation of
the first restriction, would yield:

(4 (x)(y)Gxy D (dy)Gyy:  (invalid)

That this is not valid, despite the validity of ‘(x)Fx D Fy’, is seen by
confining the universe to persons and interpreting ‘G’ as ‘() is mother
of @’; thereupon the antecedent of (4) becomes true (‘everyone has
a mother’) and the consequent false.

Substitution of ‘Gx@)’ for ‘F’ in ‘(x)Fx D Fy’, in violation of the
second restriction, would yield:

(5) (x)Gxx D Gxy.  (invalid)

That this is not valid may be seen by taking ‘G’ as ‘identical with’;
then (5) says ‘If everything is identical with itself then x is identical
with y’, and this is clearly not true for every choice of x and y. Or, to
restate this refutation in more explicit relation to the definition of
validity: when we adopt a universe of two or more objects, and take
one of these objects as interpretation of the free ‘x” of (5) and a differ-
ent one as interpretation of ‘y’, and interpret ‘G’ as having the
extension of ‘@ is identical with @, thereupon (5) becomes false.
In (1), the expressions ‘Gr v (32)Hzx’ and ‘Gy v (dz)Hzy’ which
supplanted the ‘Fx’ and ‘Fy’ of ‘(x)Fx D Fy’ are symmetrical in ‘¢’
and ‘y’: the one expression has ‘x’ where, and only where, the other
has ‘y’. In the invalid substitution which led to (5), on the other
hand, the expressions ‘Gxx” and ‘Gxy’ which supplanted ‘Fx’ and
‘Fy’ fail to show this symmetry; ‘Gxy’ does not have ‘y’ everywhere
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that ‘Gxx’ has ‘x’. The reader must be warned that this asymmetry
has nothing to do with the invalidity of (5). It is unnecessary, in
general, for the expression supplanting ‘Fx’ to have ‘¢’ where and only
where the expression supplanting ‘Fy’ has ‘y’. It is quite proper,
e.g., to substitute ‘GQy’ for ‘F’ in ‘(x)Fx O Fy’ and infer the validity
of:

© (x)Gxy > Gyy

(e.g., ‘If everyone hates y then y hates himself’). Despite the asym-
metry of ‘Gxy’ and ‘Gyy’ with respect to ‘x” and ‘y’, (6) is a genuine
special case of ‘(x)Fx D Fy’, as a verbal comparison immediately
reflects: ‘If everything is an F then y is an F’; ‘If everything isa G
of y then y is a G of y’; ‘If everyone is a Herbert-hater then Herbert
is a Herbert-hater’.

To be assured of the correctness of a substitution, we need look
only to these points: we must be able, on demand, to specify the
actual sentence schema or z-place predicate-schema which is substi-
tuted for the sentence letter or n-adically occurring predicate letter;
we must be sure that the sentence schema or predicate-schema has
been “introduced” at each occurrence of the letter; we must be sure
that at each point of introducing the predicate-schema the particular
variables there appended to the predicate letter have been put for the
circled numerals; and finally we must be sure that the substitution
has not led to new capturing of variables by quantifiers, in violation
of the two restrictions.

Let us now shift from ‘(x)Fx D Fy’ to another schema whose valid-
ity was likewise noted in the preceding section, viz., ‘Fy D (dx)Fx’.
From this we may proceed to:

@) Gyy D (dx)Gxy

by the legitimate substitution of ‘G@y’ for ‘F’; but it would be ille-
gitimate to substitute ‘Gx(@’ for ‘F’ and thus proceed to:

8 Gxy D (dx)Gxx.  (invalid)
An example of (7) is ‘If Herbert hates himself then someone hates

Herbert’, which is quite unexceptionable; but an example of (8) is
‘If Amos is uncle of Herbert then someone is uncle of himself’.
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Note that though the same principles of substitution are operative
here as before, the pair (7) and (8) is rather opposite in appearance to
(6) and (5). The valid (6) had unlike variables in the antecedent and
like variables in the consequent, but in the valid (7) the opposite
is the case.

As far as substitution in our particular examples ‘(x)Fx D Fy’ and
‘Fy D (dx)Fx’ is concerned, note that the net effect of the two
restrictions is just this: the respective sentence schemata S, and S,
which come to supplant ‘Fx’ and ‘Fy’ must be alike except that S,
has free ‘y’ wherever S, has free ‘x’. (S, and S, may also have addi-
tional free occurrences of ‘y’, as seen in (6) and (7).) Any such S, and
S, can be made to supplant ‘Fx’ and ‘Fy’, in ‘(x)Fx D Fy and
‘Fy D (dx)Fx’, by substituting for ‘F’ the predicate-schema which is
like S, except for having ‘@’ in place of all free ‘%’. So, insofar as we
are concerned merely with substitution in ‘(x)Fx D Fy’ and ‘Fy D
(dx)Fx’, we may omit all thought of predicate-schemata, instead
directly supplanting ‘Fx’ as a whole by any sentence schema S, con-
taining free ‘«’, and ‘Fy’ by a schema S, which is like S, except for
having free ‘y’ in place of all free ‘x’.

But when we substitute for ‘F’ in the valid closed schemata:

©) OlxFx 3 B, 11) (@y)[Fy 3 (x)Fxl,
(10) G)[Fy > (dx)Fx), 12) (@y)[Hx)Fx D By

of the preceding section the effect of the two restrictions is more
stringent: the sentence schemata S, and S, which supplant ‘Fx’ and
‘Fy’ here must be alike except that S, has free occurrences of ‘y’ in
all and only the places where S, has free occurrences of ‘x’. For, the
second restriction requires that the predicate-schema substituted for
‘F’ be devoid of free occurrences of ‘y’, in view of the initial quantifiers
in (9)-(12).

Thus, whereas it was allowable to substitute ‘G@y’ for ‘F’ in ‘(x)Fx
D Fy and ‘Fy D (Jx)Fx’ 50 as to obtain (6) and (7), it is forbidden
to make the same substitution in (9)-(12) so as to obtain:

(13) MGy D Gyl  (15) (@Y)[Gyy O (x)Gxy),
(14) (»[Gyy O (Hx)Gxy], (16) (Ay)[(Tx)Gxry D Gyyl. (invalid)

(invalid)
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(13) and (14) happen indeed to be valid anyway, but only because
they are the universal closures of the valid open schemata (6) and (7).
(15) is not valid, as may be seen by adopting a universe of two or
more objects and interpreting ‘G’ as ‘is identical with’. (‘Gyy’ there-
upon becomes true and ‘(x)Gxy’ false for every object y; hence
‘Gyy D (x)Gxy’ becomes false for every object y; thus (15) comes out
false.) Likewise (16) is uot valid, as may be seen by interpreting ‘G’
as ‘is distinct from’.

The line to be followed in ensuing sections happens to be such in
the main as to call for no substitution for polyadic predicate letters,
and indeed no substitution even for monadic predicate letters else-
where than in five of the specific schemata in which illustrative sub-
stitutions have already been made in the present section; viz.,
‘(x)Fx D Fy, ‘Fy D (dx)Fx’, (2), (11), and (12). We have already
noted short-cut characterizations of the legitimate substitutions in all
of these except (2). In ‘(x)Fx D Fy’ and ‘Fy D (dx)Fx’ we may put
S and S, for ‘Fx’ and ‘Fy’ provided merely that S, has free ‘y’ wher-
ever S, has free ‘x’. In (11) and (12) we may put S, and S, for ‘Fx’
and ‘Fy’ only in case S, has free ‘y’ where and only where S, has free
‘¢c’. The corresponding condition for (2) is evident: we may put any
sentence schemata for ‘Fx’ and ‘p’ provided that ‘x’ is free in the
former only.

EXERCISES

1. List all the schemata whose validity can be shown by legitimate
substitution of one or another of the following predicate-schemata for
‘F’in ‘(x)Fx D Fy’ or ‘Fy D (dx)Fx’ or (2) or (11) or (12):

Gx® v Gy, GxOvGLx, GYOvGLy, M(GYDvGCLy).

Taking the universe as the members of the council and interpreting
‘GOE®’ as ‘@ denounced (@)’ and ‘p’ as ‘steps must be taken’, put
the results into ordinary language.

2. Determine which of the following schemata are legitimately
obtainable from ‘(x)Fx D Fy’ or ‘Fy D (dx)Fx’ or (2) or (11) or (12)
by substitution. Identify the substituted predicate-schema in each
case.
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(x)Fxx O Fyy, Gyx D (dx)Gxy,
(qx)[{Gxx O (dy)Gyyl, (4y)[Gy . Hz .D. (x)Gx . Hz],
(x)(Gyx D Hxz) D.Gyy D Hyz, Gry.Hyz.D (dx)(Gxx . Hxz),
Gy . (2)(Gy D Gz) .D (Ax)[Gx . (2)(Gx D Gz)],
() (Gxy D Gyy) D Gyyl =. (Tx)(»)(Gxy D Gyy) I Gyy.

§26. LAWS OF IMPLICATION

In general quantification theory as elsewhere, implication may be ex-
plained as validity of the conditional. Thus, in view of the validity of
‘(x)Fx D Fy,

() “(x)Fx’ implies ‘Fy’;
and, in view of the validity of ‘Fy D (dx)Fx’,

(i1) ‘Fy’ implies ‘(dx)Fx’.

We saw in the preceding section how to generate valid schemata
from valid schemata by substitution. Now substitution serves like-
wise to generate implications from implications, since implication Is

validity of a conditiona! schema. E.g., from (i) we conclude by sub’
stitution that

“(x)[Gx v (Hz)Hzx] implies ‘Gy v (Hz)Hzy’
and ‘(x)Gxy' implies ‘Gyy’.

In affirming these implications we merely reaffirm the validity of the
conditionals (1) and (6) of the preceding section.

Implications obtained thus by substitution in the particular exam-
ple (i) are going to be so important for ensuing developments that a
special phrase is needed for them; they will be said to hold by wniversal
instantiation. Thus ‘(x)Fx’ is said to imply ‘Fy’ by universal instantia-
tion; ‘(x)Gxy’ is said to imply ‘Gyy’ by universal instantiation; and
similarly for any other results of substitution in (i), subject of course
to the restrictions in the preceding section. As noted, those restric-
tions boil down in the present instance to the following: the schemata
S, and S, which supplant ‘Fx’ and ‘Fy’ must be alike except that S,
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has free occurrences of ‘y’ in all places where S, has free occurrences of
x’.

But there is no need here to adhere to the particular letters ‘x’
and ‘y’. The same argument which showed ‘(x)Fx D Fy’ to be valid
also shows ‘(y)Fy D Fa' to be valid, and ‘(2)Fz D Fu’, etc.; the choice
of letters for variables is immaterial. We may even choose the same
letter for both parts, as in ‘(y)Fy D Fy'; the last ‘y’ being beyond the
reach of the quantifier, ‘(y)Fy D Fy’ differs none in meaning from
‘(x)Fx O Fy'.

Accordingly, getting away from the particular choice of variables
‘¢’ and ‘y’, we may phrase our definition thus: Where ¥ and V" are
any variables, and S and §' are alike except that §” has free occurrences
of V7 at all places where S has free occurrences of V, the universal
Juantification of S with respect to Vis said to imply S’ &y universal
instantiation. It is to be kept in mind that S and S’ may contain free
occurrences of V’ over and above those which supplant V; this has
already been illustrated by the example of ‘(x)Gxy’ and ‘Gyy’. Also,
as noted, ¥’ may even be V, in which case §" is S; thus ‘(y)Fy’ implies
‘Fy’ by universal instantiation.

Implications obtained by substitution in the particular example (ii)
will be said to hold &y existential generalization. Thus ‘Fy’ itself is
said to imply ‘(dx)Fx’ by existential generalization; also ‘Gyy’ is said
to imply ‘(x)Gxy’ by existential generalization (cf. (7) of the pre-
ceding section). The phrase will be used also where the variables are
other than ‘¢’ and ‘y’; in general, thus, whenever V, V7, §, and §’ are
as in the preceding paragraph, §’ is said to imply the existential
quantification of S with respect to V by existential generalization.

Let us not lose sight of the curious contrasts noted in the preceding
section among (5), (6), (7), and (8). Thus ‘(x)Gxy’ implies ‘Gyy’
and ‘Gyy’ implies ‘(dx)Gxy’, but ‘(x)Gxx’ does not imply ‘Gxy’, nor
does ‘Gxy’ imply ‘(Hx)Grx’. Also ‘(x)(dy)Gxy’ does not imply
‘(dy)Gyy’; cf. the discussion of (4) in the preceding section. All such
strictures upon universal instantiation and existential generalization
are exactly provided for in the above general formulations in terms
of 'V, ‘v, ‘8, ‘S".

There are of course no end of further implications besides those by
universal instantiation and existential generalization. In particular
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the implications between truth-functional schemata, studied in Part
I, qualify still as implications for quantification theory. For implica-
tion is simply validity of the conditional, and we have seen (§24) that
a truth-functional schema which is valid in the sense of Part I counts
also as a valid schema in the sense of quantification theory. Moreover,
since substitution generates implications from implications, the impli-
cations between truth-functional schemata afford a basis from which to
generate implications between other schemata. E.g., since ‘pg’ implies
‘¢’, we conclude by substitution that ‘Gx . (y)Fy’ implies ‘Gx’.
Implications thus derivable are said to hold zruth-functionally.

Given any two quantificational schemata, we can decide mechanic-
ally whether the one implies the other truth-functionally. We have
only to put ‘p’, ‘g, etc., for the components so as to obtain purely
truth-functional schemata, and then test these latter for implication
as in §7. E.g., to decide whether the schema:

(x)(Fx . Gx) D Gy .D (dx)Fx
truth-functionally implies the schema:

(dx)Fx v (dx)(Fx . Gx)

we first abstract the superficial truth-functional structures by putting
‘¢’, ‘q’s and ‘7" for the components, thus: ‘p 3 ¢ .0 7, ‘r v p’. Then
we test these truth-functional schemata for implication in a fell swoop:

154.01
1

and find that ‘p O ¢ .D 7’ implies ‘7 v p’.

Besides deciding thus mechanically whether one schema implies
another truth-functionally, we can of course decide by inspection
whether any schema implies another by universal instantiation or by
existential generalization. But these three types of implication are
very special. A technique has still to be developed, in ensuing sections,
for establishing implication in general—and similarly for validity.
The three special types of implication just now singled out will, how-
ever, contribute in a fundamental way to that general technique.

The development of that technique will depend also upon various
broad principles of implication such as have been familiar since §7.
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These principles need to be re-established quite explicitly for general
quantification theory, in view of the increased complexity of the sub-
ject matter. One such principle is this:

(iii) Any schema implied by a valid schema is valid.

Let $’ and S be any schemata such that §’ is valid and implies S. We
want to show that S is valid. I.e., we want to show that S comes out
true under all interpretations of its schematic letters and free vari-
ables, in any nonempty universe. Suppose, then, any nonempty
universe, and any choice & of interpretations for the schematic
letters and free variables of S. We want to show that S comes out true
under & Now if there are schematic letters or free variables in S’
additional to those of S, let us give them arbitrary interpretations
supplementary to &, say as follows: empty extensions for the addi-
tional predicate letters, truth for the additional sentence letters, and
some one arbitrary object of our nonempty universe for all the
additional free variables. Let &, thus supplemented, be called 3.
Now &’ comes out true under &, since S’ is valid. Also the condi-
tional whose antecedent is 8” and whose consequent is S comes out
true under &', since it is valid (for, §” implies S). Therefore S comes
out true under §'; for, any true conditional with true antecedent has
a true consequent. Then, since ' differs none from & so far as S is
concerned, S comes out true under .

Illustration of (iii): Since the valid schema ‘(x)Fx D Fy' truth-
functionally implies ‘—Fy D —(x)Fx’, we may conclude that
‘—Fy D —(x)Fx’ is valid (and hence that ‘—Fy’ implies ‘— (x)Fx’).

Another law of implication, likewise familiar since §7, is this:

(iv) A valid schema is implied by any schema.

That this continues to hold for quantification theory is readily seen,
Any schema § truth-functionally implies the conditional which has S
as consequent and any schema § as antecedent. By (iii), then, that
conditional is valid if S is valid. But validity of the conditional means
that 8’ implies S.

Now to an even more evident law regarding validity:

(v) Any conjunction of valid schemata is valid.
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For, consider a conjunction of valid schemata S, , S, , --- . If any
universe is adopted and any interpretations are fixed upon for the
schematic letters and free variables of the conjunction, then each
of S, S,, -+ will come out true (being valid), and hence so will the
conjunction.

There follows another law of implication:

(vi) If a schema implies each of several, it implies their conjunction.

Suppose S implies each of S, , Sz, -+ . That is to say, the conditional
having S as antecedent and S, as consequent is valid; so also is the
conditional having S as antecedent and S, as consequent; and so on.
By (v), then, the conjunction of these conditionals is valid. But this
conjunction truth-functionally implies the conditional whose ante-
cedent is S and whose consequent is the conjunction of §; , S5, --- .
By (iii), then, this latter conditional is valid. Le., § implies the con-
junction of S, , S, -+~ .

Tllustration of (vi): Since ‘Fy’ implies ‘Fy v Gy’ truth-functionally,
and also implies ‘(x)Fx’ by existential generalization, we may con-
clude that ‘Fy’ implies ‘Fy v Gy . (dx)Fx’.

Another law, familiar since §7, is this:

(vii) If S, implies Sy and S, implies Sy then S, implies S, .

This can be established by an argument similar in its main lines to that
of (vi). The details are left to the reader.

Tlustration of (vii): Since ‘(x)Fx’ implies ‘Fy’ by universal instan-
tiation, and ‘Fy’ implies ‘(dx)Fx’ by existential generalization, we
may conclude that ‘(x)Fx’ implies ‘(dx)Fx’.

A further law which will be convenient is this:

(viii) If the conjunction of S, and S, implies S , then S, implies the
conditional whose antecedent is S, and whose consequent s Sy .

Let us represent Sy as *- - - +*, Sz as ‘-~ -, and S as ‘—". By hypoth-
esis, the conditional:

) —
is valid. But it truth-functionally implies the conditional:

e Y, —
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which accordingly is valid by (iii). But this means that ‘----’, or
S , implies *--- D ’,

Tlustration of (viii): Since ‘Fy . Gy’ implies ‘(dx)(Fx . Gx)’ by
existential generalization, we may conclude that ‘Fy’ implies ‘Gy 2
(dx)(Fx . Gx)'.

Illustration of the illustration: Take ‘Fy’ as:

The Platte is a broad river,
and the implied ‘Gy D (Hx)(Fx . Gx)’ as:
If the Platte is shallow then some broad rivers are shallow.

In preparation for later work we must still note one more law of
implication. This one is less elementary in character than the fore-
going ones.

(ix) If the existential quantification of a schema S with respect to a
variable V is valid, then any schema S’ is valid which is implied by S and
lacks free V.

Supposing V to be ‘x’, let us represent Sas ‘- - -x- - -* and the implied
schema &' as ---". By the definition of implication, the conditional:
(1) ...x...'D.---

is valid. Therefore so is:

@ TS

(cf. §24). But the schema:

G) (@) (- oxeee D om) =1 (TR)(oexee) Do -ee

is valid, being a result of substitution in (2) of the preceding section.
Also, by hypothesis, ‘(Jx)(- - +x---)’ is valid. By (v), then, the con-
junction of ‘(dx)(- - -x- - -)’ with (2) and (3) above is valid. But this
conjunction implies ‘---> truth-functionally. (For, a test shows that
‘pqg :q =.p D r implies ‘7’. The method here is a fell swoop, levelling
out into an inconsistency test of ‘pg . g = §’ by truth-value analysis.)
By (iii), then, ‘---" is valid.

Tlustration of (ix): Take Vas‘y’, Sas ‘Gy D p .20 (x)(Gx D p)’,
and &’ as ‘p D (x)(Gx D p)’. The existential quantification:

@Gy 3 p .2 (x)(Gx D p)]

827} DEDUCTION is3

of S is valid, by substitution in (11) of the preceding section. But
S truth-functionally implies §’. (For, it is found in a fell swoop that
‘g D p.D 7 implies ‘p D r’.) Moreover, S’ lacks free ‘y’. So we may
conclude, by (ix), that 8 is valid. Our conclusion may also be phrased
thus: ‘p’ implies ‘(x)(Gx D p)’.

Illustration of the illustration: Take ‘p’ as:

O’Donohue is incorruptible

and ‘Gz’ as ‘O’Donohue is offered #’. Then the ‘(x)(Gx D p)’ which
‘p’> has been found to imply becomes:

No matter what O’Donohue may be offered, O’Donohue is
incorruptible.

EXERCISES

1. Establish (vii).

2. Since ‘(x)Fx’ implies ‘Fy’ and also ‘Fz’ by universal instantia-
tion, what further schema must ‘(x)Fx’ imply according to (vi)? Cite
a schema which this implied schema implies in turn by existential
generalization. Finally, from the two implications thus far obtained
in this exercise, infer a further implication by (vii).

3. Starting with the fact that ‘Fx v Gx . Fx v —Gx’ truth-func-
tionally implies ‘Fx’, deduce by means exclusively of (viii), (vii), and
existential generalization that

‘Fx v Gx’ implies ‘(dy)(Fxv —Gy .D Fx)'.

4. Starting with an appropriate truth-functional implication and
an appropriate implication by existential generalization, show by one
appeal to (vii) and one appeal to (viii) that

‘Fx’ implies ‘—Gx D (d2) —(Fx D Gz)’.

§27. DEDUCTION

Chain reasoning of the sort allowed by (vii) above proves so important
as a technique of quantification theory that a special form of notation
will be used to indicate it. The example cited in connection with (vii)
appears as follows in the new notation.
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*(1)  (®)Fx
*(2) By oy
*3)  (@x)Fr (2

The first star has the sense of ‘suppose’, and the succeeding stars mark
consequences of that initial premiss. The numbers on the left are for
reference, and the numbers on the right are references back; thus the
‘(1) at the right indicates that the line in which it stands, (2), is
got from (1), and the ‘(2)’ at the right indicates that (3) is got from
(2). The upshot of the whole is that (1) implies (3). The whole array
is called a deduction.

Implication of (3) by (1) is validity of a conditional having (1) as
antecedent and (3) as consequent. So we may, if we like, supplement
the above deduction with a valid last line, thus:

(1) (Fx
(2 by 1)
*(3)  (@xFx )

4) (x)Fx O (dx)Fx *(3)

The absence of a star as prefix to (4) means that this line is not, like
(2) and (3), merely shown to hold if (1) holds; it is shown to hold
absolutely. The star attached to the reference at the right means that
a star was left behind with (3). Whereas a starred line in a deduction
purports merely to be implied by the premiss at which the column of
stars began, an unstarred line claims validity. In general, as in the
above example, an unstarred line may be got from a starred one (re-
ferred back to by a starred numeral at the right) by incorporating,
as antecedent of a conditional, the premiss with which that column
of stars began. This way of getting a line is called conditionalization.

Unstarred lines which are thus proved valid by conditionalization
are limited in form to conditionals. However, further unstarred lines
of other forms may be deduced in turn from them, as at the end of
the following deduction:

*(1)  (x)(Gx.—Gx)

*(2) Gy.—Gy (1)
(3) (x)(Gx . —Gx) D.Gy . —Gy *(2)
4 —®(Gr.—GCx) (3)
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Here the premiss (1) is taken as starting point and then (2) is put
down, with star, as implied by (1). This implication is by universal
instantiation, Next (3) is got by conditionalization. Finally (4) is put
down as implied by (3). This implication is truth-functional; for,
thinking of ¢’ in place of ‘(x)(Gx . —Gx)’ and ‘¢’ in place of ‘Gy’,
we may verify in a fell swoop that ¢ D 47" implies ‘7’ The result (4)
is put down unstarred (hence as valid) because the line (3) which
implied it was unstarred; thus the principle of reasoning involved here
is (iii) of the preceding section, rather than (vii).

Conditionalization will be used not only to get unstarred condition-
als, which are valid, but also to get starred conditionals, which are
merely implied by prior premisses. The technique involved here is
one of multiple starring, as in the following deduction:

1) FOp

**(2) (x)Fx

**(3) Fy )
**(4) p ®G)

*(5) (x)Fx D p *(4)

Here we begin with the premiss (1), and what we want to show is
that, on this assumption, (5) holds. As an intermediate step toward
this end we adopt (2), the antecedent of the desired conditional (5),
as a temporary additional premiss, with the intention of getting rid of
it before we are through. With (2) we start a second column of stars.
Line (3), then, is set down as implied by (2); this implication is by
universal instantiation. (3) has, like (2), to bear the additional star;
for, (3) has not been justified on the basis merely of the initial
premiss (1), but depends on (2). (4), next, is put down as implied by
the conjunction of (1) and (3); this implication is truth-functional.
(4), like (3), has to bear the extra star; for, in deriving (4) we had to
suppose (3) to hold, and (3) had the extra star. In the final step of
conditionalization, however, we get rid of the extra star; for the added
premiss (2) which started the second column of stars has been incor-
porated into (5) as antecedent, and so is no longer depended upon as
an outside assumption. But (5) still carries the one star, for the deriva-
tion of (5) is contingent still on the premiss (1); our deduction does
not show (5) valid, but shows only that (1) implies (5). We could, of
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course, by an additional step of conditionalization, supplement our
deduction with an unstarred and valid sixth line, thus:

(6) FyDp.D.(x)FxDp *(5)

The result (6) is uninteresting, for clearly the familiar valid
schema ‘(x)Fx D Fy’ truth-functionally implies (6). Nor can we hope
for interesting results until our present technique of deduction has
been completed, in the next section, by the addition of two more
rules. Meanwhile, however, let us consolidate our position. Our pres-
ent rules of deduction need to be justified with some care; for it is not
immediately evident, particularly when conditionalization is com-
bined with multiple starring, that our deductions can always be de-
pended upon to establish the implications or validities which they
purport to establish. So let us now make our rules more explicit
and justify them. First I define some terms.

If a line in a deduction stands alongside one or more columns of
stars,’ the several lines at which those columns of stars begin will be
called premisses of the line in question. Thus a line has as many prem-
isses as stars. In the example last set forth, lines (1) and (5) have the
single premiss (1); lines (2)-(4) have the premisses (1) and (2); and
the added line (6) has no premisses.

The word ‘subjoin’ will hereafter be used in a technical sense, as
follows. Subjoining a line, numbered (7) say, to one or more lines (7),
(7)s -+~ » (m), consists in writing (n) as a line later than all of (z), (),
-++, (m), and alongside all the columns of stars (at least) which pass
alongside any of the lines (7), (§), -+ - , (m), and appending numerals
to line (») referring back to all of (¢), (), « - - , (m). Thus, in the exam-
ple last set forth, line (3) is subjoined to (2), and line (4) is subjoined
to (1) and (3).

It is evident from the above definitions that where () is subjoined
to (), (), -+- , (m), all premisses of any of (7), (7), -+~ , (m) are
among the premisses of (7).

The next definition introduces a curious extension of the notion of
subjunction, preparatory to the formulation of the rule of condition-
alization. Let us speak of subjoining a line (n) to a line and star, «(m),

*What I call a column of stars is uninterrupted. In case of interruption, the
segments above and below count as two columns and are irrelevant to each other.
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in this sense: such subjunction consists in writing (7) as a line later
than (m) and alongside all but the innermost of the columns of stars
which pass alongside (), and appending a starred numeral to line ()
referring back to (m). In the illustrative deduction last set forth, line
(5) is subjoined to *(4); and the added line (6) is subjoined to *(5).
In general, where (n) is subjoined to *(m), all but the last of the
premisses of () are premisses of (7).

Now we are ready for the rules.

Rule of premisses (P): We may set down any schema as a line at any
stage in the course of a deduction, provided that we initiate a new
innermost column of stars at that point.

Rule of universal instantiation (UI): To any line we may subjoin,
as a new line, any schema which the given line implies by universal
instantiation.

Rule of existential generalization (EG): To any line we may subioin,
as a new line, any schema which the given line implies by existential
generalization.

Rule of truth-functional inference (TF): To any line or lines we may
subjoin, as a new line, any schema which is truth-functionally implied
by the given line or by the conjunction of the given lines.

Rule of conditionalization (Cd): To any line and star, *(m), we may
subjoin the conditional whose consequent is the same as () and whose
antecedent is the same as the last. premiss of ().

The reader will do well to identify, for each line in the various
illustrative deductions thus far set forth, the rule which authorizes it.

Now what we want to show by way of justifying our rules is that in
every deduction constructed by those rules the last line can be de-
pended upon to be implied by its premiss or by the conjunction of its
premisses, or, lacking premisses, to be a valid schema. It will be con-
venient to rephrase the matter by speaking of a deduction as sound in
any one of its lines if that line is a valid schema, or has a premiss
which implies it, or has premisses whose conjunction implies it. In
these terms, what we want to show is that every deduction by our
rules is sound in its last line. It is just as easy, actually, to establish
this more sweeping thesis: Every deduction by our rules is sound in
every line.

The proof that deductions are sound in every line will take the
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following form. It will be shown that @ deduction is sound in any line
if sound in all earlier lines. But any deduction is clearly sound in its
first line, since the first line is bound to be a premiss and hence its
own premiss. So, once we have proved the law just now italicized, it
will follow that all deductions are sound in their first two lines.
Thence, by the same law, it will follow in turn that all deductions are
sound in their first three lines; and so on. Thus our thesis, that deduc-
tions are sound in all lines, is established in its entirety once we have
established the law that a deduction is sound in any line if sound in all
earlier lines. Let us now proceed to establish that law.

Suppose, then, we are given a deduction which is sound in every
line earlier than some particular line, numbered say (). What we
want to show is that the deduction is sound also in (7). There are five
cases to consider, according as (») enters the deduction by P, UL EG,
TF, or Cd.

Cask P: Trivial; (n) is one of its own premisses.

Cases Ul and EG: Here (n) is subjoined to a line () which implies
(7). Being earlier, () is a line in which our deduction is sound. Thus
(m) is valid or implied by a premiss or conjunction of premisses of
(m). But, by the meaning of ‘subjoin’, any premisses of () are prem-
isses of (n). Therefore (m) is valid or implied by a premiss or conjunc-
tion of premisses of (7). Then (n), being implied by (m), is likewise
valid or implied by a premiss or conjunction of premisses of (7).
(Cf. (iii) and (vii) of §26.) In short, the deduction is sound in (7).

Caske TF: Here (n) is subjoined either to a line (m) which implies
(n), or to lines (m,), (m,), - - - whose conjunction implies (z). In the
former event, the argument of Cases Ul and EG may be repeated
without modification. So now suppose rather that (») is subjoined to
several lines (m,), (m,), - - - . Being earlier, each of (m,), (m,), « -+ isa
line in which the deduction is sound. Thus each of (m,), (m,), «- - is
valid or implied by its premiss or the conjunction of its premisses.

Subcase 1: None of (m,), (m,), -+ have premisses. Then all are
valid. Then, by (v) of §26, their conjunction is valid. Then, by (ii)
of §26, (n) is valid, being implied by that conjunction. Thus the
deduction is sound in ().

Subcase 2: Some or all of (m,), (m,), -+ have premisses. By the
meaning of ‘subjoin’, all such premisses are premisses also of (z). So
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each of (m,), (m;), - - - is valid or implied by the premiss or conjunc-
tion of premisses of (z). Or, since the valid ones are themselves im-
plied by anything we like (cf. (iv) of §26), we may put the matter
more simply: each of (m,), (my), --- is implied by the premiss or
conjunction of premisses of (r). Therefore the conjunction of (m,),
(m,), - - - is so implied (cf. (vi) of §26). But it in turn implies (). So,
by (vii) of §26, (») is implied by the premiss or conjunction of prem-
isses of (n). Thus the deduction is sound in (7).

Cask Cd: Here (n) is subjoined to *(m), and is a conditional whose
consequent is the same as (7) and whose antecedent is the same as the
last premiss (k) of (m). Being earlier than (7), () is a line in which
the deduction is sound; thus () is implied either by (%) alone or by
(%) in conjunction with further premisses of (72). But, by the meaning
of ‘subjoin to *(m)’, any premisses of (72) other than (%) are premisses
of (n). So (m) is implied either by (%) alone or by (%) in conjunction
with premisses of (). But if () is implied by () alone, then, by the
meaning of ‘imply’, the conditional having (k) as antecedent and ()
as consequent is valid; i.e., () is valid. If on the other hand (m) is
implied by (%) in conjunction with premisses of (7), then we know
from (viii) of §26 that the conditional (#) is implied simply by those
premisses of (). In either event, the deduction is sound in (7).

EXERCISES

1. For each of the illustrative lines of deduction in the early pages
of the section, cite the appropriate rule.

2. Classify each of those lines as to case and subcase of the above
argument (including the various untitled subcases).

3. Set up a deduction having this as unstarred last line:

(5) (x)(Fx . Gx) D (dx)(Gx v Hx) *(4)

§28. COMPLETION OF THE METHOD

~ Of the five rules of deduction thus far adopted, two are concerned

explicitly with quantifiers: UI and EG. UI allows us to drop a uni-
versal quantifier, and EG allows us to add an existential quantifier
(changing the variable if we like). Now in order to round our method
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out we need two more rules, fairly symmetrical to Ul and EG: those
of universal generalization (UG) and existential instanziation (EI). UG
will allow us to add a universal quantifier, and EI will allow us to
drop an existential quantifier (changing the variable if we like).

The basis for Ul and EG was that ‘(x)Fx’ implies ‘Fy’ and ‘Fy’ im-
plies ‘(dx)Fx’. For UG and EI we cannot plead that ‘Fy’ implies
‘(x)Fx’ nor that ‘(dx)Fx’ implies ‘Fy’. Yet UG and EI can, under
certain restrictions, be used as steps in trustworthy deductions.

They are not wholly alien to unformalized thinking. EI occurs
when, having shown or assumed that there are objects x such that Fx,
we “let y be any one such.” UG occurs when, having proved ‘Fy’
without regard to special conditions on ‘y’, we conclude: “But y was
anything; so (x)Fx.” Still, these vernacular foreshadowings are indi-
stinct, and need careful restricting if they are to be reduced to justi-
fiable rule. I shall develop a method of UG and EI which, though
restricted in necessary ways, so outruns in other ways any vernacular
prototype that it may best be studied without thought of informal
antecedents. Exact operations will be devised and justified.

Here is an example using EI, Ul, EG, and UG:

*(1) (dy)(x)Fzy

*(2) (x)Fxz 1) =
*(3) Fwz (2)
*@) @y)Fey ()
*(5) ()(Ay)Fxy (1) w

The variable ‘2’ is flagged at the right of line (2), as a signal that only
something less than implication can here be claimed. (1) does not
imply the flagged line (2); the conditional:

(6) (H@y)(x)Fxy D (x)Fxz,

in other words, is not valid. What is valid is only a weaker schema,
the existential quantification of (6) with respect to the flagged ‘2’

) (H2)[(y)(x)Fzxy O (x)Fxz].

This 75 indeed valid, being a case of (12) of p. 145.
If a line (%) in a deduction is subjoined to another, (%), by EI, UI,
EG, or UG, then by the step-conditional of (k) let us mean the con-
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ditional formed of (4) as antecedent and (%) as consequent. In the
above deduction, the step-conditional of line (2) is (6); that of line
(3) is the valid ‘(x)Fxz D Fwz’; and so on. If a line is got by Ul or
EG, its step-conditional is of course valid; and not so in the case of
EI and UG. Flagging means that what is claimed valid is not the
step-conditional, but its existential quantification with respect to
the flagged variable. The flagged ‘@’ of line (5) says that what is

claimed valid is not the step-conditional:

©) (Hy)Fwy D (x)(dy)Fzy
of (5), but only its existential quantification:
® (Aw)[(y)Fwy O (x)(dy)Fx].

This #s valid, being a case of (11) of p. 145.

UG and EI are, despite the weakened claims, useful as links in
deductions which as wholes still establish implication. The above is
an example. (1) does imply (5) outright, and the deduction is meant
to prove it. Intervening use of UG or EI does not impair the impli-
cation of conclusion by premiss, as long as no flagged variable retains
free occurrences in premiss or conclusion. This general remark has
of course still to be proved.

The net claim of the above deduction is that (1) implies (5); in
other words, that the “leap-conditional”:

(10 (dy)(x)Fxy O (x)(dy)Fxy

is valid. Now the step-conditionals of (2), (3), (4), and (5) of course
do together imply (10); but the rub, wherein this example differs
from normal chain inferences as of §27, is that those step-condi-
tionals are not all valid. The step-conditionals of (3) and (4) are,
but those of (2) and (5) (namely, (6) and (8)) are not. To justify
deductions like this one we need a theory of chain inference that
allows for a weakening of some links by existential quantification.
The problem, in application still to our present example, can be
sharpened. Knowing that the four step-conditionals together imply
(10), and knowing that just two of those step-conditionals are valid,
and that only the weakened quantifications (7) and (9) of the other
two step-conditionals are valid, we want to show (10) valid. But we
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can drop the two valid step-conditionals from the discussion; for,
since their validity is given, to speak of (10) as implied by them and
others is simply to speak of (10) as implied by the others. Our prob
lem is thus sharpened to this: knowing that the two step-condi-
tionals (6) and (8) together imply (10), and that the quantifications
(7) and (9) of (6) and (8) are valid, to show (10) valid.

More generally, the form of this problem is as follows: knowing
that schemata G, --- , C, together imply a schema C, and that the
existential quantifications of G, --- , C, (with respect to variables
Vi, -+, V., respectively) are valid, to show C valid. Now this can
indeed be shown if V,, for each number 7, is free in none of C;y, -« - ,
C. nor in C. This special condition is met by our example; ‘2’ is free
in neither (8) nor (10), and ‘#’ is not ‘ree in (10).

So the law to be established is this:

() If G, ---, C, together imply C, and V; for each 7 is free in
none of C;,y, ---, C, nor in C, and for each 7 the existential quantifi-
cation of C; with respect to V; is valid, then C is valid.

Proof. Since C,, --- , C, together imply C, clearly C, implies the
conditional comprised of C,, -+ , C, as combined antecedent and C
as consequent. Then, since V, is not free in that conditional, and the
existential quantification of C, with respect to V; is valid, (ix) of
p- 152 says the conditional is valid. So C,, - - -, C, together imply C;
we are rid of C,. Repeating the argument, we show that C;, --- , C,
imply C. After » such rounds we find C valid.

In the above proof we needed the assurance that V;, --- , V, not
be free in C (which answers to (10)). Thus it is that we are unwar-
ranted in supposing the last line of a deduction to be implied by its
premisses unless what we have is a finished deduction: one whose
flagged variables are not free in the last line nor in premisses of the
last line. Further, our proof required for each z that V; be free in
none of Ciyy, --- , C,. This requirement must be provided for in
any explicit formulation of the rules UG and EI, so let us see what
it comes to. In our initial example, what answered to G, C,, ---
were (6) and (8); and these were the step-conditionals of lines sub-
joined by UG and EI. What answered to V; and V, were ‘2’ and ‘w’:
the flagged variables. The restriction sought may accordingly be
formulated, for deductions generally, as follows:
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(A) If there are n (> 1) flagged steps in a deduction, then the
flagged variable of some step must be free in the step-conditionals
of none of the remaining » — 1; the flagged variable of another step
must be free in the step-conditionals of none of the remaining » — 2;
and so on.

This restriction is vital. Observe what happens when we violate it:

*(1) (x)(dy)Fxy

*(2) (Ay)Fwy (1)

*(3) Fwz @) =

*(4) (x)Fxz (3) w (wrong)
*() (dy)(*)Fxy (4)

The flagged 2’ is free in the step-conditional ‘Fwz D (x)Fxz’ of the
line where ‘@’ is flagged, and conversely the flagged ‘@’ is free in the
step-conditional ‘(dy)Fwy D Fwz’ of the line where ‘2" is flagged; so
(A) is clearly unsatisfiable. Incidentally the purport of this faulty
deduction, viz. that (1) implies (5), is false; cf. (7)-(8) of p. 122.

In (i) we have only a hint of the justification of UG and EI. We
need a full proof that the last line of any finished deduction, using
the rules of §27 plus UG and EI, is valid or implied by its premisses.

First I shall show that if D is any finished deduction with unstarred
last line, say line (), then (m) is valid. The step-conditionals of the
flagged lines of D can, by (A), be listed in some order G, --- , C,
(not necessarily their order 7z D) such that, for each 7, the variable
V: (flagged in the line whose step-conditional is C;) is free in none
of Ciuy, +++ , C,. Nor will V; be free in (m), since D is a finished
deduction. Now form a new deduction D’ from D by adding an extra
premiss at the top, marked ‘*(0)’ so as not to disturb old numbers.
It is to be the conjunction of G, ---, C,. A new outer column of
stars, appropriate to this premiss, is to flank the whole old deduction,
to and including (7). All use of UG and EJ, and therewith all flag-
ging of variables, is dispensed with in D’; for each line that had been
subjoined to some prior line by UG or EI can now be reckoned as
subjoined to that prior line and (0), by TF. Now since IV is a de-
duction under the rules of §27, we know that (0) implies (m); i.e.,
that G, --- , C, together imply (m). Moreover, the existential
quantification of C; with respect to V; is (for each 7) a case of (11)
or (12) of p. 145 and hence valid. Morcover, we saw that, for each
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7, V; is free in none of Ciy,, +++ , C, nor in (m). By (i), then, (m)
is valid, q.e.d.

It follows that any starred last line of a finished deduction is im-
plied by its premisses. For, we can extend the deduction by Cd
until we end up with an unstarred conditional consisting of the old
starred line and all its premisses. This conditional, being unstarred,
will be valid according to our preceding theorem. But its validity
shows that the old starred line was implied by its premisses, q.e.d.

Now that we have established the soundness of our extended
method of deduction, let us put (A) into a more convenient form.
There is talk in (A) of certain variables not being free in certain step-
conditionals. We can simplify this by referring not to step-condi-
tionals C,, --- , C,, but to their consequents, say L,, --- , L,, the
actual flagged lines. For it is evident in general that the free variables
of C; for each 7 are those of L; plus perhaps the flagged variable V;
itself. Instead of saying of a variable that it is not free in certain
step-conditionals C.,, -+ , C,, accordingly, we may say that it is
distinct from V;,,, --- , V, and not free in L;,,, -- - , L,. It thus be-
comes evident that (A) may be rephrased as two restrictions thus:

(B) No variable may be flagged twice in a deduction.

(C) It must be possible to list the flagged variables of a deduction
in some order V,, --- , V, such that, for each number 7 from 1 to
n — 1, Vi is free in no line in which Vis, «--, Vi is flagged.!

A rule of thumb that assures conformity to requirement (C) is
this: pick your letters so that each flagged variable is alphabetically
later than all other free variables of the line it flags.

It is well that (B) is singled out for separate attention, for it is
simple and urgent. See what can happen when it is ignored:

*(1) (dx)Fx *(1) (Hx)Fx . (dx)Gx

*(2) Fy My *(2) (dx)Fx 0y
*(3) (x)Fx (2) y (wrong) *(3) Fy @y
*(4) (dx)Gx (1)
*(1) Fz *(5) Gy (4) y (wrong)
*(2) (x)Fx )= *(6) Fy . Gy 3))

(3)Fz D (x)Fx  *(2)
(4) (W[Fy O (x)Fx] (3) z (wrong)
I am indebted to Gumin and Hermes, A«chiv fiir math. Logik 2 (1956).

*(7) (dx)(Fx . Gx)  (6)
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The first of these three faulty deductions purports to show that
‘(dx)Fx’ implies ‘(x)Fx’, which is obviously wrong. The second
purports to show ‘(y)[Fy D (x)Fx] valid, which again is wrong; for,
where ‘F’ means ‘red’, ‘Fy D (x)Fx’ fails for red y. The third example
purports to show that ‘(dx)Fx . (Hx)Gx’ implies ‘(dx)(Fx . Gx)’,
which we know to be wrong in view of (7) and (8) of p. 84.

For final statement of UG and EI, we must define a few terms. If
Q is a quantification of some achema S with respect to some ¥, and
S’ is like S except for having free occurrences of a variable IV’ where-
ever S has free V, let us call §’ an instance of Q; and let us call V' the
instantial variable. Thus ‘Gxy’, ‘Gzy’, and ‘Gyy’ are instances of
‘(x)Gxy’ and of ‘(dx)Gxy’, and the respective instantial variables are
‘¢, ‘7, and ‘y’. Further, if S’ has free occurrences of ¥’ where and
only where S has free V, let us call §' a conservative instance of Q.
Thus the instances ‘Gxy’ and ‘Gzy’ were conservative, but ‘Gyy’ not.

In terms of ‘instance’ the rules UI and EG of §27 may be restated
thus: to a universal quantification we may subjoin an instance, and
to an instance we may subjoin an existential quantification. We must
not, however, state UG and EI correspondingly. The efficacy of UG

and EI rests on the validity of quantifications like (7) and (9) above, :

which are cases of (11) and (12) of p. 145; and these latter, as stressed
on pp. 145-146, do not admit all the substitutions that are admitted
by the schema ‘(x)Fx D Fy' that underlies Ul, or by the schema
‘Fy D (dx)Fx’ that underlies EG. The upshot is precisely this: in
UI and EG we can talk simply of instances, but in UG and EI we
must talk of conservative instances. So here is the final formulation:

Rule of universal generalization (UG): We may subjoin a universal
quantification to a line which is a conservative instance of it.

Rule of existential instantiation (EI): To a line which is an existential
quantification we may subjoin a conservative instance of it.

Flagging: Off to the right of each line subjoined by UG or EI, we
must flag the instantial variable by writing it in the margin.

Restrictions: (B) and (C) above.

If a deduction has no flagged variables, each line is valid or implied
by its premisses. This was shown in §27. With the advent of flagged
variables, we have had to lower our claims: it is in general only of
the last line of a finished deduction that we can say that it is valid
or implied by its premisses. That much was proved, p. 164.
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But now, incidentally, what of the last line of an unfinished
deduction? It is, if unstarred, a schema that becomes valid when
existentially quantified with respect to all flagged variables free in
it. (For, the deduction can be finished by adding steps of EG to just
that effect.) If it is starred, then what becomes valid when thus
quantified is rather the conditional comprised of that last line and
its premisses.

These observations assign a status not only to the last lines of
unfinished deductions, but to all lines of all deductions. For, each

line is the last line of the deduction which you get by stopping
there.

Historical remarks: .

Quantification theory was founded by Frege in 1879. Sharply formulated
systems of rules for general quantification theory have existed in the litera-
ture from then onward, but mostly such systems have been of radically
different type from the system set forth in this and the preceding section,
and have resembled more the alternative system which will appear toward
the middle of §32. The method set forth in the present pages is of a type
known as natural deduction, and stems, in its broadest outlines, from Gent-
zen and Jaskowski (1934).

The rule of conditionalization, which is the crux of natural deduction,
appeared as an explicit formal rule somewhat earlier, having been derived
by Herbrand (1930) and also in effect by Tarski (1929) from systems of
their own of a type other than natural deduction. The derivation consisted
in showing that whenever one statement could be deduced from another
in the concerned system, the conditional formed of the two statements
could also be proved as a theorem by the original rules of that system. In
this status of derived rule relative to one system or another, the rule of
conditionalization has come to be known in the literature as the zheorem of
deduction.

Jaskowski’s system of natural deduction is conspicuously unlike that of
the present pages; for JaSkowski dispenses with EG and EI, and gets along
with milder restrictions on UG, by the expedient of treating ‘(dx)’,
‘(dy)’, etc., as abbreviations of ‘— (¥) —’, ‘—(y) —’, etc. This course is
economical in rules, but greatly increases the difficulty and complexity of
the deductions themselves: hence I have not adopted it. The crucial differ-
ence between Gentzen’s system and that of the present pages is in EI; he
had a more devious rule in place of EI, with the result that many deductions
proved more complicated.

Because of the presence of EI, the present system differs from Gentzen’s
and Jaskowski’s considerably on the score of restrictions upon the rules.
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In particular the device of flagging is a novelty. Gentzen and Ja$kowski
had restrictions too, but gave them different forms. Also it might be men-
tioned that Gentzen and Ja$kowski used, in place of TF, a bundle of more
elementary rules; but this difference is trivial.

El itself is not altogether new. Cooley, in pp. 126-140 of his Primer of
Formal Logic (1942), made use of natural deduction in a form which in-
cluded substantially EI, but without exact formulation of restrictions.
Explicitly formulated rules and restrictions, resembling the present system
except for wide variations in the restrictions, have been set forth by Rosser
and independentiy by me in mimeographed lecture notes from 1946 on.

EXERCISES

1. Check each of the following to see whether it is a correct de-
duction according to the rules, and a finished one.

*(1) Fy *(1) (x)(Fx O Gx)

«(2) (x)Fx 1y *(2) Fy D Gy 1

(3) Fy O (x)Fx *(2) *(3) (dx)(Fy D Gx) 2
*(4) () x)(Fw O Gz) (3) y

+(1) (x)(Fx v Gy) *(1) ()(Fx . Gz)

*(2) Fyv Gy (1) *EZ; I;y .Gy 8
«(3) W(Eyv G @y *(3) Fy

v *(4) (x)Fx )]
*(1) Fx v Gy *(5) Gy @
(2 W(FxvGy) Dy *(6) (x)Gx )y

*(3) (@x)(y)(Fx v Gy) (2) *(7) (¥)Fx . (x)Gx (4)(6)

2. If any of the above deductions is correct but unfinished, append
further lines so as to produce a finished deduction. If any is incorrect
but can be revised into a correct deduction to the same effect, so

revise it. . . .
3. Wherein does page 163 assume that no variable is flagged twice?

§29. DEDUCTIVE TECHNIQUE

In the preceding section we saw a number of examples of the misuse
of two of our rules, UG and EI. Now it is time for some illustrations
of the correct use of our rules. For this purpose various equivalences,

¢
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which are incidentally worth knowing on their own account, will be
established by deduction. Since equivalence is mutual implication, to
establish equivalence of two schemata we have merely to deduce each
schema from the other.

The following equivalences are of interest in showing how quanti-
fication can be confined to one component of a compound when the
other component lacks the variable.

6) ‘(dx)(p v Fx) to  ‘pv (Jx)Fx’,
(i) ‘(x)(p . Fx)’ to ‘p.(dx)Fx,
(ii1) ‘(x)(p v Fx), to  ‘pv(x)Fx’,
(@iv) ‘(p . Fx)’ to  ‘p.(x)Fx,
v) ‘dx)(p D Fx)) to ‘p D (dx)Fx’,
(vi) ‘(*)(p O Fx) to ‘pD (x)Fx,
(vii) ‘@x)(Fx D py to  “(x)Fx D p’,
(viii) ‘(X)(Fx D py to  ‘(Hx)Fx D p’.

It will be recalled that ‘(x)’ was distributable only through ‘Fx v
Gx’ and not through ‘Fr , Gx’, and that ‘(x)’ was distributable only
through ‘Fx . Gx’ and not through ‘Fx v Gx’ (cf. §19); when it is a
question of confinement of the quantifier to one side rather than
distribution, however, all four principles (i)—(iv) are forthcoming.

Since ‘p D’ is just another way of writing ‘p v’, clearly (v)-(vi) are
virtual repetitions of (i) and (iii). But when the conditional has the
form ‘Fx D p’, the confinement principles take on the curious twist
shown in (vii)-(viii). This circumstance was already touched on at
the end of §22 and in (5) of §24.

For the biconditional there are no confinement principles analogous
to (i)~(viii). ‘(x)(p = Fx)’ is equivalent neither to ‘p = (x)Fx’ nor to
‘p = (Hx)Fx’, and similarly for ‘(dx)(p = Fx)’, as may be seen by
construing ‘F’ as ‘red’ and trying both a truth and a falsehood for ‘p’.

Let us now establish (i), by deducing ‘(dx)(p v Fx)’ and ‘p v
(Hx)Fx’ each from the other.

Deduction 1: Deduction 2:
*(1) (dx)(p v Fx) *(1) pv (dx)Fx
*(2) pvFy ™y *+(2) (Hx)Fx
**(3) Fy **(3) Fy @y
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*+(4) (dx)Fx ©) *(4) (x)Fx D Fy +(3)
*(5) Fy D (Ax)Fx +(4) *(5) pvFy )C)

«(6) pv(@0)Fx  (9(5) 6) Hx)(pvFx) (5)

In these and previous illustrative deductions, the use of UI, EG,
UG, and EI has been accompanied by an alphabetical change of
variable: the variable V’ of instantiation (cf. §28) has been different
from the variable V of quantification. But there is no general require-
ment in UI, EG, UG, or EI that 7’ and V be distinct, and often
deductions can be carried through correctly from beginning to end
without any such change of variables. In Deductions 1 and 2, in
particular, ‘¢’ could have been used everywhere in place of ‘y’. It is
perhaps easier to proceed thus without change of variable when we
can. Meaning is unaffected, for, as far as any questions of interpreta-
tion are concerned, there is no more connection between a free and a
bound ‘x’ than between ‘x’ and ‘y’. But we shall find that a change of
variable is sometimes demanded, indirectly, by any of three consider-
ations: by the preconceived lettering of the schema which we are
trying to deduce, by the alphabetical stipulation in UG and EI, or
by the restriction on UG and EI which forbids flagging a variable
twice.

Both uses of TF, in line (6) of Deduction 1 and in line (5) of Deduc-
tion 2, happen to turn upon substitution in one and the same implica-
tion of truth-functional logic: ‘p v g . ¢ D # implies ‘p v7’. When in
doubt as to whether a given line is truth-functionally implied by a
given line or lines, the reader can decide the point by a mechanical
check as noted in §26.

Given any deduction, indeed, it is a mechanical matter to check it
from start to finish for conformity to the rules. If a line has no citation
at the right, we have merely to make sure that it initiates a new col-
umn of stars. If a line has a citation and flagged variable at the
right, we have merely to determine by inspection that the line is
really subjoined to the cited line in conformity with UG or EI and
that the flagged variable was never flagged before. If a line has a
multiple citation at the right, we know that TF is intended and can
check accordingly. If a line has a starred citation at the right, we know
that Cd is intended; and we can tell by inspection whether it is cor-
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rectly used. If a line has at the right a single citation without star or
flagged variable, we can quickly check to see whether the line
properly proceeds from the cited line by UI, EG, or TF. A moment’s
final inspection decides whether the deduction as a whole is “finished””:
the last line, and the premisses whose stars run through to the last
line, must be devoid of free occurrences of flagged variables.

The discovery of a desired deduction may, unlike the subsequent
checking of it, conveniently be left to the incompletely mechanical
guidance of certain general strategies. (Cf. p. 190.) When as in De-
duction 1 we are starting with a quantification, the obvious strategy
is to begin by dropping the quantifier by UI or EI (with or without
change of variable). Conversely, when as in Deduction 2 we are
hoping to get a quantification as end result, the strategy is to try to
deduce the desired schema without its quantifier (and with or with-
out change of variable); afterward the quantifier may be supplied by
UG or EG. If we were trying to discover Deductions 1 and 2, these
two strategies would afford us just this much: (1)~(2) of Deduction 1
and, working backward, (5)-(6) of Deduction 2.

So, if we were trying to devise Deduction 1, the initial strategy of
dropping the quantifier would leave us with the problem of getting
from (2) of Deduction 1 to (6). Next, since (2) and (6) are alike to the
extent of ‘p v’, it would be natural to wonder whether a conditional
joining the remaining parts of (2) and (6), viz., ‘Fy D (3x)Fx’, might
combine with (2) to imply (6) truth-functionally. A fell swoop con-
firms the notion: ‘p v ¢’ and ‘g D 7’ in conjunction imply ‘¢ v 7. So
we now know that the desired (6) can be subjoined by TF to (2) and
(5); the problem remains merely of getting (5). Here an obvious
strategy of the conditional comes into play: assume the desired ante-
cedent as additional temporary premiss, try to deduce the consequent,
and then get the conditional by Cd. So we assume (3), from which (4)
happens to proceed without difficulty; and thus Deduction 1 has been
created in full.

If we were trying to devise Deduction 2, the strategy of quantifiers
would have left us with the problem of getting from (1) of Deduction
2 to (5). The reasoning which solves this problem is exactly parallel
to that detailed in the preceding paragraph.

Truth-functional implications are checked easily enough once they

I
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are thought of. But when we are building a deduction, the impiication
has to be thought up before it can be tested. (Cf. §7). The way in
which Deduction 1 was achieved illustrates a course which must often
be followed. There we consulted common sense for a suggestion of
obtainable lines from which the desired result (6) might follow.
(2) was at hand, and common sense suggested (5) as an adequate
supplementation. So then we checked the suggestion and found that
(2) and (5) do in conjunction imply (6) truth-functionally. Accord-
ingly we undertook to get (5).

Let us now turn to a new project, that of establishing the equiva-

lence (ii) by deducing ‘(dx)(p . Fx)’ and ‘p . (Hx)Fx’ from each other:
1) (@x)(p . Fr) *(1) p.(dx)Fx

*(2) p.Fx 1)« *(2) (dx)Fx ¢))
*(3) Fx )] *(3) Fx (¥
*(4) (dx)Fx ©) *(4) p.Fx ©]6)

*(5) p.H)Fx (94 *(5) (Ex)p.Fx) (4)

The obvious operation of separating conjunctions bv TF may often
conveniently be left tacit, by stating conjunctive lines at will as
bracketed pairs of lines. Thus the above two deductions may be
condensed as follows:

Deduction 3: Deduction 4:
* El) (Hx)(p . Fx) *{EI) 1(:3 .
JO » 2) x)Fx
o & ooz

*(3) Fx F

* (4 (dx)Fx (3 *(4) p.Fx 9]¢
*(5) p.EFx (9@ *(5) D)@ .Fx) ()

The strategy behind the discovery of Deduction 3 is evident. The
usual strategy of quantifiers leads from (1) to (2) and (3), leaving
us with the problem of getting from (2) and (3) to (5); and this prob-
lem offers little challenge to ingenuity. In Deduction 4 the strategy
of quantifiers leaves us with the problem of getting (4) from (1) and
(2), which again is the work of a moment.

Deductions establishing the equivalences (iii)-(vi) are left to the
reader. He will find that those for (iii) and (iv) can run quite parallel,
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line by line, to Deductions 1-4. As for (v) and (vi), it will be found,
despite the connection in meaning which has been noted between (v)
and (i) and between (vi) and (iii), that deductions adapted directly
to (v) and (vi) may be arrived at along lines like those followed in
Deductions 5 and 6 below.

Let us now establish (vii), by deducing ‘(dx)(Fr D p)’ and
‘(x)Fx D p’ from each other.

Deduction 5: Deduction 6:
*(1) (dx)(Fx D p) *(1) (x)Fx D p
*(2) FxDp (OF; *x(2) Fx
«*(3) (x)Fx **+(3) (x)Fx (2)
*+(4) Fx €) x*(4) p ®G)
*(5) p eAlC)) *(5) FxDp *(4)

*(6) WFxDp () (6) (dx)(Fx 2 p) (5)

The strategy behind the discovery of Deduction 5 is as follows.
The strategy of quantifiers leads us from (1) to (2), leaving us with
the problem of getting (6) from (2). According to the strategy of the
conditional, in order to get (6) we assume its antecedent as (3) and
try to deduce its consequent ‘p’. The strategy of quantifiers leads us
from (3) to (4), so that all that remains to be done is get ‘¢’ somehow
from the lines (1)-(4) which are now at our disposal. Obviously (2)
and (4) serve the purpose, via TF.

The strategy behind Deduction 6 is rather as follows. Since we
want (6), the strategy of quantifiers directs us to overlook its quan-
tifier and aim for (5). According to the strategy of the conditional,
in order to get (5) we assume its antecedent (2) and try to deduce its
consequent ‘p’. So all that remains to be done is get p’ somehow
from (1) and (2). The intervening line (3) quickly suggests itself.

It must be remembered that our rules of deduction apply only to
whole lines. UI and EI serve to remove a quantifier only if the quan-
tifier is initial to a line and covers the line as a whole; and UG and
EG serve to introduce a quantifier only into such a position. It
would be fallacious, e.g., to proceed to the last line ‘(x)Fx O p’ of
Deduction 5 from the earlier line ‘Fx D p’ by UG, and it would be
fallacious to proceed from the first line ‘(x)Fx D p’ of Deduction 6 to
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the subsequent line ‘Fx D p’ by UL ‘(x)Fx D p’ is not a quantifica-
tion, but a conditional containing a quantification ‘(x)Fx’. What
issues from ‘Fx D p’ by UG, and yields ‘Fx J p’ by UL, is not ‘(x)Fx
D p’ but ‘(x)(Fx D p)’.

The equivalence (viii) has already been established by less sophisti-
cated methods, in showing (5) of §24 to be valid. But the reader may,
for practice, care to reestablish (viii) by the present methods. He can
do so by deductions strictly parallel, line for line, to Deductions 5-6.

Next let us undertake the inference about slovenly persons at the
beginning of §15. Here our premisses and conclusion are:

(*)(Gx D . Fx v Hx), (dx)(Gx.—Hx), (dx)(Fx.—Hx).
The strategy of quantifiers reduces the problem to that of getting
from ‘Gx D . Fx v Hx’ and ‘Gz ., —Hx’ to ‘Fx . — Hx’. If by luck the
conjunction of ‘Gx D , Fx v Hx’ and ‘Gx . —Hx’ truth-functionally
implies ‘Fx . —Hzx’, then our deduction is complete. So we submit:

pI.qvr:pr:d gr
to a truth-value analysis, and find that luck is with us. In full, then

{(1) (x)(Gx D . Fx v Hx)
"1(2) (dx)(Gx . —Hx)

* (3) Gx D .FxvHx (1)
+ (4) Gx.,—Hx (2) x
x (5) Fx.—Hx 3)@

(6) (dx)(Fx . —Hx) (5)

A supplementary strategy worth remarking is that of the dilemma,
which is useful in getting a conclusion from an alternation. First de-
duce the desired conclusion separately from each component of the
alternation, and derive a conditional in each case by Cd; then from
these conditionals and the original alternation infer the conclusion
by TF.

A strategy known as reductio ad absurdum should be noted, for its
occasional utility where other strategies seem to fail. It consists in
assuming the contradictory of what is to be proved and then looking
for trouble. It may be illustrated by deducing ‘—(dx)Fx’ from
‘(x) —Fx’:
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*(1) (x) —Fx

+2) —Fr &)
*+(3) (dx)Fx

**(4) Fx 3) x

*(5) (Hx)Fx D Fx »(4)

*(6) —(dx)Fx @0)
Here the usual strategy of quantifiers leads from (1) to (2), leaving
us with the problem of proceeding thence to (6). Resorting to reductio
ad absurdum, we assume the contradictory of the desired (6) as (3).
Thence by the strategy of quantifiers we move to (4), and find the
trouble we were looking for; for (4) conflicts with (2). Cd and TF
then lead through (5) to (6).

EXERCISES

1. In strict analogy to the deduction last presented, deduce
‘= (x)Fx’ from ‘(dx) — Fx".

2. Establish (iif)~(vi) and (viii) by pairs of deductions. Note the
hints in the text.

3. Establish by deduction the syllogisms in §14, including the
reinforced one about Spartans. Model: the above deduction about
slovenly persons.

4. Similarly for the inference about witnesses, middle of §15.

5. Deduce ‘(dx) —Fx’ from ‘—(x)Fx’. Plan on having this inter-
mediate line:

*(4) Fxr D (x)Fx *(3)
Analogously, deduce ‘(x) —Fx’ from ‘—(dx)Fx’.

6. Establish the equivalence of ‘(x)(p . Fx D Fx)’ to ‘p’. Hint: p’
truth-functionally implies ‘p . Fx D Fx’.

7. Establish the equivalence of ‘(dx)(p . Fx D Fx)’ to ‘p’.

8. The following are excerpts from a deductive solution of Exercise
3 of §21. Complete it.

*(3) Gx D Hx )
**(4)  (dx)(Fr . Gx)

**(5)  Fr.Gx 4) «
w(7) (x)(Hx D —Jz) ©y
»(10) HyD —Jy.D.FeD —Hr  *(9)

*(11) Hy.Jy (3)(5)(10)
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9. Establish the inference about the class of ’00, end of §15. For
formulation see (4)-(6) of §17. Warning: This deduction is a holiday
venture. None of the truth-functional implications involved is as
formidable as that which leads to (11) in the preceding exercise, but
the deduction runs to 18 lines (in my version anyway), some of which
are not easily come by. It tends to heighten one’s appreciation of the
solution in §21.

§30 POLYADIC PROBLEMS. CONVERSION OF QUANTIFIERS

The examples of deduction in the foregoing section have involved
only monadic schemata; i.e., schemata in which ‘F’, ‘G, etc., carry
single variables only, in the fashion ‘Fx’, ‘Fy’, ‘Gx’. But the same
techniques carry over to problems involving polyadic schemata. It
was problems of the latter sort that revealed, in §22, the inadequacy
of the logic of uniform quantification and prompted us to turn to
general quantification theory; so let us now face them. One item of
unfinished business from §22 is the inference:

All circles are figures, = All who draw circles draw figures.

The quantificational structure of this premiss and conclusion have

already been noted (§22):
x)(Fx O Gx),  (MI(Ax)(Fx . Hyx) D (dx)(Gx . Hyx)].

Now the steps of deduction from the one to the other are dictated
almost automatically by the strategies of quantifiers and the condi-
tional. The desired conclusion being a universal quantification, we
first aim for this expression minus its ‘(y)’. But this is a conditional;
so we assume its antecedent ‘(3x)(Fx . Hyx)’ and try for its conse-
quent ‘(3x)(Gx . Hyx)’. But in order to get ‘(dx)(Gx . Hyx)’ the
strategy is to try for ‘Gz . Hyx’ (or ‘Gz . Hyz’, etc.). What we have
to deduce this from are ‘(x)(Fx D Gx)’ and ‘(3x)(Fx . Hyx)’; so the
strategy of dropping quantifiers is brought to bear on these, and little
proves to be left to the imagination. In full the deduction is as
follows.

*(1) (x)(Fx D Gx)

*»*(2) (dx)(Fx . Hyx)

**(3) Fz.Hyz 2=
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*+(4) Fz D Gz 1y
*»*(5) Gz .Hyz (3)(4)
*+(6) (dx)(Gx . Hyx) )

*(7) (dx)(Fx . Hyx) D (dx)(Gx . Hyx) *(6)

*(8) (O)(Fx)(Fx . Hyx) O (Tx)(Gx . Hyx)] (7) y
Note that the shift from ‘¢’ to ‘2", in line (3), was necessitated by the
alphabetical stipulation in EI. (We could omit most such shifts by
letting the order of the alphabet vary from deduction to deduction.)
Next there is the example about paintings and critics in §22. The
translation into quantificational notation was noted there, and the
steps of deduction are dictated by the strategies of quantifiers and the
conditional. Let us record the deduction and then review its genesis.

* (1) (@)[Fy . (x)(Gx D Hzy)]

JO B

{6 @ oy JoF
* (4 Gx D Hxy 3)

*k (5) Gx

*+ (6) Fy.Hxy @@)(5)
** (7) (dy)(Fy . Hxy) (6)

* (8) Gx D (dy)(Fy . Hxy) *(7)
* (9) (®[Gx D (y)(Fy . Hxy)] (8) x

Lines (2)-(4) issue automatically from our strategy of dropping
quantifiers. Moreover, since we want (9), the backward strategy of
quantifiers directs us to aim for (8); and in order to get (8) the strategy
of the conditional directs us to assume (5) and aim for (7). In order
to get (7) we try for (6), according to the backward strategy of quan-
tifiers. So now the deduction is complete if in fact (6) happens to
follow from its predecessors by TF. Truth-value analysis or inspection
shows that it does. Thus the truth-functional implication leading to
(6) from (2), (4), and (5) did not need to be thought up; it automatic-
ally presented itself for appraisal.

In the example of §22 about philosophers, the premiss and conclu-
sion have the respective forms:

I[Fy . (x)(Fx O Gxy)], (Hx)(Fx . Gxx).

Our strategies of quantifiers prompt us to derive ‘Fy’ and “(x)(Fx D
Gxy)’ from the premiss, and to aim for ‘Fx’ and ‘Gxx’—or say ‘Fy’
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and ‘Gyy’. So all that remains is to get ‘Gyy’ from ‘Fy’ and “(x)(Fx D
Gzxy)’, which is easy. The full deduction, then, is this:

* (1) (@)Fy . (x)(Fx 3 Gry)]

JO Fy

{6 G o Jos
« (4 FyD Gy 3)

= (5) Fy.Gyy @@
* (6) (dx)(Fx . Gxx) (5)

Note that the changes of variables between (3) and (4) and between
(5) and (6) are not, as in previous examples, prompted by the restric-
tions attending UG and EI. They are simply steps in the obvious
route from (2) and (3) to (6).

By way of opening a good field for further examples of deduction
involving polyadic schemata, let us acquaint ourselves with symmezry,
transitivity, reflexivity, and related concepts—these being worth noting
also in their own right. A dyadic relative term is called symmetrical,
asymmetrical, transitive, intransitive, totally reflexive, reflexive, or
irreflexive according as it fulfills:

(x)(9)(Fxy > Fyx) (symmetry)
(*)()(Fxy > —Fyz) (asymmetry)
(x)(y)(2)(Fxy . Fyz .D Fxz) (transitivity)
(*)(»)(z)(Fxy . Fyz .D —Fxz)  (intransitivity)
(%) Fxx (total reflexivity)
(x)(9)(Fxy D. Fxx . Fyy) (reflexivity)

(x) —Fax (irreflexivity)

The relative term ‘compatriot’ is symmetrical, in that if x is a com-
patriot of y then y is a compatriot of x. It is also transitive, if we dis-
allow multiple nationality; for then if x is a compatriot of y and y of 2,
x will also be a compatriot of 2. It is also reflexive, if we consider a per-
son a compatriot of himself—as indeed we must if ‘compatriot of’
means ‘having same nationality as’. But it is not totally reflexive, if
we think of our universe as containing any things devoid of national-
ity. Examples of total reflexivity are rare and trivial; ‘identical’ and
‘coexistent’ are two such.

The relative term ‘north’ is again transitive, but it is asymmetrical
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and irreflexive; ‘x is north of 3’ excludes ‘y is north of x’, and nothing
is north of itself. The relative term ‘mother’ is intransitive, asym-
metrical, and irreflexive.

The relative term ‘loves’ lacks all seven properties. Where x loves
y, y may or may not love x; thus ‘loves’ is neither symmetrical nor
asymmetrical. Where x loves y and y loves 2, ¥ may or may not love z;
thus ‘loves’ is neither transitive nor intransitive. And, since some love
themselves while others (even among those who love or are loved) do
not love themselves, ‘loves’ is neither reflexive nor irreflexive.

The reader may wonder why, parallel to the distinction between
reflexivity and total reflexivity, a distinction is not drawn between
“irreflexivity” in the sense of:

(x)(»)(Fxy D. —Fxx . —Fyy)

and “total irreflexivity” in the sense of ‘(x) —Fxx’. The reason is that
this latter distinction is illusory; the two schemata are equivalent!

*1) (x)(5)(Fxy 2. *(1) (x) —Fxx
—Fxx . —Fyy) *(2) —Fxx @)
*(2) () (Fxy O. —Fxx, *(3) —Fyy 1)
—Fyy) ) *(4) Fxy O. —Fxx . —Fyy (2)(3)
*(3) Fxx D. —Fxx ., —Fxx (2) *(5) (y)(Fxy O.—Fxx .
*(4) ~Fxx ©) —Fyy) )y

*(5) (x) —Fxx @x  +(6) () (Fxy D.
—Fxx . —Fyy) (5)x

In the former of these two deductions, just as in the preceding de-
duction about philosophers, a change of variable was made in connec-
tion with UL In detail the strategy of the deduction is as follows.
Wanting (5) as conclusion, we naturally head for (4). Equally natu-
rally, starting with (1), we drop ‘(x)’ and get (2). Now in the next
step, that of dropping ‘(y)’, we are led to the appropriate change of
variable from ‘y’ to ‘¢’ simply by observing that no variable but ‘x’
appears in our objective (4). Finally, having (3) and wanting (4),
we check for truth-functional implication as a matter of course and
find that it holds: ‘¢ D pp’ implies ‘p’, since ‘T D | |’ resolves to ‘|’
{fell swoop).

As an example of a deduction calling for more ingenuity in the
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manipulation of variables, let us show that symmetry and transitivity
together imply reflexivity. Our problem is to deduce ‘(x)(y)(Fxy O.
Fxx . Fyy)’ from the symmetry premiss ‘(x)(y)(Fxy 2 Fyx)’ and the
transitivity premiss ‘(x)(y)(2)(Fxy . Fyz .D Fxz)’. Backward strategy
tells us to aim for ‘Fxy D, Fxx . Fyy’, or perhaps ‘Fuw O . Fuu . Fww’,
afterward getting the desired conclusion by two applications of UG.
In deductions which promise to involve serious shuffling of variables,
we can often obviate awkward conflicts of variables by immediately
shifting to wholly new variables in our backward strategy; so let us
aim for ‘Fuw D . Fuu . Fww'. To get this, the strategy is to assume
‘Fuw’ and try for both ‘Fuu’ and ‘Fww’. So the problem reduces to
that of getting ‘Fus’ and ‘Fww’ from ‘Fuw’ and the two original
premisses of symmetry and trapsitivity. Turning then to forward
strategy, we consider dropping the quantifiers from the premisses;
but there remains the problem of picking new variables in suitable
ways. We are well advised to pick them as ‘%’ and ‘@’ exclusively,
since only these appear in the desired results ‘Fuz’ and ‘Faww’ and the
intermediate premiss ‘Fuw’. In the symmetry premiss the relettering
‘Fuw D Fwd’ is more promising than ‘Fwu D Fuw’, since our inter-
mediate premiss ‘Fua’ will combine with ‘Fuw O Fuwu’ to yield
something more, ‘Fawu’, with which to work. So now we have ‘Fuw’
and ‘Fwi’ to go on. Therefore the two reletterings of the transitivity
premiss which we seem to have to choose between, viz., ‘Fuw . Fwu
D Fuw’ and ‘Fwu . Fuw .D Fww', will both be useful; one will yield
our desired result ‘Fuw’, and the other will yield our other desired
result ‘Fww’. So our deduction uses the transitivity premiss twice,
and rups as follows (subject to subsequent refinement):

*{(1) (*)(9)(Fxy D Fyx)
2 @)O)R)(Fxy.Fyz .0 Fxz)

* (3) ()(Fuy O Fyu) @
* (4) Fuw D Fwu (3)
* (5) (9)(2)(Fuy . Fyz .D Fuz) 2
* (6) (2)(Fuw . Fwz .D Fuz) (5)
* (7) Fuw . Fwu . Fuu (6)
* (8) (9)()(Fwy . Fyz .D Fuz) )]
* (9) (2)(Fwu . Fuz .D Fuz) (8)

«(10) Fwu . Fuw O Fuww ©)
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*%(11)  Fuw

+%(12) Fwu (11)(4)

. Fuu (11)(12)(7
(13) {Fww (12;(11)(13))

*(14) Fuw D . Fuu . Fww *(13)

*(15) (y)(Fuy D . Fuu . Fyy) (14) w

*(16) (x)(y)(Fxy D. Fxx . Fyy) (15)

Once a deduction is discovered, it is easily enough revised so as to
eliminate unnecessary uses of P, TF, and Cd. A stretch of unquantified
deduction such as appears in lines (4), (7), (10)—(14) is bound to
embody a single truth-functional implication. In the process of dis-
covery we built up the implication piecemeal, but now that-its end
points are visible we can verify mechanically that (14) is truth-func-
tionally implied directly by the conjunction of (4), (7), and (10). So
in retrospect we can refine our deduction by deleting (11)-(13) and
justifying (14) directly by the citation ‘(4)(7)(10)’. Incidentally, for
condensation we might omit (8)-(9) and just write ‘similarly’ after
(10).

The advantage of having aimed for (14) in the form ‘Fuw O.
Fuu . Fww’, rather than in the form ‘Fxy D. Fxx . Fyy’, may be
appreciated by rewriting the above deduction with ‘¢’ and ‘y’ in
place of ‘#’ and ‘@’ everywhere. Difficulty will be found to arise in (8).

Sequences of deductive steps could be compressed to single steps by
adopting supplementary rules. One such addition which recom-
mends itself is a rule of converting quantifiers (CQ): To a line of the
form ‘—(x)(---x---)’ subjoin its correspondent of the form ‘(dx)
—(++-x---)", or vice versa; and to a line of the form ‘—(dx)
(---x---) subjoin its correspondent of the form ‘(x) —(---x---),
or vice versa.

CQ accomplishes nothing that could not be accomplished deviously
by our existing rules, as is shown by the deduction at the end of the
preceding section and those in Exercises 1 and 5 of that section. In
practice CQ does not usually even save four intermediate lines such as
appear in those deductions. When our premiss and our desired con-
clusion are not of the sort that can be linked by just a step of CQ,
commonly the shortest route which avoids use of CQ will be a route
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skirting the point where CQ would apply. The main utility of CQ
is rather that it makes deductions easier to think up. E.g., the deduc-
tion in Exercise 8 of page 174 becomes easier even though actually
longer. Using CQ we can go on from (5) in that exercise as follows:

**(6) —(Fx D —Hzx) 3)(5)

*(7) (dx) —(Fx D —Hx) (6)

*(@8) —(0)(FxD —Hx) (7)

*(9) —(@HxD =Jx) ()

**(10) (dx) —(Hx D —=Jx) (9)

=(11) —(Hy 2 —Jy) (10) y

=(12) Hy.Jy (11)
The reason CQ is helpful is that UL EG, UG, and El are all geared to
lines which are quantifications, not negations of quantifications.

CQ provides for converting quantifiers only at beginnings of lines.
But we can in fact safely convert quantifiers also anywhere within
lines, since the operation is an interchange of equivalents. And indeed
the interchanging of equivalents can be exploited much further. To
speed up our deductions we might freely transform portions of lines
according to truth-functional equivalences, and according also to
various further equivalences, e.g. (i)-(viii) of p. 168. Such shortcuts
would be used as a matter of course in practical work. Note that they
depend on a more general form of the law of interchange than
hitherto used; it comes in pp. 194f.

In an Appendix the unsupplemented apparatus of §§27-28, indeed
even a small part of that apparatus, is shown to suffice for deducing
any quantificational schema from any that imply it. The supple-
mentary rules just now noted are thus shortcuts only. Paradoxically,
such additions can actually delay matters by multiplying the possi-
bilities of lost motion, unless strategy is enlarged to keep up with
the rules. Still they are worth while, as encouragements to under-
standing as well as for the speed they impart when skillfully used.

EXERCISES

1. Prove by deduction that asymmetry implies irreflexivity, and
that intransitivity implies irreflexivity.

2. Prove that transitivity and irreflexivity together imply asym-
metry.
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3. Show, by mutual deduction, that the schemata:
—(Hx)(y)(dz) Fxyz, (x)(dy)(z) —Fxyz

are equivalent. Use CQ. Note the more general law which this
equivalence suggests.

4. If Exercise 9 of the preceding section has become a hobby, try
again using CQ.

§31. APPLICATION

When our deductive technique is to be brought to bear upon state-
ments couched in ordinary language, the task of suitably paraphrasing
the statements and isolating their relevant structure becomes just as
important as the deductive operation for which that preliminary task
prepares the way (cf. §8).

In §12 we noted a considerable variety of ways in which the cate-
gorical forms A, E, I, and O may appear in ordinary language; and in
§16 we saw how to put those forms over into quantificational nota-
tion. These observations provide the beginning of a guide to the
translation of words into quantificational symbols. But we saw also,
from examples such as ‘A lady is present’, ‘A Scout is reverent’, ‘John
cannot outrun any man on the team’, and ‘Tai always eats with chop-
sticks’ (§12), that it is a mistake to trust to a pat checklist of idioms.
The safer way of paraphrasing words into symbols is the harder way:
by a sympathetic re-thinking of the statement in context. If there are
obvious ways of rectifying logically obscure phrases by rewording,
it is well to do so before resorting to logical symbols at all.

Even if we had a really dependable lexicon of ordinary language
in relation to A, E, I, and O, this of course would not cover all para-
phrasing of verbal statements into quantificational form; on the
contrary, quantification theory depends for its importance upon the
very fact that it far outreaches A, E, I, and O. In paraphrasing more
complex statements into quantificational form, a problem which
obtrudes itself at every turn is that of determining the intended
groupings. The cues to grouping which were noted at the truth-
tunctional level in §4 continue to be useful here, but the most im-
portant single cue proves to be the additional one which was noted in
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connection with (20) of §16 and again in §22: The scope of a quantifier
must reach out far enough to take in any occurrence of a variable which i
supposed to refer back to that quantifier.

The technique of paraphrasing inward (§8), as a means of dividing
the problem of interpretation into manageable parts and keeping the
complexities of grouping under control, is as important here as at the
truth-functional levels; more important, indeed, in proportion to the
increasing complexity of the statements concerned. After each step of
paraphrasing, moreover, it is well to check the whole against the
original statement to make sure that the intended idea is still being
reproduced.

By way of a serious venture in paraphrasing, let us try putting the
following premisses and conclusion over into quantificational form
preparatory to setting up a deduction.

Premisses: The guard searched all who entered the premises except
those who were accompanied by members of the firm,
Some of Fiorecchio’s men entered the premises unaccom-
panied by anyone else,
The guard searched none of Fiorecchio’s men;

Conclusion: Some of Fiorecchio’s men were members of the firm.

The first premiss says in effect:

Every person that entered the premises and was not searched by
the guard was accompanied by some member(s) of the firm.

Setting about now to paraphrase this premiss inward, we inspect it for
its outermost structure, which obviously is ‘(x)(... 2 ...):

(*)(x is a person that entered the premises and was not searched
by the guard D x was accompanied by some members of the
firm).

The virtue of thus paraphrasing inward a step at a time is that the
unparaphrased internal segments can now be handled each as a small
independent problem. The clause ‘x was accompanied by some
members of the firm’, e.g., regardless of context, becomes:

(dy)(x was accompanied by y . y was a member of the firm).
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The other clause, ‘x is a person that entered the premises and was not
searched by the guard’, needs little more attention; we have merely
to make it an explicit conjunction:

x is a person that entered the premises . x was not searched by the
guard.

So the whole becomes:

(x)[x is a person that entered the premises . x was not searched by
the guard .D (dy)(x was accompanied by y . y was a member of
the firm)].

Care must be taken, as here, to insert dots or parentheses to indicate
intended grouping. ,

Finally, writing ‘Fx’ for ‘x is a person that entered the premises’,
‘Gz’ for ‘x was searched by the guard’, ‘Hxy’ for ‘x was accompanied
by ¥, and ‘Jy’ for ‘y was a member of the firm’, we have:

(x)[Fx . —Gx .D (dy)(Hxy . J»)]

as the logical form of the first premiss.

Instead of carrying the word ‘person’ explicitly through the above
analysis, we might, as an alternative procedure, have limited the uni-
verse to persons. But in the present example this would have made no
difference to the final symbolic form, since ‘x is a person that entered
the premises’ has all been fused as ‘Fx’.

The reason for representing so long a clause as this simply as ‘Fx’,
without further analysis, is that we know that no further analysis of it
will be needed for the proposed deduction. We are assured of this by
the fact that ‘entered’ never occurs in premisses or conclusion except
as applied to persons entering the premises. Similarly we were able
to leave ‘x was searched by the guard’ unanalyzed, because ‘searched’
never occurs except with ‘by the guard’. On the other hand it be-
hooved us to break up ‘x was accompanied by some members of the
firm’, since accompaniment and membership in the firm are appealed
to also outside this combination in the course of the premisses and
conclusion. In general, when we paraphrase words into logical notation
and then introduce schematic letters as above, it is sound policy to
expose no more structure than promises to be needed for the proposed
deduction. This restraint not only minimizes the work of paraphrasing,
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but also minimizes the length and complexity of the schemata that
are to be manipulated in the deduction.

Turning to the second premiss, and writing ‘Kx’ for ‘x was one of
Fiorecchio’s men’, we get this as the obvious outward structure:

(dx)(Kx . Fx . x was unaccompanied by anyone else).

It remains to paraphrase the component clause ‘x was unaccompanied
by anyone else’. Clearly the intended meaning is:

Anyone accompanying x was one of Fiorecchio’s men,

which becomes ‘(y)(Hxy D Ky)’, so that the second premiss as a whole
becomes:

(dx)[Kx . Fx . (y)(Hxy O Ky)].
The third premiss and conclusion immediately become:
(x)(Kx O —Gx), (Hx)(Kx . Jx).
The deduction, finally, proceeds as follows:

1) @[Fx.—Gx.D> (y)(Hxy . Jy)]
*{(2) (dx)[Kx . Fx . (y)(Hxy D Ky)]
3) @) (Kx D —Gx)
* E4) Fx . —Gx .D (dy)(Hxy . Jy) ¢))
. 5) Kx . Fx
(@ O o K jors

*(7) KxD —Gx (3)
«(8) (Hy)(Hzy.]y) @ (5)(7)
*(9) Hxy.Jy @)y

» (10) Hxy D Ky (6)
*(11) Ky.Jy (9)(10)
* (12) (dx)(Kx . Jx) (11)

When we undertake to inject logical rigor into inferences encoun-
tered in informal discourse, we are likely to confront a second problem
of interpretation over and above that of paraphrasing verbal idioms
into logical notation. This second problem is that of supplying sup-
pressed premisses; and it is occasioned by the popular practice of
arguing in enthymemes. An enthymeme is a logical inference in which
one or more of the premisses are omitted from mention on the ground
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that their truth is common knowledge and goes without saying; thus
we argue:

Some Greeks are wise; for, some Greeks are philosophers,

omitting mention of the additional premiss ‘All philosophers are
wise’ on the ground that this would naturally be understood by all
concerned.’

In everyday discourse most logical inference is enthymematic. We
are constantly sparing ourselves the reiteration of known facts, trust-
ing the listener to supply them where needed for the logical conrple-
tion of an argument. But when we want to analyze and appraise a
logical inference which someone has propounded, we have to take
such suppressed premisses into account. At this point two problems
demand solution simultaneously: the problem of filling in the details
of a logical deduction leading from premisses to desired conclusion,
and the problem of eking out the premisses so that such a deduction
can be constructed. Solution of either problem presupposes solution of
the other; we cannot set up the deduction without adequate prem-
isses, and we cannot know what added premisses will be needed until
we know how the deduction is to run.

Sometimes, as in the syllogistic example above, the form of logical
inference intended by the speaker suggests itself to us immediately
because of its naturalness and simplicity. In such a case there is no
difficulty in identifying the tacit premiss which the speaker had in
mind. Sometimes, on the other hand, the form of inference itself may
not be quite evident, but the relevant tacit premisses are already
somehow in the air because of recently shared experiences. Such a case
differs in no practical way from the case where all premisses are
explicit.

Sometimes, finally, neither the intended form of inference nor the
intended tacit premisses are initially evident; and in this case the best
we can do is try to solve both problems concurrently. Thus we may
start a tentative deduction on the basis of the explicit premisses, and
then, on coming to an impasse, we may invent a plausible tacit prem-

Traditionally ‘enthymeme’ meant, more specifically, a syllogism with suppressed
premiss—like the above example; but it is natural, now that logic has so far outstripped

the syllogism, to refer to a logical inference of any form as an enthymeme when some
premisses are left tacit.
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iss which would advance us toward the desired conclusion. Alternating
thus between steps of deduction and supplementation of premisses,
we may, with luck, achieve our goal. Of course the tacit premisses
thus invoked must always be statements which can be presumed to be
believed true by all parties at the outset; for it is only under such
circumstances that a deduction using those tacit premisses would give
reason for belief in the conclusion. If we were to invoke as a tacit
premiss some statement which was (from the point of view of con-
cerned parties) as much in need of proof as the conclusion itself, we
should be guilty of what is known as circular reasoning, or begging the
question, or petitio principit; any added conviction that might accrue
to the conclusion through such argument would be deceptive. Decid-
ing whether a statement is believed true by all parties at the outset isa
task of applied psychology, but in most cases it offers no difficulty,
there commonly being a wide gulf between the moot issues of an
actual argument and the common fund of platitudes.

As an example of the kind of problem discussed in the foregoing
paragraph, consider the explicit

Premisses:  All natives of Ajo have a cephalic index in excess of 96,
All women who have a cephalic index in excess of 96
have Pima blood
and the

Conclusion: All persons both of whose parents are natives of Ajo
have Pima blood.

Let us put these statements into logical notation, but for the present
let us use obvious contractions instead of schematic letters ‘F’, ‘G,
etc., for we must keep the meanings of the words in mind in order to
be able to think of relevant platitudes for use as tacit premisses. The
following, then, are the results of translation, supposing the universe
to be comprised this time of persons:

Premisses:  (x)(x is nat D x has 96)

() (x is wom . x has 96 .D x has P bl)
Conclusion: (x)[(y)(y par x D y is nat) D x has P bl]

Since the conclusion is a universally quantified conditional, the stra-
tegy is to get it by UG from a result of Cd. A few more lines fall in
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fairly naturally by forward strategy, so that we have the following
outline for our proposed deduction. The number of lines left blank
for eventual tacit premisses and for intermediate steps is fixed by guess,
ostensibly (by peeking, actually).

(1) (x)(x is nat D x has 96)
)@ (x)(xiswom . x has 96 .D x has P bl

(3)

4
** (5) (p)(y par x D y is nat)
*»* (6) yparx D yisnat (5)
** (7) yisnat D yhas 96 (1)
** (8) yiswom .yhas96.D yhasP bl 2

** (14) x has P bl
*(15) (y)(y par x D yis nat) D x has P bl *(14)
*(16) (x)[(y)(y par x D yisnat) D x has P bl] (15) x
Now the question is how to get (14). By TF, clearly, (6)-(8) yield:
**(9) yiswom .y par x .D y has P bl 6)(7)(8)
which assures us, not quite that the x of (14) has Pima blood, but that

his mother does. The two platitudes wanted as tacit premisses then

suggest themselves: everyone has a mother, and anyone has Pima
blood if one of his parents does.

(3) (x)(dy)(yis wom . y par x)
(4) )y parx.yhasPbl.D x has P bl).

It is left to the reader to fill in lines (10)-(13) and append the proper
reference numbers to (14).

For a more searching analysis of ordinary language see Reichenbach,
Chapter VIIL

EXERCISES

1. Supply lines (10)—(13) and the references for (14).
2. Paraphrasing inward step by step, put:

Everyone who buys a ticket receives a prize
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into symbols using ‘Fxy’ for ‘x buys y’, ‘Gy’ for ‘y is a ticket’, ‘Hz’ for
‘z is a prize’, and ‘Jx2’ for ‘x receives 2’. Then deduce:

If there are no prizes then nobody buys a ticket.
3. Paraphrasing inward step by step, put:
Every applicant who is admitted is examined beforehand

into symbols using ‘Fx’ for ‘x is an applicant’, ‘Gxy’ for ‘x is admitted
at time y’, ‘Hxz’ for ‘x is examined at time 2’, and ‘Jzy’ for ‘z is before

- Then deduce:
Every applicant who is admitted is examined sometime.
4, Paraphrasing inward step by step, put:

There is a painting which is admired by every critic who admires
any paintings at all

into symbols using ‘F* for ‘painting’, ‘G’ for ‘critic’, and ‘H’ for
‘admires’. Then add the further premiss:

Every critic admires some painting or other
and deduce:

There is a painting which all critics admire.

Par: seven lines besides the premisses and conclusion.

5. Assuming that I like anyone who laughs at himself but detest
anyone who laughs at all his friends, deduce, with help of a platitu-
dinous further premiss, that if anyone laughs at all his friends then

~ someone is no friend of himself. (Quimby)

§32. NATURE OF QUANTIFICATION THEORY

In an Appendix it is shown that our present system of deduction is
complete, in this sense: every valid quantificational schema can be
reached as unstarred last line of a deduction conforming to our rules.
Likewise every schema implied by given schemata can be reached as
last line of a deduction with those schemata as its premisses. So, how-
ever unsuccessfully we may seek to deduce a desired conclusion from
given premisses, it can be done if the premisses imply it.



190 GENERAL THEORY OF QUANTIFICATION [§32]

Since our rules are sound and complete, the valid quantificational
schemata are all and only those quantificational schemata which can
be reached as unstarred last lines of finished deductions according to
our rules. Thus, though the original definition of validity of quantifi-
cational schemata (§24) appealed to a realm of classes, we see now
that the same totality of valid quantificational schemata can be
marked out by a criterion which is couched in terms rather of sym-
bolic operations.

Our system of deduction is complete in that by it any valid schema
can, with luck or ingenuity, be proved valid. Theoretically we can
dispense even with the luck and ingenuity. For, in general, given
any explicit standard of what is to count as a proof (whether the
standard set by the rules of §§27-28 or some other, and whether for
quantification theory or another theory), there is always this silly
but mechanical routine for finding any proof there is to find: just
scan all the single typographical characters usable in proofs, then all
possible pairs of them, then all strings of three, and so on, until you
get to the proof.

Quantification theory admits also a more serious mechanization,
evident from the Appendix. For, any valid schema can be shown
valid by the method of the middle of p. 254. The steps of EI and Ul
there called for can be generated in the rigidly mechanical manner
of p. 256, with a cumulative test for truth-functional inconsistency
after each step.

So our heavy dependence on luck and strategy, in our own deduc-
tive work, is merely a price paid for speed: for anticipating, by min-
utes or weeks, what a mechanical routine would eventually yield.
General quantification theory admits, just as truly as the logic of
truth functions and that of uniform quantification, a purely mechani-
cal routine which will unfailingly show any valid schema valid (and
also establish any implication, of course, this being validity of a
conditional). Still, general quantification theory differs from the logic
of truth functions and that of uniform quantification in offering no
general means of showing non-validity. If a schema is valid, the
routine that shows validity will terminate; but if it is not, the routine
can go on and on and leave us on tenterhooks forever.

The logic of truth funztions and that of uniform quantification
have decision procedures for validity (and implication and the rest):
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mechanical procedures that lead to an answer in every case, favorable
or unfavorable. A general method for proving validity is, though
mechanical, only half a decision procedure: it reports only on favor-
able cases. A general method for disproving validity would be the
other half. If we had both halves, we could join them to form a single
decision procedure as follows (Kleene). First we would mechanize
both the method of proof and the method of disproof, in the silly
way lately noticed if not otherwise. Then, to decide whether a given
schema is valid, we would set one man or machine in quest of a proof
of it, and another simultaneously in quest of a disproof, and await
the eventual answer from one of them.

So, having a complete method for proving validity in general
quantification theory, we see that the lack of a decision procedure
here consists precisely in the lack of a complete method for dis-
proving validity. Church has established that the lack is irreparable:
general quantification theory can have no decision procedure.'

A systematization of quantification theory more nearly typical of the
literature than what we have been seeing is as follows. The rules of deduc-
tion are TF and a simplified UG which just says: From any line, infer any
universal quantification of it. Schemata are deduced by TF and the simplified
UG from a specified class of initial schemata; viz., from schemata which are
obtainable by substitution (§25) in one or other of the valid schemata:

(x)Fx D Fy, #)(p D Fx) D.p I (x)Fx

(also with other variables in place of ‘x’ and ‘y’).

Thus a “proof”, in this new system, consists of one or more initial
schemata of the sort just described, followed by any number of further
lines each of which is got from earlier lines by TF or by the simplified UG.
Example:

(x) —Fx D —Fy

OI(x) —Fx D —F]D. (x) ~Fx I () —Fy
O)x) =Fx > —F]

@ —FD () —Fy

The first two lines here are of the initial kind; the third is derived from the
first by simplified UG; the last is derived from the second and third by TF.

If we view existential quantifiers as mere abbreviations of universal
quantifiers flanked by negation signs, this system is complete: every valid
schema can be reached by a proof. (Cf. p. 258.) Furthermore the system is,
we see, far easier to describe than the system of the foregoing sections. It

1Church, “A note on the Entscheidungsproblem.” More readable renderings of the
argument occur in Kleene, pp. 432 ff., and in Hilbert and Bernays, vol. 2, pp. 416-421.
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is also far easier to justify; for it could be shown, in a fraction of the space
‘that was taken up in §§27-28 to justify our seven rules, that every line of a
proof in the newly described system is a valid schema. But our greater
investment in §§27-28 pays off in the relative ease with which desired
deductions tend to be discoverable.

So much for quantification theory in its broader aspects. Let us now
pause for further examination of that special part of quantification theory
in which the predicate letters are followed only by single variables. The
obstacle to a decision procedure for quantification theory lies wholly
in polyadic schemata, schemata in which predicate letters occur followed by
multiple occurrences of variables. As long as monadic schemata are adhered
to, quantification theory is essentially no richer than the logic which was
treated in Part IT and provided with a decision procedure. The remaining
pages of the section will be devoted to clarifying and establishing this fact.

Monadic schemata are those in which the predicate letters are followed
by single variables exclusively. Uniform quantificational schemata, studied
in Part II, are therefore monadic schemata. The mixed schemata of §21,
which were uniform schemata with an admixture of sentence letters, are
likewise monadic. So also, indeed, are the purely truth-functional schemata
of Part I. In short, all the schemata dealt with in Parts I-II are monadic.
They may for the space of the next few pages be designated more particu-
larly as standard monadic schemata, for there are other monadic schemata
which they fail to include; e.g.:

@ ({x)(Fy . Gx), () Fz),  (O)Fy D (dx)Fx].

A uniform quantification, i.e. a quantification in the sense of Part II,
consists of ‘(x)’ or ‘(dx)’ followed by a truth function exclusively of
‘Fx’, ‘Gx’, etc. So a standard monadic schema is, if closed, simply a truth
function of components each of which is a uniform quantification or sen-
tence letter. We know from Parts I-II how to test any standard monadic
schema for validity. Now what will be shown here is that every closed
monadic schema can be translated into an equivalent which is standard. As
for the open ones, we know that the question of their validity is simply the
question of the validity of their universal closures (§24).

In nonstandard monadic schemata, quantifications are frequently impure
in this sense: what the quantifier governs is a truth function of components
some of which show no free occurrences of the variable of quantification.
Each of the three schemata (1), e.g., is an impure quantification; and so is
‘(Hx)[Fx v (x)Gx].

Consider now an innermost quantification, i.e., a quantification containing
no further quantifications as parts. If it is pure, this quantification must
consist of a quantifier—say ‘(y)’—governing a truth function of components
each of which shows free ‘y’. So, supposing only monadic materials avail-
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able, those components can only be ‘Fy’, ‘Gy’, etc. The quantification
therefore has no variables but ‘y’; hence no free variables.

If a monadic schema has no impure quantification in it, every quantifica-
tion in it will be innermost. For, we just saw that each innermost quantifica-
tion will lack free variables; hence each innermost quantification would, if
used as component of a truth function governed by a new quantifier, impair
the purity of that broader quantification.

So, combining the observations of the past two paragraphs, we see that
if a monadic schema contains no impure quantifications, each quantification
in it will consist of some quantifier, say ‘(y)’, governing a truth function
exclusively of ‘Fy’, ‘Gy’, etc. Under these circumstances, clearly we can
rewrite the variable of each quantification uniformly as ‘x’ without fear of
conflicting cross-references. Each quantification thus becomes a uniform
quantification. The schema as a whole thereupon appears as a truth function
of components each of which is either a uniform quantification or a sen-
tence letter or perhaps an unquantified ‘Fx’, ‘Fy’, ‘G#’, etc. No such dang-
ling ‘Fx’, ‘Fy’, ‘G, etc., will be present if the schema is closed; so in this
event the schema meets the specifications of a standard monadic schema.

It is thus seen that any closed monadic schema which is devoid of impure
quantifications is simply a standard monadic schema as it stands, or becomes
so by an insignificant relettering of its variables as ‘+’. The whole problem
of transforming a closed monadic schema into a standard schema therefore
reduces to the problem of purifying quantifications.

Consider, then, any impure existential quantification. It consists of a
quantifier, say ‘(dx)’, governing a truth function of components some of
which are impurities in the sense of lacking free ‘x’. In the example:

) (@x){p v Fr D —[()Fy . G}

there are the impurities ‘¢’ and ‘(y)Fy’. By dint of some of the transforma-
tions of truth-functional structure learned in §10, the impurities can be
brought fairly near the surface; for, we can get rid of ‘3’ and ‘=’ by trans-
lation, we can break up negations of compounds as far as we like by
DeMorgan’s laws, and we can distribute conjunction through alternation.
E.g., (2) becomes successively:

@x)[—(p v Fx) v —(»)Fy v —Gx),
(3) (Ix)[p . —Fx .v —(y)Fy v —Gx].

In general, in this way, the truth function governed by our quantifier can
be put into such a form that the impurities come to be buried no more
deeply than under alternation only (cf. ‘= (y)Fy’ in (3)), or under conjunc-
tion only, or under conjunction which is under alternation (cf. ‘7’ in (3)).

This done, we can bring the impurities out altogether by transformations
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according to (i) of §19 and (i)—(ii) of §29. E.g., by (ii) of §19 we transform
(3) into:
Hx)@ . —Fx) v (x)[— () Fy v —Gxl.

By (ii) of §29 we transform ‘(dx)(§ . —Fx)’ in turn into ‘p . (dx) —Fx’,
so that the whole becomes:

P . (Hx) —Fx v (x)[—(»)Fy v —Gxl.

By (i) of §29 we transform ‘(3x)[— (y)Fy v —Gx]’ into ‘—(y)Fy v (dx)
—Gx’, so that the whole becomes finally:

“) P . (Hdx) —Fx v —(y)Fyv (3x) —Gx,

in which the quantifications are pure.

Applied to any impure existential quantification which has no further
impure quantification inside it, clearly the above procedure will turn the
impure quantification into a schema in which all quantifications are pure.

Therefore, given any closed monadic schema, we can rid it of impure
quantifications as follows. First we dispense with universal quantification,
by changing ‘(x)’ to ‘— (dx) =, ‘(3)’ to ‘— (dy) —’, etc. Then we purify
‘he innermost impure quantifications by the above technique, and continue
¢utward until no impure quantifications remain. Example:

®)[Fr.p.D (y)(Gx D.Fy.p)]

=lx) —[~(Fr.p) v (@y)(—Grv. Fy . p)]
—(lx) —[~(Fx.p) v —Gx v (Iy)(Fy . p)]
—lx) —=[—(Fx.p) v —Gxv. (dy)Fy.p]
—@x){Fr.p.Gr.—[(Ty)Fy.pl}
—{(@x)(Fx . Gx) .p . —[(Ty)Fy . p]}

Finally, relettering any variables other than ‘x’ as ‘x’, we have a standard
monadic schema.

In the deductive techniques of §§27-28 there was no dependence on
equivalence. The transformations just now set forth, however, turn upon
equivalence at each step. Their justification therefore remains incomplete
until various general laws of equivalence tacitly depended upon in the
above reasoning have been substantiated. The laws in question are familiar
enough from Parts I-1I:

(A) Substitution preserves equivalence.
(B) Interchange of equivalents yields equivalents.
(C) I S, is equivalent to S, and S, to S, then S, is equivalent to S;.

But we have to show that these laws continue to hold at the level of general
quantification theory. For, the transformation of monadic schemata inta
standard ones is a matter of general quantification theory; it is only after
such transformation is complete that the logic of Parts I-II assumes control,
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From §9 onward we have spoken of equivalence sometimes as mutual
implication and sometimes as validity of the biconditional, observing that
these two characterizations come to the same thing. It must now be shown
that they continue to come to the same thing in general quantification
theory. This thesis may be established in two parts.

(a) Suppose S; and S, imply each other. Then, since implication is
validity of the conditional, the two conditionals joining S, and S, are valid.
Then, by (v) of §26, the conjunction of those corditionals is valid. But this
conjunction truth-functionally implies the biconditional of S, and S, ,
which then is valid by (iii) of §26.

(b) Suppose the biconditional of S, and S, is valid. Then, being truth-
functionally implied by the biconditional, the two conditionals joining S,
and S, are valid by (iii) of §26. Le., S, and S, imply each other.

So we can continue to think of equivalence indifferently as mutual
implication and as validity of the biconditional. Now since equivalence is
validity of the biconditional, (A) follows from the fact that substitution
preserves validity (§25). Again, since equivalence is mutual implication,
(C) follows from its analogue for implication, (vii) of §26.

So our remaining concern is (B). The following version of (B), though
less sweeping than what could be proved, is adequate to the uses at hand:
If S, and S, are equivalent quantificational schemata having just the same
free variables (if any), and S{ and S} are alike except that S{ shows S, in
some places where Sj shows S, , then S7 and S; are equivalent. This can be
established exactly after the manner of the law of interchange in §19, for
the cases where the free variables in S; and S, are none or one; and a
parallel argument serves for any larger number of free variables.



PART FOUR

Glimpses Beyond

§33. EXISTENCE AND SINGULAR INFERENCE

The logic of truth functions and quantification is now under control.
There are, however, some simple sorts of inference which still want
discussion—notably those turning upon simgular terms such as
‘Socrates’:

Socrates is a Greek,
Socrates is wise;
~. Some Greeks are wise.

All men are mortal,
Socrates is a man;
. Socrates is mortal.

Furthermore the theory of identity, including such evident laws as
‘* =% and ‘x = y .=.y = &, remains untouched. A few sections
will suffice to do justice to singular terms and identity. In conclusion
we shall have a brief glimpse of set theory, or the theory of classes—a
discipline which may be characterized both as higher logic and as the
basic discipline of classical mathematics.

The logic of identity will be needed in the final treatment of the
logic of singular terms, but meanwhile singular terms will be helpful
in expounding the concept of identity. So let us begin with a prelimi-
nary study of singular terms.

It will be recalled that for purposes of the definition of validity in
general quantification theory (§24) we understood “interpretations”
of sentence letters, predicate letters, and free variables respectively
as truth values, extensions, and single objects of the universe. Now
the expressions that have truth values are statements, and the expres-
sions that have extensions are predicates; and in completion of the
picture the idea suggests itself that the expressions which similarly
correspond to single objects are the singular terms that name them.
Or to put the matter in another way: just as the sentence letters in a
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schema stand as dummy sentences and the predicate letters as dummy
predicates, so the free variables stand as dummy singular terms. To
represent the above inferences about Socrates schematically, there-
fore, we may simply use a free y’ to represent ‘Socrates’. The infer-
ences then go through by our familiar deductive method:*

*{(1) (¥)(Fx D Gx) «1) {I;y
y

@ F
«(3) Fy D Gy 1 *(2) (@nFx.Ga (1)
*(4) Gy )
Another example:
Premisses:  Aldrich bribed every member of the committee,
Barr is a member of the committee;

Conclusion: Someone bribed Barr.

~{(1) (x)(Fx D Gzx) (= as Aldrich)
(2) Fw (w as Barr)

* (3) Fw D Gzw (1)

* (4) Gaw 20)

* (5) (Hx)Gxw 4

These deductions establish implication and hence show that the
conclusions will come out true if the premisses do, no matter what
objects of the universe we choose in interpretation of ‘y’, %', and ‘w’.
In particular therefore we may choose Socrates, Aldrich, and Barr—
provided merely that the universe contains such things.

But this last proviso is essential to the intended application of our
deductive results. Singular terms do not, after all, stand to objects
quite as statements and predicates stand to truth values and exten-
sions; for whereas every statement has its truth value and every
predicate its extension, empty or otherwise, a singular term may or
may not name an object. A singular term always purporss to name an
object, but is powerless to guarantee that the alleged object be forth-
coming; witness ‘Cerberus’. The deductive techniques of quantifica-
tion theory with free variables serve very well for inferences depend-

10bviously it would be inappropriate to flag *” in such a deduction. But this poiat is
already covered in the notion of a “finished deduction.”
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ing on singular terms when we are assured that zkere are objects such
as those terms purport to name; so this question of existence then
becomes the central question where singular terms are concerned.

I shall find no use for the narrow sense which some philosophers
have given to ‘existence’, as against ‘being’; viz., concreteness in
space-time. If any such special connotation threatens in the present
pages, imagine ‘exists’ replaced by ‘is’. When the Parthenon and the
number 7 are said to be, no distinction in the sense of ‘be’ need be
intended. The Parthenon is indeed a placed and dated object in space-
time while the number 7 (if such there be) is another sort of thing;
but this is a difference between the objects concerned and not be-
tween senses of ‘be’.

In contrast to 7 and the Parthenon, there is no such thing as

. 0 .
Cerberus; and there is no such number as ;. Clearly these repudia-

tions do not of themselves depend on any limitation of existence to
space-time. The meaning of the particular word ‘Cerberus’ merely
happens to be such that, if the word did name an object, that object
would be a physical object in space and time. The word ‘Cerberus’ is
like ‘Parthenon’ and ‘Bucephalus’ in this respect, and unlike ‘7’ and

‘g’. But the word ‘Cerberus’ differs from ‘Parthenon’ and ‘Bucephalus’

in that whereas there is something in space-time such as the word
‘Parthenon’ purports to name (viz., at Athens for some dozens of
centuries including part or all of the twentieth), and whereas there is
(tenselessly) presumably something in space and time such as the word
‘Bucephalus’ purports to name (viz., at a succession of positions in
the Near and Middle East in the fourth century B.C.), on the other
hand there happens to be nothing such as the word ‘Cerberus’ pur-
ports to name, near or remote, past, present, or future.

It is surely a commonplace that some singular terms may, though
purporting to name, flatly fail to name anything at all. ‘Cerberus’

1s one example, and @ is another. But, commonplace though this be,
p 0 % g

experience shows that recognition of it is beset with persistent cop-
fusions, to the detriment of a clear understanding of the logic of sin-
gular terms. Let us make it our business in the remainder of this
section to dispel certain of these confusions.

There is a tendency to try to preserve some shadowy entity under
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the word ‘Cerberus’, for example, lest the word lose its meaning. If
‘Cerberus’ were meaningless, not only would poetry suffer, but even
certain blunt statements of fact, such as that there is no such thing
as Cerberus, would lapse into meaninglessness. Thus we may hear it
said, e.g., that Cerberus exists as an idea in the mind. But this verbal
maneuver conduces only to confusion. Of a tangible object such as
che Parthenon, to change the subject for a moment, it would be
wanton obscurantism to affirm a double existence: in Athens and in the
mind. Far more straightforward to admit two (or many) objects: the
tangible Parthenon in Athens, and the Parthenon-idea in the mind
(or the Parthenon-ideas in many minds). ‘Parthenon’ names the
Parthenon and only the Parthenon, whereas ‘the Parthenon-idea’
names the Parthenon-idea. Similarly not ‘Cerberus’, but ‘the Cer-
berus-idea’, names the Cerberus-idea; whereas ‘Cerberus’, as it hap-
pens, names nothing.

This is not the place to try to say what an idea is, or what existence
in the mind means. Perhaps from the point of view of experimental
psychology an idea should be explained somehow as a propensity to
certain patterns of reaction to words or other stimuli of specified
kinds; and perhaps “existing in the mind” then means simply “being
an idea.” But no matter; the idea of “idea” is entertained here only as
a concession to the other party. The point is that though we be as
liberal about countenancing ideas and other nonphysical objects as
anyone may ask, still to identify the Parthenon with the Parthenon-
idea is simply to confuse one thing with another; and to try to assure
there being such a thing as Cerberus by identifying it with the
Cerberus-idea is to make a similar confusion.

The effort to preserve meaning for ‘Cerberus’ by presenting some
shadowy entity for ‘Cerberus’ to name is misdirected; ‘Cerberus’
remains meaningful despite not naming. Most words, like ‘and’ or
‘sake’, are quite meaningful without even purporting to be names at
all. Even when a word is a name of something, its meaning would
appear not to be identifiable with the thing named.’ Mount Everest
has been known, from opposite points of view, both as Everest and
as Gaurisanker;® here the named object was always one, yet the

This much neglected point was well urged by Frege, “Ueber Sinn und Bedeutung,”
2Ernst Schrodinger, What is Life?, last paragraph.
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names can scarcely be viewed as having been alike in meaning or
synonymous; for no insight into the combined minds of all users of
‘Everest’ and ‘Gaurisanker’ could reveal that these named the same
thing, pending a strenuous investigation of nature. Again there is
Frege’s example of ‘Evening Star’ and ‘Morning Star’; the named
planet is one, but it took astronomy and not mere analysis of mean-
ings to establish the fact.

Precise and satisfactory formulation of the notion of meaning is an
unsolved problem of semantics. Perhaps the meaning of a word is
best construed as the associated idea, in some sense of ‘idea’ which
needs to be made precise in turn; or perhaps as the system of implicit
rules in conformity with which the word is used, supposing that a
criterion of “implicit rule” can be devised which is selective enough
to allow sameness of meaning on the part of distinct expressions.
Perhaps, indeed, the best treatment of the matter will prove to con-
sist in abandoning all notion of so-called meanings as entities; thus
such phrases as ‘having meaning’ and ‘same in meaning’ might be
dropped in favor of ‘significant’ and ‘synonymous’, in hopes eventu-
ally of devising adequate criteria of significance and synonymy in-
volving no excursion through a realm of intermediary entities called
meanings. Perhaps it will even be found that of these only significance
admits of a satisfactory criterion, and that all effort to make sense of
‘synonymy’ must be abandoned along with the notion of meaning.'
However all this may be, the important point for present purposes is
that significance of a word, even of a word which (like ‘Cerberus’)
purports to be a name, is in no way contingent upon its naming any-
thing; and even if a word does name an object, and even if we
countenance entities called meanings, there is still no call for the
named object to be the meaning.

The mistaken view that the word ‘Cerberus’ must name something
in order to mean anything turns, it has just now been suggested, on
confusion of naming with meaning. But the view is encouraged also by
another factor, viz., our habit of thinking in terms of the misleading
word ‘about’. If there is no such thing as Cerberus, then, it is asked,
what are you talking about when you use the word ‘Cerberus’ (even
to say that there is no such thing)? Actually this protest could be
1See my From a Logical Point of View, Essays II and III.
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made with the same cogency (viz., none) in countless cases where no
would-be name such as ‘Cerberus’ occurs at all: What are you talking
about when you say that there are no Bolivian battleships? The
remedy here is simply to give up the unwarranted notion that talking
sense always necessitates there being things talked about. The notion
springs, no doubt, from essentially the same confusion which was just
previously railed against; then it was confusion between meanings and
objects named, and now it is confusion between meanings and things
talked about.

This mistaken view that ‘Cerberus’ must name something has been
seen to evoke, as one lame effort to supply a named object, the notion
that Cerberus is something in the mind. Other expedients to the same
end are commonly encountered. There is, e.g., the relativistic doc-
trine according to which Cerberus exists in the world of Greek
mythology and not in the world of modern science. This is a perverse
way of saying merely that Greeks believed Cerberus to exist and that
(if we may trust modern science thus far) they were wrong. Myths
which affirm the existence of Cerberus have esthetic value and an-
thropological significance; moreover they have internal structures
upon which our regular logical techniques can be brought to bear;
but it does happen that the myths are literally false, and it is sheer
obscurantism to phrase the matter otherwise. There is really only one
world, and there is not, never was, and never will be any such thing as
Cerberus.

Another such expedient which had best not detain us long, if only
because of the mazes of metaphysical controversy in which it would
involve us if we were to tarry, is the view that concrete individuals are
of two kinds: those which are actualized and those which are possible
but not actualized. Cerberus is of the latter kind, according to this
view; so that there 75 such a thing as Cerberus, and the proper content
of the vulgar denial of Cerberus is more correctly expressed in the
fashion ‘Cerberus is not actualized’. The universe in the broader sense
becomes badly overpopulated under this view, but the comfort of it is
supposed to be that there comes to be something Cerberus about
which we may be said to be talking when we rightly say (in lieu of
“There is no such thing as Cerberus’) ‘Cerberus is not actualized’.

But this device depends on the possibility of Cerberus; it no longer
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applies when we shift our example from ‘Cerberus’ to some would-be
name of complex form involving an out-and-out impossibility, e.g.,
‘the spherical pyramid of Copilco’. Having already cluttered the
universz with an implausible lot of unactualized possibles, are we to go
on and add a realm of unactualizable impossibles? The tendency at
this point is to choose the other horn of the supposed dilemma, and
rule that expressions involving impossibility are meaningless. Thence,
perhaps, the not uncommon notion that a statement logically incon-
sistent in form must be reclassified as a nonstatement: not false but
meaningless. This notion, besides being unnatural on the face of it,
is impractical in that it rules out the possibility of tests of meaningful-
ness; for logical consistency, like validity (cf. preceding section),
admits of no general test.

All this piling of expedients on expedients is, insofar as prompted by
a notion that expressions must name to be meaningful, quite uncalled
for. There need be no mystery about attributing nonexistence where
there is nothing to attribute it to, and there need be no misgivings
over the meaningfulness of words which purport to name and fail.
To purport to name and fail is already proof of a full share of
meaning.

If for other reasons the recognition of unactualized possibles is
felt to be desirable, there is nothing in the ensuing logical theory
that need conflict with it as long as essential distinctions are preserved.
So-called mental ideas and so-called meanings were provisionally
tolerated above; “ideas” of the Platonic stripe, including unactual-
ized possibles, could be accommodated as well. What must be insisted
on is merely that such shadowy entities, if admitted, be named in some
distinguishing fashion: ‘the Cerberus-possibility’, or ‘the Cerberus-
idea’, or ‘the meaning of ‘Cerberus’ *. If we can get together on this
much by way of convention, then everyone can be left to his favorite
metaphysics so far as anything further is concerned. The essential
message to be carried over from this section into succeeding ones is
simply this: Some meaningful words which are proper names from a
grammatical point of view, notably ‘Cerberus’, do not name any-
thing.!

1For more on this theme see Russell, “On denoting,” and my From a Logical Point of
View, Essays I and VL.
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EXERCISES

1. From the premisses:

Barr and Williams did not both contribute,
If Blake contributed then so did everybody

deduce the conclusion:
Blake did not contribute,
allowing free variables to stand for the proper names.
2. From the premisses:

Edith envies everyone more fortunate than she,
Herbert is no more fortunate than any who envy him

deduce the conclusion:

Herbert is no more fortunate than Edith.

§34. SINGULAR TERMS VERSUS GENERAL TERMS

More remains to be said on the subject of singular inference than was
covered by the simple considerations at the beginning of the preced-
ing section. But as a tool for the further developments we shall need
the theory of identity, which will be introduced in the next section.
We must also render the scope and logical status of singular terms
more explicit than has thus far been done; and this work will occupy
the present section.

What were called “terms” in §§12, 22 and represented by ‘F’, ‘G,
etc., are general terms, as opposed to singular terms. But generality
is not to be confused with ambiguity. The singular term ‘Jones’ is
ambiguous in that it might be used in different contexts to name any
of various persons, but it is still a singular term in that it purports in
any particular context to name one and only one person. The same 15
true even of pronouns such as ‘I’ and ‘thou’; these again are singular
terms, but merely happen to be highly ambiguous pending determina-
tion through the context or other circumstances attending any given
use of them. The same may be said of ‘the man’, or more clearly ‘the
President’, ‘the cellar’: these phrases (unlike ‘man’, ‘president’, and
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“cellar’ themselves) are singular terms, but the one and only one object
to which they purport to refer in any given use depends on attendant
circumstances for its determination.

Besides the classification of terms into singular and general, there
is a cross classification into concrete and abstract. Concrete terms are
those which purport to refer to individuals, physical objects, events;
abstract terms are those which purport to refer to abstract objects,
e.g., to numbers, classes, attributes. Thus some singular terms, e.g..
‘Socrates’, ‘Cerberus’, ‘earth’, ‘the author of Waverley’, are concrete,
while other singular terms, e.g., ‘7, ‘3 -+ 4’, ‘piety’, are abstract.
Again some general terms, e.g., ‘man’, ‘house’, ‘red house’, are con-
crete (since each man or house is a concrete individual), while others,
e.g., ‘prime number’, ‘zoological species’, ‘virtue’, are abstract (since
each number is itself an abstract object, if anything, and similarly for
each species and each virtue).

For attributes, as a realm of entities distinct from classes, I hold no
brief; I mention them only as a concession to readers with preconcep-
tions. If both sorts of entities are to be recognized, the one intelligible
difterence between them would seem to be that classes are considered
identiczl with one another when they have the same members (e.g.,
the class of animals with kidneys and that of animals with hearts)
while attributes may be viewed as distinct though applying to tne
same objects (e.g., heartedness and kidneyedness). Classes and attri-
butes are equally abstract, but classes have the edge on attributes in
point of clarity of identification and separation.

Those who draw a distinction between classes and attributes will see
in ‘humanity’ a name of an attribute and in ‘mankind’ a name of a
class, the class of all objects which partake of the attribute of human-
ity. But both terms are abstract singular terms, as opposed to the
concrete general term ‘man’ or ‘human’. This general term has the
class mankind as its extension.

The correspondence exemplified between the abstract singular term
‘mankind’ or ‘humanity’ and the concrete general term ‘man’ is a
systematic feature of our language. ‘Piety’ is an abstract singular
term corresponding to the concrete general term ‘pious person’;
‘redness’ is an abstract singular term corresponding to the concrete
general term ‘red thing’. In each such correspondence the abstract
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singular term purports to name an attribute (or perhaps a class) which
is shared by (or embraces) all and only those individuals of which the
corresponding general concrete term is true. Despite this correspond-
ence the singular abstract term differs from the general concrete
term in an important way: it purports to name one and only one
object, abstract object though it be, while the general term does not
purport to name at all. The general term may indeed “be true of”
each of many things, viz., each red thing, or each man, but this kind
of reference is not called naming; “naming,” at least as I shall use the
word, is limited to the case where the named object purports to be
unique.

Occasionally, as language is ordinarily used, a word like ‘man’
which is normally a general concrete term may be used as a singular
abstract term; e.g., ‘Man is a zoGlogical species’. But from a logical
point of view it is well to think of such examples as rephrased using
a distinctively singular abstract term (thus ‘Mankind is a zoélogical
species’).

The division of terms into concrete and abstract is a distincticn
only in the kinds of objects referred to. The distinction between
singular and general terms is more vital from a logical point of view.
Thus far it has been drawn only in a very vague way: a term is
singular if it purports to name an object (one and only one), and
otherwise general. Note the key word ‘purports’; it separates the
question off from such questions of fact as the existence of Socrates
and Cerberus. Whether a word purports to name one and only one
object is a question of language, and is not contingent on facts of
existence.

In terms of logical structure, what it means to say that the singu-
lar term “‘purports to name one and only one object” is just this:
The singular term belongs in positions of the kind in which it would also be
coherent to use variables ‘x’, ‘y’, etc. (or, in ordinary language, pro-
nouns). Contexts like:

Socrates is wise, Piety is a virtue,
Cerberus guards the gate, 7=3+4,

etc., are parallel in form to open sentences:

x is wise,  x guards the gate, xisavirtue, x =344
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such as may occur in closed statements having the form of quantifica-
tions: ‘(x)(x is wise)’, etc. The terms ‘Socrates’, ‘Cerberus’, ‘piety’,
and *7’ are, in short, substitutable for variables in open sentences
without violence to grammar; and it is this that makes them singular
terms. Whether there is in fact such an object as Socrates (which,
tenselessly, there is) or Cerberus (which there is not) or piety or 7
(on which philosophers disagree) is of course a separate question.

General terms, in contrast to singular ones, do not occur in pesi-
tions appropriate to variables. Typical positions of the general term
‘man’ are seen in ‘Socrates is a man’, ‘All men are mortal’; it would
not make sense to write:

1) Socrates is an x, All x are mortal,

or to imbed such expressions in quantifications in the fashion:
(2) (dx)(Socrates is an x),
(3) (x)(all x are mortal D Socrates is mortal).

The ‘’ of an open sentence may refer to objects of any kind, but it
is supposed to refer to them one at a time; and then application of
‘(x)’ or ‘(dx)’ means that what the open sentence says of x is true of
all or some objects taken thus one at a time.

There are indeed legitimate open sentences somewhat resembling
(1) but phrased in terms of class membership, thus:

(4)  Socrates is a member of x, All members of x are mortal.

But these do not, like (1), show ‘¢’ in place of a general term such as
‘man’; rather they show ‘x’ in place of an abstract singular term,
‘mankind’ (“class of all men’), as in ‘Socrates is a member of mankind’,
‘All members of mankind are mortal’. The open sentences (4) may
quite properly appear in quantifications:

(5)  (dx)(Socrates is a member of x),

(6)  (x)(all members of x are mortal D Socrates is mortal).
Incidentally (6) can be further analyzed:

(1) @®[(y)(yisa member of xr D yis mortal) D Socrates is mortal].
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As an alternative to (4) we might also appeal to attributes instead of
classes, thus:

8) Socrates has x, Everything that has x is mortal.

Here ‘x’ appears in the position of an abstract singular term such as
‘humanity’ which purports to name an attribute. Quantifications
analogous to (5)—(7) can then be built on (8).

It may seem pedantic to reject (1)—(3) as meaningless while accept-
ing (4)-(8). Why not accord (1) the meanings (4) or (8), and thus
construe (2)—(3) as interchangeable with the quantifications (5)-(6) or
with the analogous quantifications in terms of attributes? In short,
why not simply rub out the distinction between general terms and
abstract singular terms? The answer is as old as William of Ockham:
“Entities are not to be multiplied beyond necessity.” Abstract singu-
lar terms purport to name abstract entities; and, as we saw early in the
preceding section, singular inference commonly presupposes existence
of the purportedly named object within the universe over which our
variables of quantification range. The presupposition that our uni-
verse include abstract objects can be avoided, in much of our think-
ing, if we adhere to the point of view that words like ‘man’, in con-
texts like ‘Socrates is a man’ and ‘All men are mortal’, occupy posi-
tions which are inaccessible to variables—just as inaccessible as the
positions occupied by ‘(’ or ‘and’. The positions occupied by general
terms have indeed no status at all in a logical grammar, for we have
found (§23) that for logical purposes the predicate recommends itself
as the unit of analysis; thus ‘Socrates is a man’ comes to be viewed as
compounded of ‘Socrates’ and ‘@ is a man’, the latter being an indis-
soluble unit in which ‘man’ stands merely as a constituent syllable
comparable to the ‘rat’ in ‘Socrates’.

If for any perverse reason we should want to rephrase ‘Socrates is a
man’ or ‘All men are mortal’ in such a way as to make outright
reference to abstract objects, the formulations:

Socrates is a member of mankind, Socrates has humanity,
All members of mankind are mortal, All having humanity are mortal,

are at our disposal. These versions do contain singular terms which
purport to name abstract objects. But we keep the record straight hy
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reserving recognizably singular terms like ‘mankind’ and ‘humanity’
for such naming of abstract objects. Then, so long as we are minded to
proceed independently of the question of the existence of abstract
objects, we can eschew such idioms as the above in favor of ‘Socrates
is 2 man’ and ‘All men are mortal’. Eventually the question of ab-
stract objects has to be faced anyway; it will be recalled, in fact, that
classes were already appealed to in defining validity (cf. §§18, 24, but
also §§21, 32). More of this later. But it is sound policy to keep as
much of our logic clear of the question as we can.

The distinction between general terms and abstract singular terms is a
remnant of medieval logic which some modern logicians do not share my
concern to preserve. Actually the significance of the distinction is clearer
since the rise of quantification theory than it had traditionally been; sin-
gular terms are accessible to positions appropriate to quantifiable vari-
ables, while general terms are not. In the foregoing paragraphs it has ac-
cordingly been urged that general terms have the virtue, as against abstract
singular terms, of letting us avoid or at least postpone the recognition of
abstract objects as values of our variables of quantification. Some logicians,
however, attach little value to such avoidance or postponement. This atti-
tude may be explained in some cases by a Platonic predilection for abstract
objects; not so in other cases, howevel, notably Carnap’s. His attitude is
rather that quantification over abstract objects is a linguistic convention
devoid of ontological commitment; see his “Empiricism, semantics, and
ontology.”

§35. IDENTITY

Identity is such a simple and fundamental idea that it is hard to ex-
plain otherwise than through mere synonyms. To say that x and y are
identical is to say that they are the same thing. Everything is identical
with itself and with nothing else. But despite its simplicity, identity
invites confusion. E.g., it may be asked: Of what use is the notion of
identity if identifying an object with itself is trivial and identifying it
with anything else is false?
This particular confusion is cleared up by reflecting that there are
really not just two kinds of cases to consider, one trivial and the other
false, but three:

Cicero = Cicero, Cicero = Catiline,  Cicero = Tully.

The first of these is trivial and the second false, but the third is
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neither trivial nor false. The third is informative, because it joins
two different terms; and at the same time it is true, because the two
terms are names of the same object. For truth of a statement of iden-
tity it is necessary only that ‘=" appear between names of the same
object; the names may, and in useful cases will, themselves be differ-
ent. For it is not the names that are affirmed to be identical, it is the
things named. Cicero is identical with Tully (same man), even
though the name ‘Cicero’ is different from the name “Tully’. To say
anything about given objects we apply the appropriate verb or
predicate to names of the objects; but there is no reason to expect
that what is thereby said of the objects will be true also of the names.
themselves. The Nile, e.g., is longer than the Tuscaloosahatchie, but
the names are oppositely related.

Still, since the useful statements of identity are those in which
the named objects are the same and the names are different, it is only
because of a peculiarity of language that the notion of identity is
needed. If our language were so perfect a copy of its subject matter
that each thing had but one name, then statements of identity would
indeed be useless.” But such a language would be radically different
from what we have. To rid language of redundant nomenclature of the

-simple type, e.g., “Tully’ and ‘Cicero’, would be no radical departure;

but to eliminate redundancies among complex names, e.g., ‘7 X §’
and 27 + 8, or ‘twenty-fifth President of U.S.” and ‘first President
of U.S. to be inaugurated at 42’, or ‘mean temperature at Tuxtla’ and
‘93°F’, would be to strike at the roots. The utility of language lies
partly in its very failure to copy reality in any one-thing-one-name
fashion. The notion of identity is then needed to take up the slack.

But to say that the need of identity derives from a peculiarity of
language is not to say that identity is a relation of expressions in
language. On the contrary, as lately emphasized, what are identical
are the objects with themselves and not the names with one another;
the names stand in the statement of identity, but it is the named
objects that are identified. Moreover, no linguistic investigation of the
names in a statement of identity will suffice, ordinarily, to determine
whether the identity holds or fails. The identities:

¥Thus it was that Hume had trouble accounting for the origin of the identity idea in
experience. See Treatise of Human Nature, Bk. 1. Pt. IV, Sec. IL.
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Everest = Gaurisanker  (cf. §33),

Evening Star = Morning Star,

25th President of U.S. = first President of U.S. inaugurated at 42,
Mean temperature at Tuxtla = 93°F

all depend for their substantiation upon inquiry into extra-linguistic
matters of fact.

A popular riddle, so commonly associated with identity that it
should be touched on here, is this: How can a thing that changes its
substance be said to remain identical with itself? How is it, e.g., that
one’s body may be spoken of as the same body over a period of years?
The problem dates from Heraclitus, who said “You cannot step into
the same river twice, for fresh waters are ever flowing in upon you.”
Actually the key to this difficulty is to be sought not in the idea of
identity but in the ideas of thing and time. A physical thing—
whether a river or a human body or a stone—is at any one moment
a sum of simultaneous momentary states of spatially scattered atoms
or other small physical constituents. Now just as the thing at a mo-
ment is a sum of these spatially small parts, so we may think of the
thing over a period as a sum of the temporally small parts which are
its successive momentary states. Combining these conceptions, we see
the thing as extended in time and in space alike; the thing becomes a
sum of momentary states of particles, or briefly particle-moments,
scattered over a stretch of time as well as space. All this applies as well
to the river or human body as to the stone. There is only a difference
of detail in the two cases: in the case of the stone the constituent
particle-moments pair off fairly completely from one date to another
as momentary states of the same particles, whereas in the case of the
river or human body there is more heterogeneity in this respect.
The river or human body will regularly contain some momentary
states of a particle and exclude other momentary states of the same
particle, whereas with the stone, barring small peripheral changes or
ultimate destruction, this is not the case. Here we have a distinction
reminiscent of the distinction in traditional philosophy between
“modes” and “substances”. But things of both kinds are physical
things in one and the same sense: sums of particle-moments. And each
thing is identical with itself; we can step into the same river twice.
What we cannot do is step into the same temporal part of the river
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twice, where the part is temporally shorter than a stepping-while.
Diversity among the parts of a whole must not be allowed to obscure
the identity of the whole, nor of each part, with itself.

Thus far we have been thinking of statements of identity composed
of ‘=" flanked by singular terms. But ‘="is an ordinary relative term,
and so may be flanked as well by variables; e.g.:

(x)(»)(risagod .yisagod .D,x = y),

(@x)[xisagod . (y)(yisagod D.x = y)],

(Hx)(dy)(risa god . yisa god . x 5 y),

) (R)(xisagod.yisagod..zisagod . D:x=y.v.x =
Z ..y = 2).

(The notation ‘¢ 5 ¥’ is a convenient abbreviation for ‘—(x = y)’.)
As the reader can verify on a little reflection, these four statements
amount respectively to the following:

There is one god at most,’
There is exactly one god,
There are at least two gods,
There are two gods at most.

Statements of identity consisting of ‘=" flanked by singular terms
are needed, we saw, because language includes a redundancy of
names. But the need of ‘=" flanked by variables arises from a different
peculiarity of language; viz., from its use of multiple variables of
quantification (or their pronominal analogues in ordinary language).
Two variables are allowed to refer to the same object, and they are
also allowed to refer to different objects; and thus the sign of identity
comes to be needed when, as in the above four examples, there arises
the question of sameness or difference of reference on the part of the
variables. From a logical point of view it is the use of the identity
sign between variables, rather than between singular terms, that is
fundamental. We shall see, indeed (§37), that the whole category of
singular terms is theoretically superfluous, and that there are logical
advantages in thinking of it as theoretically cleared away.

The logic of identity is a branch not reducible to the logic of

¥This, according to a quip of the late Professor Whitehead’s, is the creed of the Uni-
tarians.
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quantification. Its notation may be thought of as comprising that of
the logic of quantification plus the one additional sign ‘=". Thus the
schemata of the logic of identity are the same as the quantificational
schemata except that they may contain, along with the clauses ‘p’,
‘q’, ‘Fx’, ‘Gxy’, etc., additional clauses of the form of identities:
‘¢ = ¢, ‘o = 2, etc. Validity may be defined for schemata of the
logic of identity precisely as it was defined for quantificational sche-
mata (§24). Thus there are valid schemata such as:

(@) (x =y.Fy) D (Ay)(x =)

which are like valid quantificational schemata except that ‘¢ = ',
‘c = ¥, etc., turn up instead of schematic clauses ‘Gxx’, ‘Gxy’, etc.
These are valid still by virtue simply of their quantificational struc-
ture, and independently of any peculiarities of identity. But there
are further valid schemata whose validity depends specifically on the

meaning of identity; one such is:
O Fx ,x=19.D Fy

For, consider any choice of universe, any interpretation of ‘F’ therein,
and any assignment of objects to the free variables ‘x’ and ‘y’. If the
object assigned to ‘x’ is the same as that assigned to ‘y’, and is an
object of which ‘F’ is interpreted as true, then (I) comes out true
through truth of its consequent ‘Fy’; and in any other case (I) comes
out true through falsity of its antecedent.

Through having added the identity sign to our logical notation we
find ourselves able, for the first time, to write genuine sentences
without straying from our logical notation. Hitherto, schemata were
the best we could get; extra-logical materials had to be imported from
ordinary language when, for the sake of illustration, a genuine sen-
tence was wanted. In ‘x = x’ and ‘(x)(x = x)’, however, we have
sentences—the first open, the second closed and true.

Any schemata obtained by putting identities ‘x = x°, ‘x = ¥, etc.,
in place of say ‘Gxx’, ‘Gxy’, etc., in valid quantificational schemata
are, it has been explained, valid schemata of the logic of identity.
But such putting of identities for schematic clauses can, when thor-
ough, yield a sentence instead of a schema, e.g.:

x=x.0 (y)(x =y).
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It is convenient to allow the concept of validity to apply to such sen-
tences along with schemata. The extension, indeed, is quite automatic.
A schema has been explained as valid when it comes out true under
every nonempty choice of universe and every interpretation therein
of its schematic letters and free variables; and this characterization
carries over unchanged to sentences such as the above, except that
the provision for schematic letters becomes irrelevant. When further-
more the sentence has no free variables, the definition of validity
reduces to ‘true for every nonempty choice of universe’.

The example ‘x = x .2 (dy)(x = y)’ above is a sentence which is
valid by virtue simply of its quantificational structure. Of those whose
validity depends specifically on the meaning of identity, on the other
hand, the simplest is:

(1D x =z

Another, truth-functionally implied by the two foregoing sentences,
is (Ay)(x = y)".

Substitutions may be made for ‘F’ in (I) just as explained in §25,
except that the substituted expressions may now contain identity
signs instead of predicate letters. Reflection on the general mechanics
of substitution (§25) reveals that, in (I) in particular, ‘Fx’ and ‘Fy’
may in effect be directly supplanted respectively by any schemata
S, and S, which differ only in that S, has free ‘¢’ in some places where
S, has free ‘y’. (For, the predicate or predicate-schema theoretically
substituted for ‘F” would then be simply S, with ‘@’ in the particular
places where S, and S, are to differ). Thus one result of substitution
in () is:

w=x.x=y.J.w=Yy

—the law of transitivity of identity (cf. §30).
The universal closures of (I) and (II), viz:

@O)Fr.x =y .0 Fy), () = 2),

together with the universal closures of any results of substituting for
‘F in (1), will be called axioms of idenzty. Now the technique of
deduction in quantification theory carries over to the logic of identity;
we simply deduce the valid schemata and statements of the logic of
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identity from the axioms as premisses.” E.g., the law of symmetry of
identity ‘¢ = y.D.y = %’ may be deduced from two axioms of iden-

tity as follows:”

*{(1) @O)Er=x.x=9.D.y=12)
2 @Fx=2
*(3) (PNr=x.2=9.D.9y=1) (¢)]

*(4) x=x.x=yD.9=x (3)
*»(5) x=x (2
*x{(6) x=y.D.y=x @)

A convenient condensed notation for deductions from axioms is
obtained by suppressing the axioms as premisses, and suppressing also
the steps of Ul which get rid of the initial quantifiers of the axioms.
Under this plan we would justify (4) of the above deduction simply
by writing ‘(I)’ to the right of it—thus referring back beyond the
actual axioms to the convenient open schema (I). Similarly a line
‘2 = 2, if wanted, would be justified simply by writing ‘(II)’ to the
right of it. (I) and (II) themselves, when they are to be used as actual
lines without substitution for ‘F’ or changes of variables, need not be
written in as lines at all; for we can always refer back to them simply
as (I) and (11). Thus line (5) above drops out, and the citation ‘(5)’ in
the next line changes to ‘(I)’. Condensed accordingly, the above
deduction appears as follows.

Q) zx=x.x2=y.D.9=x (D)
2 x=y.D.y=x 1) {an

The extension of the concept of validity to the logic of identity
carries with it, as usual, an extension of implication and equivalence;
for implication is validity of the conditional, and equivalence is
mutual implication. Thus ‘x = y’ implies ‘y = x’. Moreover, since the

1The axioms are complete, in the sense that every valid sche.ma or statement of the
logic of identity can be reached as last line of 2 ﬁnished_dedl{ctlon with only axioms as
premisses. This follows from the completeness of quantification theory (§32) together
with the analysis of identity theory which is contained in Hilbert and Bernays, vol. 1,
pp.zlilit;z?l?at (1) here is not a legitimate result of substitutim} in the .axiom of identity
“()()(Fx . x = y.D Fy). Cf. §25, second restriction. But @)is the \‘mlvc.rsal closure of a
legitimate result of substitution in (I); and as such it is an axiom of identity.
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reverse implication likewise holds (by mere change of variables),
‘x = y’ is equivalent to ‘y = x’.

For further illustration let us establish the equivalence of ‘(y)(x =
y .2 Fy)’ to ‘Fx’, by mutual deduction in the condensed style.

() ) =y.0 F) *(1) Fx

*(2) x =x.D Fx (D *(2) x =y .D Fy (1))

*(3) Fx (D) *(3) O =y .D Fy) )y
EXERCISES

1. Rewrite the last two deductions without condensation, showing
the appropriate axioms explicitly as premisses.

2. Writing ‘F’ for ‘cross-fertile’ (‘is cross-fertile with’), put this
statement into logical form:

Some zodlogical species are cross-fertile.

Note that ‘distinct’ is understood after ‘Some’ here. Does the resulting
statement call for abstract entities as values of its variables?

3. Writing ‘y’ for ‘Barr’, ‘2’ for ‘the cashier’, and ‘F’ for ‘had a key’,
put the statement:

None but Barr and the cashier had a key
into logical notation with help of identity. From this and:
Someone who had a key took the briefcase
deduce the conclusion:
Barr or the cashier took the briefcase

with help of (I). This can be done in four lines in addition to the
premisses and conclusion; but such condensation need not be insisted

upon.
4. Establish the equivalence of:

(Hx)(Fx .x = y), Fy
by deducing each from the other.

§36. DESCRIPTIONS

Since Peano it has been customary in logic to write ‘(ax)’, with an

inverted iota, to mean ‘the object x such that’. Thus the complex
) p
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singular terms ‘the author of Waverley’ and ‘the prime number be-
tween 5 and 11’ become:

() (x wrote Waverley), (x)(x is prime . 5 < x < 11).

Singular terms are called descriptions when written in this form. The
singular terms of ordinary language which may be represented thus as
descriptions begin typically with the singular ‘the’, but by no means
necessarily so, as these examples show:

what he went after, (2x)(he went after x);

where he was born, (2x)(he was born at x);

John’s mother, (%) (x bore John);

Smith’s house, (7x)(x is a house . x is Smith’s). .

In general a singular term purports to name one and only one ob-
ject, and in particular a singular term of the form ‘(+x)Fx’ purports to
name the one and only object of which the predicate represented by
‘F’ is true. Thus, if y is the object (1x)Fx, then y must be such that

Fy . F nothing-but-y.

This conjunction amounts to saying that, for each thing x, ‘F’ is true
of x if x = y, and false of x otherwise. In short:

¢)) x)(Fx =.x = y).
E.g., to say that Scott is (1x)(x wrote Waverley) is to say that

(%) (x wrote Waverley =. x = Scott).

If ‘F’ is true of nothing or of many things, then there is no such thing
as (1x)Fx. Actually the predicate appearing in the réle of the ‘F’ of
‘(1x)Fx’ in verbal examples from ordinary discourse very frequently
needs supplementary clauses to narrow it down to the point of being
true of only one object, but this situation can commonly be viewed
merely as a case of the familiar practice of depending on context or
situation to resolve ambiguities of ordinary language.

We saw in §33 that arguments involving a singular term can be
carried through by straight quantification theory with a free variable,
say ‘y’, for the singular term, but that the application of the results
depends on construing y as the object named by the singular term,
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and hence is contingent on existence of such an object. This constru-
ing of y, and the existence assumption on which it rests, figured no-
where in the schematism of the deduction, but only in the informal
step of application. Now the beauty of descriptions is that here the
construing of y as the named object can itself be schematized quite
explicitly as an additional premiss, of the form (1) above. So our
technique for deductions involving descriptions is as follows: we use
free variables for the descriptions as for any singular terms, but we
also add a descriptional premiss of the form (1) for each description.
Then the deduction proceeds not by pure quantification theory but
by identity theory, in view of the ‘=" in the descriptional premisses.
Thus let us try this example:

Premiss: The broker who hired John hired only honors graduates,
Conclusion: John was an honors graduate.

Here we have two singular terms, the simple one ‘John’ and the
complex one ‘the broker who hired John’. Let us represent them by
free variables ‘@’ and ‘y’ respectively. Writing ‘F’ for ‘broker’ and
‘G’ for ‘hired’, we may also render the complex singular term as a
description ‘(w)(Fx . Gxw)’; so the corresponding descriptional
premiss is:
) (Fx . Grw .=.x = y).

So from this and the original premiss, which is ‘(x)(Gyx D Hx)’

where ‘H’ represents ‘honors graduate’, our problem is to deduce
‘Hw'.

(1) (x)(Gyr D Hx)
() ()(Fc . Gw =z = y)

* (3) Gyw D Hw (1)
*(4) Fy.Gyw.=.y=y 2
*(5) y=y dn
* (6) Hw 3)@6)

Whether a proposed deduction is to enjoy the benefits of a descrip-
tional premiss depends, evidently, on whether a given singular term
can fairly be translated into the form of a description. Now fairness of
translation is a vague matter, hinging as it does on the concept of
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synonymy which was so dimly regarded in §33. “The author of
Waverley' seems fairly translatable as ‘(1x)(x wrote Waverley)’, but
‘Scott’ and ‘the author of Ivanhkoe’ do not, despite the fact that all of
these name the same object; for it is felt that ‘the author of Waverley’
is connected with ‘(ax) (x wrote Waverley)’ by sheer meaning, whereas
‘Scott’ and ‘the author of Ivanhoe’ are connected with it through
accidental matters of fact.

At the same time it seems that singular terms can depart widely in
form from the singular ‘the’ idiom and still be fairly deemed translat-
able into descriptions; witness ‘John’s mother’. Indeed, even so
simple a term as ‘Socrates’, Russell has argued, is for each of us synon-
ymous with some description, perhaps ‘(2x)(x was a philosopher .
¢ drank hemlock)’ or perhaps another depending on how each of us
first learned of Socrates. Are then all singular terms to be considered
capable of fair translation into descriptions, except for those very few
names which we may be supposed to have learned by direct confron-
tation with name and object? Must a separate category then be kept
open for these few hypothetical exceptions?

Happily, we can isolate such epistemological considerations from the
logic of singular terms by a very simple expedient: by insisting on the
primacy of predicates. We may insist that what are learned by osten-
sion, or direct confrontation, be never names but solely predicates.
This we may insist on at the level strictly of logical grammar, without
prejudice to epistemology or ontology. Without prejudice to ontology
because the same things remain, whether as things which names name
or as things which predicates are true of. Without prejudice to epis-
temology because we may grant the epistemologist any of the words
which he traces to ostension; we merely parse them differently.
Instead of treating the ostensively learned word as a name of the
shown object to begin with, we treat it to begin with as a predicate
irue exclusively of the shown object; then we construe the name, as
such, as amounting t ‘(x)Fx’ where ‘F’ represents that primitive
predicate. No matter to epistemology, but much to the smoothness
of logical theory.

So there is no longer an obstacle to treating all singular terms as
descriptions. Given any singular term of ordinary language, more-

IE.g., in “Knowledge by acquaintance.”
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over, say ‘Socrates’ or ‘Cerberus’ or ‘the author of Waverley', the
proper choice of ‘F’ for translation of the term into ‘(x)Fx’ need in
practice never detain us. If a pat translation such as ‘(ax)(x wrote
Waverley)’ lies ready to hand, very well; if not, we need not hesitate
to admit a version of the type of ‘(ax)(x is-Socrates)’ or ‘(ax)(x is-
Cerberus)’, since any less lame version would, if admissible as a
translation at all, differ at most in expository value and not in
meaning.

Deductions of the type of the broker example set forth above are
in no way facilitated by thus trivially transforming simple singular
terms into descriptions. Construing ‘John’ in the broker example as
a description ‘(1x)(x is-John)’, or ‘(sx)Jx’, would entitle us to a
further descriptional premiss ‘(x)(Jx =. x = w)’, but this is neither
necessary nor useful for the progress of the deduction. The advantage
of treating all singular terms as descriptions is of a more theoretical
kind: that of sparing us having to admit into the framework of our
technical theory a distinction between a category of descriptions and
a category of non-descriptive singular terms. It is theoretically im-
portant not to have to admit this distinction because, as we have seen,
the question of there being essentially nondescriptive singular terms
at all, and if so what, was shrouded in the theory of knowledge and
meaning. We have segregated that issue from our concerns, by shift-
ing it from the realm of singular terms into that of predicates. Every
singular term can now, trivially if not otherwise, be handled as a
description; what had been an issue over names learned ostensively
versus names learned discursively now becomes an issue over predi-
cates learned ostensively versus predicates learned discursively. In
this form the issue ceases to cut across any of our schematism of
logical forms and categories, and can be left to other minds.

There is a yet more striking benefit to be gained from treating all
singular terms as descriptions, but it must await the next section.

EXERCISES

1. Express ‘the tallest man in town’ in the form ‘(ax)(+-x+--)’,
using ‘talier than’ but not ‘tallest’.
2. From:

The author of Waverley wrote Ivanhoe
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and a descriptional premiss, deduce:

Someone wrote both Waverley and Ivanhoe.

§37. ELIMINATION OF SINGULAR TERMS

Let us next take up the problem, which has been looming for some
time, of the truth value of such statements as ‘Cerberus barks’.
Falsity, as a sweeping answer covering all statements containing
‘Cerberus’, would be over-hasty: first, because the statement “There
is no such thing as Cerberus’, at least, is true; and second, because
whatever statements we adjudge false must admit of compounds,
e.g., their negations, which will be true. Truth, as a sweeping answer,
would encounter parallel difficulties.

Our deductive methods for singular terms throw no light on the
question; for we already assume that the singular term names an
object when we represent the singular term by a free variable, and
we make the same assumption again when we adopt a descriptive
premiss for a description. Failing a named object, our methods show
nothing, for what they purport to show rests then on a contrary-to-
fact assumption. Common usage, moreover, likewise leaves us in the
dark; for, excepting such contexts as “There is no such thing as
Cerberus’, a singular term is ordinarily used only when the speaker
believes or cares to pretend that the object exists.

Under ordinary usage, we saw (§3), truth values attach not to in-
dicative conditionals as wholes but only to the consequents condi-
tionally upon truth of the antecedents. Analogously, under ordinary
usage truth values attach to contexts of singular terms for the most
part only conditionally upon existence of the objects. But if we are
to have a smooth logical theory we must fill such gaps, even though
arbitrarily, in such a way that every statement comes to have a
truth value. Thus it was that we conventionally extended the concept
of the conditional, in §3, so as to allow truth values generally to con-
ditionals as wholes. An extension in the same spirit is needed now on
the score of singular terms that do not name.

We cannot, we have seen, accomplish this extension by any blanket
decision that all contexts of a term such as ‘Cerberus’ are to be false,
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or all true. We can, however, decide the simple contexts and then let
the truth values of the compounds follow from those decisions. Let us
speak of a predicate as simple, for our purposes, when it does not
explicitly have the form of a quantification, negation, conjunction,
alternation, conditional, or biconditional of shorter components.
When any such simple predicate is applied to a singular term which
fails to name, let us classify the resulting sentence as false (for all
values of any free variables it may have). Thus ‘Cerberus barks’,
formed as it is by applying the simple predicate ‘@ barks’ to ‘Cer-
berus’, is adjudged false.

This rule is suited for use only upon sentences which are considered
to be fully analyzed in point of logical structure. If the sentences are
still to be subject to further paraphrasing of words into symbols, we
must be wary of treating a predicate as “‘simple” in the above sense
and then paraphrasing it into a complex one.

For illustration let us re-examine the statement:

(1) The broker who hired John hired only honors graduates.

If we use ‘F’ for ‘broker’ and ‘G’ for ‘hired’, then ‘the broker who
hired John’ may be rendered ‘(2x)(Fx . G x John)’. To say that this
alleged person hired # is then to say:

) G (w)(Fx . G x John) «,
so that (1) becomes:
(3) (#)[G (x)(Fx . G x John) # D Hu]

where ‘H’ means ‘honors graduate’. Now let us suppose that no broker
or several hired John, so that there is no such thing as ke broker who
hired John. According to the decision which we have newly adopted
to cover such cases, the simple context (2) of ‘(wx)(Fx . G x John)’ is
then to be classified as false for all choices of #. Thereupon the condi-
tional in (3) becomes true for all choices of # through falsity of ante-
cedent, so (3) becomes true. The outcome is therefore that (1) be-
comes true, independently of any consideration of honors graduates,
in case John was hired by no broker or several. This particular out-
come is the merest curiosity, neither welcome nor unwelcome, since
ordinary usage leaves cases such as this undecided.
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Even when a singular term fails to name, however, we do have very
proper preconceptions about the truth value of the special context
“T'here is [or: is not] such a thing as - - -’. But statements of this form
call for a separate analysis, along lines which are already pretty evident
from these past observations:

(a) We may take ‘(2x)Fx’ as the general form for singular terms.

(b) ‘(+x)Fx’ purports to name the one and only object of which
‘F’ is true (supposing any particular predicate for ‘F’ here).

(c) ‘(x)(Fx =.x = y)’ amounts to saying that y is the one and
only object of which ‘F’ is true.

To say that there is such a thing as (+x)Fx is to say, in view of (b),
that there is one and only one object of which ‘F’ is true; and this
may, in view of (c), be said as follows:

(4) @) (x)(Fx =. x = y).

Here, then, is an adequate formulation of ‘there is such a thing as
(%) Fx’; and no more can be wanted, in view of (a), in formulation of
the general idiom ‘There is such a thing as - - -’.

Curiously enough, the translation (4) of “There is such a thing as
(1x)Fx’ is devoid of the singular term ‘(2x)Fx’. Now elimination of
‘(+x)Fx’ from other contexts can also be accomplished. For, think
of ‘G’ as representing any predicate which is “simple” in the recently
defined sense. Then ‘G (x)Fx’, which attributes ‘G’ to (1x)Fx, may

be paraphrased as:
©) @Gy . (x)(Fr =.x = y)].

This is seen as follows. First suppose (Case 1) that there is such a
thing as (1x)Fx. Then the clause ‘(x)(Fx =. x = y)’ identifies y with
(1x)Fx, and accordingly (5) as a whole becomes true or false according
as ‘G’ is true or false of (2x)Fx. Next suppose (Case 2) that there is no
such thing as (1x)Fx. Then ‘(x)(Fx =. x = )’ becomes false for all
choices of y; so (5) becomes false. But ‘G (1x)Fx’ likewise is to be
false in this case, according to our recent agreement about simple
predicates in application to singular terms that do not name.

We are now in a position to eliminate singular terms everywhere.
Given any sentence involving singular terms, we begin by paraphras-
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ing the sentence into the explicit notation of quantification and truth
functions as fully as we can, leaving the singular terms undisturbed as
components but putting each in the form of a description. Then we
supplant each simple context of each description by its equivalent of
the form (5)—or by (4) if it happens to have the form ‘there is such
a thing as () Fx’}!

For simplicity we have been imagining always closed singular terms,
as opposed to open ones such as ‘x + 5 or ‘the eldest son of *’ or
‘(1x)(x wrote 2)’. Clearly, however, the open ones admit of elimina-
tion by the same procedure; the fact that a free variable is being car-
ried along alters nothing essential to the reasoning.

To see how the elimination of singular terms proceeds in practice,
let us return to (1) and eliminate the singular terms ‘John’ and ‘the
broker who hired John’. As a first step we may eliminate the descrip-
tion from the simple context (2). The general method of doing this
was seen in the translation of ‘G (1x)Fx’ into (5); but what we have to
deal with now in place of ‘G (wx)Fx’ is (2), which is of the form of
‘G ()Fx’ with ‘F@ . GO John’ for ‘F’ and ‘G@u«’ for ‘G’. These

same substitutions in (5) give:
(6) (Ty)[Gyu . (x)(Fx . G x John .=. x = y)],

then, as the translation of (2). But ‘John’ has yet to be dealt with.
Writing ‘)’ for ‘is-John’, we render ‘John’ as a description ‘(12)]z’,
so that ‘G x John’ in (6) becomes ‘Gx(12)Jz’. This clause is of the
form ‘G(wx)Fx’ with 2’ for ‘’, ‘]’ for ‘F’, and ‘Gx@’ for ‘G’. Cor-
responding changes in (5) give:

) H)[Gxw . (2)(Jz =. 2 = w)],

then, as translation of ‘Gx(12)]z’. Now we have eliminated both sin-
gular terms. It remains only to assemble the pieces, by putting (7) for
‘G x John’ in (6) and then putting the result for (2) in (3). We thus
get:

@)[(y)(Gyu . () {Fx . (Aw)[Gxw . (2)(Jz =. z = w)] .=.x = y})
D Huj

¥This method of eliminating descriptions is due to Russell (1905). But he did not take
the further step of treating all singular terms as descriptions,
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as our final paraphrase of (1). But by now it begins to appear that the
elimination of descriptions is of essentially theoretical interest, and
that in practice the alternative handling of the broker problem
which was noted in the preceding section recommends itself highly.

Nevertheless, the theoretical eliminability of singular terms—the
dispensability of all names—is so startling that its importance scarcely
needs dwelling upon, except in the negative fashion of pointing out
what it does not mean. It does not mean that our language loses all
means of talking about objects; on the contrary, the foregoing consid-
erations show that the extrusion of singular terms is unaccompanied
by any diminution in the power of the language. What the disap-
pearance of singular terms does mean is that all reference to objects
of any kind, concrete or abstract, is narrowed down now to one
specific channel: variables of quantification. We can still say anything
we like about any one object or all objects, but we say it always
through the idioms of quantification: “There is an object x such that
---*and ‘Every object x is such that- - -*. The objects whose existence
is implied in our discourse are finally just the objects which must, for
the truth of our assertions, be acknowledged as “values of variables”—
i.e., be reckoned into the totality of objects over which our variables
of quantification range. To be is to be a value of a variable. There are
no ultimate philosophical problems concerning terms and their refer-
ences, but only concerning variables and their values; and there are no
ultimate philosophical problems concerning existence except insofar
as existence is expressed by the quantifier ‘(dx)’. Except when we are
concerned with philosophical issues of linguistic reference and exis-
tence, on the other hand, there is no point in depriving ourselves of
the convenience of singular terms; and accordingly the techniques
of inference hitherto developed for singular terms are not to be
thought of as abandoned.

EXERCISE
Put the statement:
The woman who lives above us is German and loves flowers

into symbols, using ‘Fx’ for ‘x is a woman’, ‘Gx’ for ‘x lives above us’,
‘Hx’ for ‘x is German’, and ‘Jx’ for ‘x loves flowers’. Then transform
the whole so as to eliminate use of description.
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§38. CLASSES

The evident analogy between variables ‘x’, ‘y’, etc., and schematic
letters ‘F’, ‘G’, etc., tempts us to try using the latter in quantifiers,
e.g., thus:

M (F)[(x)Fx D (Hx)Fx],
) (3F)[(3x)Fx . —(x)Fx].

However, let us not be hasty in supposing that we understand (1) and
(2). We have been reading the quantifiers ‘(x)’ and ‘(dx)’ in the
fashion ‘each thing x is such that’ and ‘something x is such that’, but
how are we to read ‘(F)’ and ‘(HF)’? May we read ‘(F)’ in the
fashion ‘each general term (or predicate) F is such that’, and ‘(4F)’
correspondingly? No, this is a confusion. ‘F” has never been thought of
as referring to general terms (and thus as standing in place of names of
general terms), but only as standing in place of general terms. If there
were objects of a special sort, say gimmicks, of which general terms
were names, then the proper readings of ‘(F)’ and ‘(HF)’ would be
‘each gimmick F is such that’ and ‘some gimmick F is such that’.
But the difficulty is that general terms are not names at all.

From time to time we have, however, associated certain abstract
entities, viz., classes, with general terms. We have never treated
general terms as names of classes, but we have spoken of general terms
as having classes as their so-called extensions. So classes recommend
themselves as objects for the newly quantified variable ‘F’ to range
over. We can read ‘(F)’ and ‘(dF)’ in (1) and (2) as ‘each class F is
such that’ and ‘some class F is such that’, provided that we also
reread ‘Fx’ for present purposes as ‘x is a member of the class F.

But we have now strained ‘F’ away from its former usage in two
important respects. The new reading of ‘Fx’ involves use of ‘F’ in
positions appropriate no longer to general terms, but to abstract
singular terms, viz. class names; and the use of ‘F’ in quantifiers
changes the status of ‘F’ from schematic letter to variable. It is more
conducive to clarity to renounce this altered usage of ‘F’ and adopt
instead a fresh notation for the new purposes: variables ‘o’, ‘8, ‘y’,
-+« for classes, and ‘¢’ for ‘is a member of’. (1) and (2) then give way

to:
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3) @[(*)(x 2a) O (Fx)(x e )],
4) (Ha)[(Hx)(x e @) . —(x)(x e a)].

Such sentences combine variables which range over two distinct

[P} <

universes. The variables ‘«’, ‘y’, etc., range over some unspecified
universe U, while the variables ‘@’ ‘8’, etc., range over a distinct but
related universe U, composed of the subclasses of U: the classes whose
members belong to U. The simplest sentences of this class-theory
notation consist of ‘e’ with an ordinary variable on its left and a class
variable on its right, in the manner ‘x € o’; and all further sentences
are built up by quantification and truth functions from these simple
ones.

Up to a point, despite its overt reference to a new realm of entities
called classes, this new branch of logic can be created by definition in
terms merely of the concepts of validity and consistency of quantifi-
cational schemata. To say that the schema ‘(x)Fxr D (dx)Fx’ is valid
is, we know, to say that it comes out true under all choices of classes as
extensions of ‘F’; hence to affirm the statement (3) or (1) of class
theory as true amounts merely to affirming the validity of the schema
‘(x)Fx D (dx)Fx’. Similarly .o affirm (4) or (2) as true amounts to
affirming the consistency of the quantificational schema ‘(dx)Fx .
— (x)Fx’. Such an account of (3) and (4) is interesting in that, within
its limits, it explains statements about classes without presupposing
classes. Use is made merely of the concepts of quantificational validity
and consistency. These concepts were themselves explained in turn in
terms of classes at one stage, indeed, but we ultimately found that
they could be specified also in terms of decision procedures or deduc-
tive rules, without dependence on the class concept.

Let us speak of a quantifier as prenex in a sentence when, like *(a)’
and ‘(de)’ in (3) and (4), it is initial (except perhaps for other quanti-
fiers) and its scope reaches to the end of the sentence. Now in general
a statement in our new class-theory notation can be explained in terms
of validity or consistency, as was done for (3) and (4) above, as long as
the statement is of the following sort: its class variables all refer back
to prenex quantifiers, and furthermore all the quantifiers, through the
last class quantifier, are uniformly universal or uniformly existential.
If they are universal, truth of the statement amounts to validity of
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the corresponding quantificational schema; if they are existential,
truth of the statement amounts to consistency of the schema. E.g.,
truth of the statements:

@ @fx ea.d ()2,
(Ho)(TB)(x)(x e .=. x & )

of class theory amounts to validity and consistency of the respective
schemata:

Fx D (dy)Fy, (x)(Fx = Gx)

of quantification theory.

This expedient can be pushed a bit. Quantifiers internal to a
statement can be brought into prenex position by writing them with
distinct variables and applying (i)~(viii) of §29. Thus the statement:

(a)[B)(*)(x eB.D.xea) D (Ay)Ax)(xey.xe a)l,

with buried class quantifiers ‘(8)’ and ‘(dy)’, can be transformed by
(vii) and (v) of §29 through the stages:

(Ta)(@@B)[(x)(x e .D.xea) D () Ex)(x ey .x e a)],
(Fa)(@B)(AN[(*)(x eB.D.xea) D (Hx)(x ey .xea)],

and this last can be explained as merely affirming, in effect, the con:
sistency of the quantificational schema:

(x)(Gx D Fx) D (dx)(Hx . Fx).

If all statements constructible in our class-theory notation could
thus be equated to consistencies and validities of quantification
theory, we could regard our theory of classes merely as a picturesquely
transcribed account of quantification theory; classes would not need to
be acknowledged as seriously presupposed entities. However, the
situation is otherwise. Statements of class theory cannot be explained
away in the above fashion when their prenex quantifiers are mixedly
universal and existential as in the examples:

(5) (@)(EB)(x)(x e .=.x¢B),
(6) @)H)(x e .=.yea).
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It is in such statements that the irreducible substance of class theory
is to be sought. Similarly for statements containing buried class quan-
tifiers which, when brought into prenex position by (i)-(viii) of §29,
become mixedly universal and existential; e.g.:

7 @M(a)xea.D.yea) D B)(yep.D.xeph)
which, transformed by (vii) and (vi) of §29, becomes:
@»Ha)B)(xea.D.yea:D:yeB.D.xep).

That (5)-(7) are true is a point of higher logic, not expressible in
terms merely of validity of quantificational schemata. Thus the
general adoption of class variables of quantification ushers in a theory
whose laws were not in general expressible in the antecedent levels of
logic. The price paid for this increased power is ontological: objects of
a special and abstract kind, viz., classes, are now presupposed. For-
mally it is precisely in allowing quantification irreducibly over class
variables ‘e’, ‘8, etc., that we assume a range of values for these
variables to refer to. To be assumed as an entity is to be assumed as a
value of a variable.

But this power of expressing irreducibly new logical laws would of
itself justify little interest in class theory, were it not accompanied by
a corresponding increase of power on the side of application. Quanti-
fication over classes brings new power of expression also when used as
an auxiliary to extra-logical discourse. A good example of this effect
may be seen in the definition of the predicate or relative term
‘ancestor’ on the basis of ‘parent’. To simplify the situation let us
understand ‘ancestor’ in a slightly broadened sense, thereby counting
as a person’s ancestors not only his parents, grandparents, and so on,
but also the person himself. Let us represent ‘parent’ by ‘F’, so that
‘Fxy’ means ‘¢ is a parent of y°. Now the problem is to write ‘x is an
ancestor of ¥’ using only ‘F’ and our various logical symbols.

An important feature of the class of ’s ancestors is that all parents
of members of the class are members of it in turn. Another feature of
it is that y himself belongs to it. But these two features do not yet fix
the class of y’s ancestors uniquely; there are larger classes which also
contain y and contain all parents of members. One such class is the
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class of the ancestors of y’s grandsons. Another such class is the com-
bined class of y’s ancestors and neckties; for, neckties being parentless,
their inclusion does not disturb the fact that all parents of members
are members. But clearly every class which contains y and all parents
of members will have at least to contain all ’s ancestors, no matter
what extra things it may happen to contain. Moreover, one of these
classes contains nothing but y’s ancestors. Hence to be an ancestor of y
it is necessary and sufficient to belong to every class which contains y
and all parents of members. Therefore ‘x is an ancestor of y’ can be
written thus:

x belongs to every class which contains y and all parents of members;
Le.:

(2)(y £ @ . all parents of members of & belong to @ .D. x £ a);
i.e.:
® (@pyee.E@E@(wea.Fzaw.D.22a).D.xea]

This ingenious construction, due to Frege but often attributed to
Dedekind or to Peirce, admits of many applications besides this
genealogical one. An application to number will be encountered in the
next section. But what is significant about the construction for present
purposes is that it makes essential use of quantification of a class
variable ‘a’.

A simpler but still important illustration of our new access of power
may be seen in the fact that the sign ‘=" of identity now becomes
superfluous; for instead of writing ‘x = 3’ we may say that x and y
belong to just the same classes, thus:

(@(rea.=.yea).

fdentity of classes, ‘@ = §’, may be explained in a somewhat opposite
way, as meaning that e and 8 have just the same members. So the con-
venient sign ‘=" may now be viewed as a mere abbreviation, accord-
ing to these “definitions” or conventions of abbreviation:

b

‘x=y for ‘(@rea.=.yza),

‘a=p for ‘(rea.=.xeph).
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So, while we may continue to use the sign ‘=" as a convenience, it is
superfluous and may always be imagined eliminated as above.

Once the notation of identity is thus at hand, we can also allow
ourselves the further luxury of the notation of description without
having to reckon it into our inventory of basic notation. For we know
from the preceding section how, with help of identity, to eliminate a
description from any statement in which it occurs.

Occasion continually arises in class theory to speak of the class of
all and only the objects fulfilling a given condition. The notation for
this purpose is a variable with circumflex accent, used as prefix to
the condition in question; thus # —(x e ) is the class of all objects
x such that —(x ¢ @), or in other words the class of all non-members
of a. The prefix ‘2’ may be read, in general, ‘the class of all objects x
such that’. Class names formed by use of such a prefix are called
abstracts. Now the main utility of description, in class theory, is as a
means of introducing this important notation of abstraction; for,
where ‘Fx’ represents any open sentence involving ‘x’, clearly we can
explain ‘£Fx’ as an abbreviation of a description thus:

‘4Fx  for  ‘(1a)(x)(x e @ .= Fx)".

Doet BN

The special abbreviations ‘@’, ‘af’, and ‘@ v B, or others to the same
purpose, are commonly adopted for the three abstracts:

£f—(rea), frea.xep), frea.v. xep).

The classes @, o3, and a v 3 are spoken of respectively as the complement
of the class a, the logical product (or common part) of @ and 8, and the
logical sum of @ and 8. In terms primarily of these notions an “algebra of
classes” is developed which embraces such laws as:

aff = fa, —(@B) =avp, alBvy) = aBvay.

In large part this algebra goes back to Boole (1854), along with truth-
functional logic—to which, indeed, the algebra of classes is close kin.

Taken by itself, the algebra of classes does no more than reproduce in
another form the content of uniform quantification theory, as of Part II.
We could, if we liked, apply the notations of the algebra to schematic
predicate letters in quantification theory by adopting conventions of
abbreviations as follows:

‘Fv* for ‘—Fx, ‘FvGx* for ‘FxvGx,
‘(FG)x* for  ‘Fxr.Gx, ‘F=G  for ‘(x)(Fx = Gx)'-
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The notations ‘F’, ‘Fv G, and ‘FG’ are indeed reminiscent of a shorthand
which was actually used in §§19 ff.

So, though the algebra of classes is the most familiar manifestation of
class theory, it is in essential respects independent of the whole assumption
of classes. The serious motivation for assuming classes is to be found rather
in constructions such as that of ‘ancestor’.

EXERCISES

1. Using the above definitions, and the method of the preceding
section for eliminating descriptions, expand ‘y & £(x € @)’ step by
step into unabbreviated class-theory notation.

2. If we were developing theorems for class theory, we should cer-
tainly want ‘@ = #(x & )’ as one. Expand this into unabbreviated
class-theory notation. Concerning the appropriate order of steps see
fifth paragraph of §37.
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We say the Apostles are twelve, but not in the sense in which we say
they are pious; for we attribute piety, but not twelveness, to each.
“The Apostles are pious” has the form ‘(x)(Fx D Gx)’, with ‘F’ for
‘Apostle’ and ‘G’ for ‘pious’; but “The Apostles are twelve’ has ne
such form, and is more nearly comparable to the mere existential
quantification ‘(dx)Fx’. This familiar quantification may be read
“The Apostles are at least one’; and we might analogously think of
“The Apostles are twelve’ as written ‘(Hx)Fx’, using what is called a
12

numerically definite quantifier. The notation is Tarski’s.

Numerically definite quantifiers can be introduced on the basis
purely of the theory of quantification and identity, as of §35; there
is no need here of assuming classes as in §38. For, we can begin by
explaining ‘(dx)’ easily enough:

o

‘(dx)Fx>  for  ‘—(dx)Fx’.

Then we can explain each succeeding numerical quantifier in terms of
its predecessor in a uniform way:

‘(ElIx)Fx’ for ‘(dx)[Fx . (ily)(Fy .y # 2],
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@I for (@I ()F .y # T,
‘(:;Ix)Fx’ for ‘(dx)[Fx . (gy)(Fy .y #= 2],

and so on. The general pattern is this: for anything to be true of

n + 1 things is for it to be true of something other than which it is

true of # things. By a dozen steps of successive expansion according

to these definitions, ‘(dx)Fx’ goes over into a schema of pure identity
12

theory as of §35. Similarly for any other numerically definite quanti-
fication. However, we still have no expansion for ‘(dx)Fx’ with vari-

able ‘’. Thus, though we can easily say there are twelve Apostles and
twelve Muses, in the form:

(dx)Fx . (x)Gx,
12 12

we find difficulty if we want to say simply ‘There are just as many
Apostles as Muses’ without saying how many. The plan:

(dn) [(%x)Fx . (fi[x) Gx]

is of no avail, for no definitions are at hand for expanding this expres-
sion into the notation of §35, nor even into that of §38.

All high school students appreciate the persistence, and some the
utility, of number variables in algebra. The above example and such
related ones as “There are twice as many eyes as faces’ suggest that
quantifiable number variables have a place also in the analysis of
virtually unmathematical discourse.

If we are to have quantified variables for numbers we must find
entities in our universe to view as numbers—or else expand our uni-
verse to include such entities. As a step toward a reasonable theory of
numbers, consider the adjective ‘twelvefold’. If we are to recognize
such a predicate (and not merely a corresponding type of quantifier
‘(dx)’), we must recognize it as a predicate which is true not of

12

persons, e.g., Apostles, but rather of classes, e.g., the class of Apostles.
Thus we may define ‘12-fold o as short for ‘(dy)(y £ @)’; ‘is twelvefold’
12

means ‘has twelve members’. Now the remaining step to the number
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12 as an entity is a short one; for it is natural to construe 12 as the
extension of ‘twelvefold’. Thus 12 becomes identified with the class
of all twelvefold classes.

Now we find ourselves exceeding the basis both of the theory of
identity (§35) and of our present theory of classes. Variables ranging
over numbers are going to have to be of a new category ‘«’, \’, etc.,
taking as values classes of classes. The range U, of these new variables
has as members the subclasses of U, , just as U, has as members the
subclasses of U. This supplementation of our theory of classes brings
with it a new form of simple sentence, ‘e € «’. Also we have now to
add a third part to our definition of identity (see preceding section):

‘=N for “(a)aex.=.acdX).

The notation of descriptions may likewise be extended now to include
the form ‘(1«)F«’; for, now that identity and quantification are at
hand for variables of the type ‘«’, a procedure parallel to that in §37
enables us to eliminate ‘(1«)F«’ at will from any statement in which it
occurs. The abstraction notation ‘aFe’, for the class of all classes
such that Fa, is then forthcoming as well. (See end of preceding
section.)

The singular terms ‘0’, ‘1’, 2’, etc., as names of numbers, may be
construed in the form of abstracts. 0, to begin with, is the class of all
and only those classes & which have no members.

‘0 for C‘a—(Ax)(xea).

In other words, O is the class whose sole member is zhe empty class.
1 is the class of all those classes o which have exactly one member y
apiece: R

v for  ‘a(Iy@F)(rea.=.x=y).

‘2, ‘3", etc. may be explained in turn as ‘1 + 1’, ‘1 + 2’, etc., once
we get a definition of ‘4.

Addition of numbers « and X is easily definable in the light of this
circumstance: a class o has « + A members if and only if « is breakable
into two parts 8 and v such that 8 has x members and «y has A members.
Now to say that 8 has x members, where « is a number, is simply to

IThis way of construing numbers dates from Frege (1884).
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say that 8 e x. So we can define «x + X as the class of all classes @ such
that « is breakable into two parts 8 and v such that 8 e kand v e \.

“+ XN for  a@@B)(@y)Bex.ver.(x) —(xeB.xeq).

xea.=:xeB.v.xey)].

Definition of multiplication involves a more complicated train of
thought, but the primary consideration is obvious: a class « has -\
members if and only if « is breakable into « parts each of which has
A members. Thus, tentatively:

‘%X for  ‘a(Fw)[uis a class of mutually exclusive classes .
is the class of all members of members of 1 . p has ¥k members .

B)Beun.D.BeN)].

The clause ‘u is a class of mutually exclusive classes’ goes into symbols
in turn easily enough:

B@NE)Bep.yep.xeB.xey.D.8=1).

So does the clause ‘@ is the class of all members of members of u’:

@Dxea.= EB)(xeB.Beu)

It remains to put ‘x has x members’ into symbols. This cannot be
rendered ‘u e «’, because a class & of classes admits as members only
classes of individuals, not classes u of classes. But we can express the
matter indirectly, as follows:

(48)(8 & « . B is composed of one member apiece from each class
belonging to u).

Le.:
HB){Bex.(x)(xeB.D.xea). )|y enr.D (dx)(xis the one

and only common member of 8 and v)]}.

Finally the clause ‘x is the one and only common member of 8 and v’
becomes:

O)yeB.yey.=.y=2).

Assembling the pieces, we have our definition of ‘x-\’,

Numbers are classes of classes, but not all classes of classes are num-
bers. The class of all twelvefold classes is a number; on the other hand
a class of classes which has some but not all twelvefold classes as mem-
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bers is not a number, nor is a class of classes which has both fivefold
and twelvefold classes as members. So the problem is still before us of
setting up a formal definition of what it means to say that a class of
classes « is a number.

It may seem from the expository references to number in the fore-
going discussions of ‘¢ + A’ and ‘k-A’ that the notion of being a
number was already presupposed in defining ‘« + A’ and ‘«-\’; in-
spection of those formal definitions shows, however, that there is no
such presupposition. The definitions of ‘k 4 A’ and ‘«-\’ are adopted
regardless of whether « and X are numbers, though the definitions are
of interest only where x and A are numbers.

Numbers as spoken of in these pages are just 0, 1, 2, - -+ ; that is,
0 and the positive integers. These are known as the natural numbers.
Negative numbers, fractions, irrationals, and imaginaries do not come
in for present consideration, not being of the sort used in measuring
class size. So our present problem is to define ‘NN«’, ‘« is a natural
number’, in such a way that it will come out true when and only
when «is 0 or 1 or 2, etc. A means of accomplishing this is suggested
by the treatment of ‘ancestor’ in the preceding section. Just as ‘ances-
tor of y° means ‘y or parent of y or parent of parent of y or ---’, s¢
‘natural number’ meansOor 1 + Oor1 4 (14 0) or ---’. So ‘NN«’
receives the following definition, in close analogy to (8) of the pre-
ceding section:

‘NN« for ‘(p)0ed.(N)(Aedp . D.1+Neo).D.xeq].

In words: to be a natural number is to belong to every class to which
0 belongs and 1 + each member belongs.

But this definition exceeds the materials at hand, by quantifying
over classes ¢ of classes of classes. It presupposes another supple-
mentation of our logic, quite like the recent supplementation whereby
the variables ‘«’, ‘\’, etc., were introduced.

Where a and 8 are the classes respectively of Apostles and Muses,

we can now say that they have the same number of members:*
¢)) (Hx)(NNk . e k.8 e k).

IThis also stems from Frege.

2Readers less gifted than yourself may feel at this point that the Muses are being
treated more tolerantly than Cerberus (§33), thus failing to appreciate that our example
is none the worse for being false,
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But in order to say this we have had to exceed the logic of quantifica-
tion and identity, and enter upon the theory of classes; moreover we
have had to exceed the most basic theory of classes and enter upon
that which quantifies over classes of classes; and we have had even to
exceed that level and ascend to the level of quantification over classes
of classes of classes, for the clause ‘NN«’ occurring in (1) conceals
within it a quantifier ‘(¢)’.

Our progressively accrued quasi-universes U, U; , U, and U, , and
any others that might be added in the same spirit, have been known
since Russell (1908) as logical types. Each is the range of a special
category of variables. Each succeeding type in the series is the class of
all the subclasses of the preceding type; or, to say the same thing dif-
ferently, the things of each succeeding type are the classes of the
things of the preceding type.

We have not decided how many things there are to be in our basic
type U, nor, therefore, how big a class of such things can be; but we
may be sure that if there are just, say, 71 things in U, then this is the
biggest class size we can hope for in U, . Thereupon all natural num-
bers beyond 71, having as alleged members classes which are too big to
exist, will turn out to be empty and thus identical with one another.
So, though our definitions of ‘0, 1’, ‘2’, etc., and of ‘NN«’ may be
held to unconditionally, they will deliver the unending series of
numbers of classical arithmetic only in case U is infinite. It is only
through infinity of U that U, can supply classes in all natural-number
sizes. Yet once all such sizes are at hand, there will also necessarily be
odd sizes to burn; for, if U is infinite, then some of the classes in U
will themselves be infinite and thus unmeasured by any natural
number.

EXERCISE

Translate the following three sentences into symbols, making use
of “+’ and any other symbols defined in the foregoing pages:

K> A « has more members than 8,
« has twice as many members as 8.

Hint: ‘6 = N’ may be rendered ‘(dg)(NNu . « = u + 7).
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§40. RELATIONS

In its unsupplemented state as of §38, class theory was conceived in a
certain analogy to monadic quantification theory. The class variables ‘o,
‘8", etc. ranged over the extensions of the one-place predicates represented
by monadic ‘F’, ‘G’, etc., in quantification theory. Now we might extend
the analogy to polyadic quantification theory by adding a category of
variables ‘Q’, ‘R’, etc., to range over the extensions of two-place predicates,
and another category to range over the extensions of three-place predicates,
and so on. Let us content ourselves with a brief consideration of the two-
place supplementation, this being the most characteristic and important
of the series.

Whereas the class variables ‘a’, ‘8, etc., range over the type U, of sub-
classes of U, the variables ‘Q’, ‘R’, etc., are to range over ,U; , whose mem-
bers are classes of pairs of members of U; for such were conceived to be the
extensions of two-place predicates. Such pair-classes are spoken of in modern
logic as dyadic relations or briefly relations. ‘To say that x bears the relation
R to y, or in other words that the pair of x and y belongs to R, we write
‘xRy’. So the simple sentences of our new theory are of two forms, ‘x & o’
and ‘xRy’; and the rest of the sentences are built from these by truth
functions and quantification.

Parallel to the definition of class identity in §38, we can define identity of
relations thus:

Q=R for “(\)0)xQy = zRy)-

The form of description ‘(AR)FR’ then becomes available, being eliminable
along the usual lines. Now just as in class theory the main utility of the
description notation ‘(1a)Fe’ was as a basis for the abstraction notation
‘2Gx’, so in relation theory the main utility of the description notation
‘GR)FR’ is as a basis for a notation of relational abstraction:

‘9 Gxy for  ‘(R)(x)(y)(*Ry = Guy)’.

can

The prefix ‘4§’ may be read ‘the relation of anything x to anything y
such that’; thus

£§(Hz)(x is brother of z . z is parent of y)

is the uncle relation.

Analogues of ‘@, ‘@8’, and ‘a v 8’ (cf. end of §38) can now be defined for

relations in obvious fashion:
‘R for ‘49 —(xRy), ‘OR  for ‘#§(xQy . xRy)’,
‘OvR  for  ‘#(xOy v xRy)".
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But of more interest are the peculiarly relational notions which are now
definable, notably the converse R of a relation R, the relative product Q | R
of a relation Q into a relation R, and the 7mage R* o of a class a by a relation
R. The definitions are these:

‘R for ‘#yRe,
‘O|R  for  ‘29(dz)(xQz . zRy)’,
‘R'« for ‘#(dy)(xRy.yea).

Examples: Where R is the relation of teacher to pupil, R is the relation of

pupil to teacher. Where Q is the relation of father and R is the relation of

mother, O | Ris the relation of maternal grandfather and R | Q is the rela-

tion of paternal grandmother. Where R is the relation of father and « is

the class of honors students, R"'« is the class of fathers of honors students.
We can also define the relation of identity:

‘T for  ‘Hx=y).

‘xly’ and ‘x = y’ are equivalent, but ‘I’ and ‘=" figure differently in them.
‘xly’ is a case of ‘zRy’, like ‘Cicero R ¥’ or ‘Cicero I Tully’; I’ is a singular
term (ultimately a description) naming one of the objects over which the
variable ‘R’ ranges. On the other hand ‘x = y’ bears only a misleading
notational resemblance to ‘xRy’; the sign ‘=" is no name of a value of ‘R,
not having been introduced as a singular term at all. ‘I’ names a relation,
viz. the extension of the predicate ‘@ = (@)’ (as applied to individuals),
whereas ‘=" does not name. Note that there is no definable relation
which corresponds to ‘e’ as I does to ‘="; we cannot write ‘fa(x ea)’, for
the mixed type of prefix ‘#a’ has been introduced by none of our definitions.
There is indeed no such relation in , U, , for the relations in ;U; pair mem-
bers of U only with members of U, not with members of U, .

Readers acquainted with the branch of mathematics known as group
theory will recognize in ‘R’, ‘Q | R’, and ‘I’ the basic notions of that
discipline. Some sample laws governing these and the other notions just
now defined are:

~
-~

R=R, (O v R a= (0"a) v (R"a),
I'ae=a, R*(@vB) = (R"a) v (R"8),
I|R=R|I=R, O2|RIS9H=©@IR]S,
“©IR=R|Q, 0"(R"a) = (0| R)"'a.

These laws and concepts are typical of the algebra of relations, a branch
of logic dating from DeMorgan and Peirce, 1860-70 (and in part from Cay-
ley’s group theory, 1854). Of itself this algebra, like the algebra of classes
(see end of §38), does no more than reproduce in another form the content
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of quantification theory—or, when [ is included, quantification theory and
identity theory (§35). Coming as it did before Frege’s founding of quanti-
fication theory (1879), the algebra of relations had its importance; and
indeed there remains some utility in its notations and much beauty in its
laws. But the problems capable of being worked out purely in these terms
tend to submit to easier treatment in straight quantification theory (plus,
occasionally, the theory of identity).

The theory of classes and relations has its special power in connection
with problems and constructions which make crucial use of the added
ontological assumptions; crucial use, in other words, of quantification over
classes and relations. There is indeed use of such quantification in defining
(or eliminating) the notation of description which underlies class abstrac-
tion and relational abstraction, and the notations of abstraction are used in
turn in the above definitions of the notations ‘R’, ‘O | R, etc., of the algebra
of relations; but that substructure is still not essential to these notions, for
we could, if we liked, import the same notions directly into the schematism
of quantification theory as follows:

‘Fry  for ‘Fyx, “F| Gxy for “(Hz)(Fxz.Gzy),
F*G)x for ‘(dy)(Fry.Gy).

But quantification theory is on the whole simpler to think with when not
thus encumbered.

A construction stressed in recent sections, in which crucial use was made
of quantification over classes, was that of ‘ancestor’ from ‘parent’. Inci-
dentally, now that relations as objects are at hand, we can carry over that
construction as a definition of the so-called ancestral of a relation R:

R for ‘H@yea.@w)(wea.zRw.D.zea) .. xe0].

This construction could not be duplicated in the schematism of quantifica-
tion theory. The nearest we can come is to define “*Fxy’ as an abbreviation
of (8) of §38; but there is no eliminating ‘e’ and ‘¢’ from (8) of §38 by
putting a schematic letter ‘G’ for ‘@’, because of the quantifier ‘(a)’.

The respect in which this construction goes essentially beyond quantifi-
cation theory is, we see, in quantification over classes, not relations. Now
an example making essential use of quantification over relations may be
seen by recurring to the problem of defining what it means to say that e
and B are alike in size. This problem was already solved in the preceding
section (for finite sizes only) at the cost of ascending through type U, to
Us, ; but we shall see now that it can also be solved in a different way by
quantification over relations, type ,U; , without ascending even to U,. We
may explain likeness of size on the part of o and 8 as consisting in the possi-
bility of correlating the members of & with those of B, in such a way that
each member of a is correlated with exactly one of 8 and each member of 8
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has exactly one of « correlated with it. So we first define a relation R to be
a correlation if no two objects bear it to the same object and no one object
bears it to two.

‘Cin R for  “(x)(9)()(*Rz . yRz .v. 2Rx . 2Ry :D . x = y)".

Now ‘@ sim (’, meaning that « is like 3 in size, may be defined to mean
that there is a correlation R which relates each member of & to some mem-
ber of 8, and to each member of 8 some member of a.! Le., in symbols:

(AR){Ciln R. (x)[rea.D (Ay)(y B . xRy)].
OyeB .0 (dx)(x e . xRy)]}.

Here the quantification over a relation variable ‘R’ is essential.

Note that there is nothing essential about the use of ‘a’ or ‘3’ in the above
construction. We could write ‘Fx’ and ‘Gy’ in place of ‘x ¢ &’ and ‘y £ 8,
and reconstrue the whole performance in terms of schematic letters as an
account not of ‘e sim 8’, but of the idiom:

Fx for exactly as many objects x as Gx.

But the work even when thus reconstrued ventures necessarily beyond
schematic letters into relation variables, in view of the quantifier ‘(AR)’.

According to the preceding section, a natural number is the class of all
the classes of some one finite size. Now a cardinal number, so-called in
modern mathematics, is the class of all the classes of some one size, be that
size finite or not. Having defined ‘e sim 8, therefore, we are now in a posi-
tion to define ‘« is a cardinal number’:

‘NC«  for  “(dB)[x = afasim B)].

One might suppose that the cardinal numbers, if they are not simply the
natural numbers under another name, will differ from the latter only to
the extent of there being one extra, an infinite cardinal number representing
the size of all infinite classes. But to suppose this is to suppose that all
infinite classes are alike in size; and this in turn is to suppose that the mem-
bers of any two infinite classes can be correlated. But this, far from being
obvious, can for generous universes be disproved. The disproof dates from
Cantor, who in consequence of it founded a substantial branch of mathe-
matics having to do with the infinite varieties of infinite cardinal numbers.

Curiously enough, despite the fact that the cardinal numbers allow for
these recondite infinites in addition to the familiar natural numbers, the
above definition of ‘NCk’ does not demand as high types as did the defini-
tion of ‘NN’ in the preceding section. For ‘NC«’ we have to go beyond

IThis construction dates from Cantor (1890).
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U, and U, into U, , of course, simply because « itself lies there; but the
definition of ‘NN« reached into U; . On the other hand the definition of
‘NC«’ does make inroads on ; U; (through the definition of ‘a sim 8°), while
that of ‘NN«’ did not.

Once we are prepared to ascend to Us , however, the type ,U, is alto-
gether dispensable for every purpose, as Wiener has shown (1914). His
reasoning is as follows. We have been thinking of relations of type ;U as
somehow classes of pairs of objects of type U, though without making any
precise sense of the notion of pair. Now any arbitrary notion of a pair of
objects x and y will serve our purposes perfectly so long as these conditions
are met: (i) for any objects x and y of U there is such a pair; (ii) as soon as a
pair is given, its first object x is thereby uniquely determined, and so is its
second object y. (Thus the pair of x and y is different from the pair of y
and x, unless x = y.) It happens that these conditions are met when the
pair of x and y, written ‘x;y’, is defined arbitrarily in the following way.
First we explain {x} as the class whose sole member is , and {x, y} as the
class whose sole members are x and y, thus:

Yz for  ‘z(z = ), G, 5 for  ‘2lz=x.wv.z=y).
Then we construe the so-called pair x;y as

REI PR ENTH

—hence as the class of classes which has as members just the class {x} and
the class {x, y}.! So a pair x;y is of type U, ; accordingly relations, as clas‘scs
of such pairs, become classes of type U, . The once fundamental notation
‘xRy’ disappears now in favor of ‘x;y e ¢'.

Relations of type ;Uj , relating no longer objects of type U but classes
of type U, , could be reduced in parallel fashion to classes of type U, ;and
so on up. We can consequently dismiss the complications of relation types,
and countenance only the seties U, U, , U, , + -+ of class types. This is seen
to be an important simplification when we reflect that it does away not
only with such relation types as ;U, , 2U, , etc., but also with a ]unglf: of
types of classes of relations, classes of classes of relations, classes of relations
of classes, and so on. The whole logic of relations of any types reduces to the
logic of classes, provided merely that the latter is carried into high enough
types.

y'P}he theory of triadic relations can be reduced to the theory of ?lasses I?y a
fairly obvious extension of the above treatment of dyadic relations. Simi-
larly for tetradic relations and higher.

1In detail this definition differs from Wiener's, and comes rather from Kuratowski.
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§41. cLASS THEORY, MATHEMATICS, AND THE
THEORY OF PROOF

y

i . : . In identity theory the
deductive methods of quantification theory ‘i’_,. In the theory of

i the special predicate *= Y.
axioms gave laws for . . : . 7.
classes, correspondingly, the starting point consists of axioms giving

1 icate ‘g, .
laws for the special predica . . o
The most notable set of such axioms consists of results of substi

ting for ‘F’ (and universally quantifying any free variables) in:
(A) H)(x)(x e .= Fx).

. - without
This is called the principle of abstraction. Its content, for cases witho

] 7 55 as
free variables, is simply that every monadic predicate has a cla

extension. .
For the sake of one sample proof in the theory of classes let us

prove (I) of §35, viz., ‘Fx .x=y.9 Fy’,, which' was‘a schema i(?r
axioms of identity. We now construe ‘x = y therein as ‘(@) (x e .=,

y e a)’, in conformity with §38.

‘{(1) Fx
(2 (rxea.=.ye a)

* x)(x e a .= Fx) (A) @
L &
*(5) yea.=Fy ()
*(6) xza.=.yea 2

= (7) Fy B(@()6)
(8) Fr.(x(xea.=.y eay.D Fy *(7)
We had to define ‘x = 3 and ‘e = £, in §38, in opposite ways:

(a)(xea.=.yea), @(zea.=.z¢8),

i g =,
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because ‘x” and ‘y’ could not meaningfully follow ‘¢’, and ‘@’ and ‘s
vould not meaningfully precede ‘e’. But as soon as we ascend beyond
the limits of §38 and into the type U, , dosh ways of construing
‘@ = §’ come to be meaningful; and consequently this axiom of
extensionality then comes to be needed to connect the two:

(E) R)zea.=.zef) .aex.D.Bex!

This says that any classes @ and 8 which are alike in members are
identical in the sense of belonging in turn to the same classes.

Ascent into U, also calls for a repetition of (A) with ‘¢’ and ‘o’
changed to ‘a’ and ‘«’; and each continuation of the theory of classes
into higher types—U, , U, , etc.—calls for a further repetition of
both (A) and (E) with upward revision of the types of variables.

How such ascents of type may be called for has already been seen
in the course of constructing a few basic ideas of number theory. We
were lured as far as Us . If we were to go on to fractions, and then to
the theory of real numbers generally (rational and irrational), and to
the theory of functions of real numbers, and to the theory of functions
of complex numbers (real and imaginary), we should find need of
variables of quantification of higher and higher types.

It is a remarkable fact that the concepts of all such branches of pure
mathematics can be defined within the meager notation of the theory
of classes, just as strictly as has thus far been done for the sim ple arith-
metical concepts ‘0’, ‘1’, ‘k + A’, ‘x-\’, ‘a sim 8, ‘NC«’, and ‘NN«.2
But it is significant that the construction of these higher branches calls
for the introduction of higher and higher types of variables of quan-
tification. Even very elementary parts of arithmetic, we have seen,
call for some quantification over abstract entities, and hence for

IThe actual axiom is rather the universal closure of this, but the prenex universal
quantifiers ‘(a)(8)(x)’ are dropped for ease in reading. This way of stating axioms will be
usual hereafter.

*The reduction of the theory of natural numbers to the theory of classes and relations
is Frege’s (1893). The reduction of ratios is due to Peano, and that of reals is due chiefly
to Dedekind (1872). The exccution of the whole reduction program in full detail came
with Whitehead and Russell’s monumental Principia Mathematica (1911-13), except for
Wiener's step (1914) of reducing relation theory in turn to that of classes. For a readable
survey of the reduction of real number theory and other branches of mathematics to
logic, see Russell’s Introduction to Mathematical Philosophy. A briefer sketch appears in
Chapter 6 of my Mathematical Logic.
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abandonment of the ontological agnosticism which remained tenable
until §38. (Our theory of validity assumed classes and relations even
prior to §38, but the logical statements and schemata themselves did
not.) So it may be said that classical mathematics reduces to logic,
but it may be said also, in a different and equally defensible sense of
the word ‘logic’, that logic stopped and mathematics began with §38.

But be it logic or be it mathematics, the general theory of classes
constitutes an impressive reduction and consolidation of the founda-
tions of classical mathematics. Mathematical theorems come on trans-
lation to contain nothing but class-theory notation, and hence to be
deducible from the basic laws of ‘e’: the laws (A) and (E) and what-
ever further ones there may be. So the question of completeness of
(A) and (E), or of completion of them, suddenly looms as a question
of a general codification of mathematical truth. But there isa startling
result due to Godel (1931) to which, lest false hopes be aroused,
we must now turn.

Let us consider to begin with the question of a general codification
not of class theory, nor of mathematics generally, but of so-called
elementary number theory. In elementary number theory the variables
of quantification are all of one type, viz., the usual ‘2", ‘y’, ‘@, etc.,,
but these are construed now as referring exclusively to the natural
numbers. The notation of elementary number theory is just that of
identity theory (§35) supplemented by the notations ‘x + y* and
‘¢-y" of sum and product. Typical truths expressible in this notation
are:

@) +y =) @ G)(x-y = y-2),
@@)E+y =13 2 0y = 1)

In effect the notation includes also all numerals, and the power
notation ‘#*’; for these can be paraphrased away (Gaodel, 1931).

It will be recalled that in §6 and again in §21 we found mechanical
test of validity of certain categories of schemata. An ideal treatment
of elementary number theory would consist, correspondingly, in a
mechanical test of truth for all statements expressible in the notation
described above. It happens, however, that this ideal is unattainable.
Elementary number theory is in this respect like general quantifica-
tion theory (cf. pp. 190f.): it lacks a decision procedure.
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Given the impossibility of a decision procedure for quantification theory
(Church), the corresponding result for elementary number theory can be
established along the following lines. Paraphrasing ‘v’, ‘D7, and ‘=’ in
terms of conjunction and negation, and paraphrasing existential quantifiers
in the fashion ‘—(x)—’, and rendering the variables and schematic letters
as:

X, x/’ x”s Tt F9 FI’ F’,y ey P P’) P"’ T

we can couch all quantificational schemata in this eight-sign alphabet:

- . ) = F p '

We can also treat any finite sequence of schemata as a single string of signs
of this same alphabet, by just laying the schemata end to end and inter-
posing some otherwise useless combination of signs, say ‘()’, to mark the
end of each. Now let us assign the numbers 1, 2, - -+ , 8 to the eight signs
of our alphabet. To each string of those signs let us assign, as its so-called
Gadel number, the number which is designated by the corresponding
string of digits; the Gédel number of the schema ‘(x) — Fx’, e.g., is 354,165.
Following Godel (1931), one can then proceed (and here is the laborious
part, which I shall skip) to construct an open sentence, ‘- - -x--y-- -’ say,
purely in the notation of elementary number theory, which is true of any
numbers x and y if any only if x is the G6del number of a sequence of
schemata which is a “proof,” in the sense say of the lower part of p. 191,
of the schema whose Godel number is y. But then ‘(Hx)(- - x--y---) is
true of exactly those numbers y which are the Gédel numbers of valid
quantificational schemata (for, all and only the valid schemata have proofs).
So, if we had a decision procedure for elementary number theory, we
could (contrary to Church’s theorem) decide the validity of any quantifi-
tional schema by testing ‘(Hx)(- - -x--y- - )’ for truth, with ‘y’ supplanted
by a numeral designating the Gédel number of the schema.

The impossibility of a decision procedure is less surprising in the
case of elementary number theory than in the case of quantification
theory. For, various unsolved problems of long standing, notably the
celebrated one of Fermat, can be formulated within the notation of
elementary number theory, and a decision procedure for that domain
would have made a clean sweep of them all. Yet the lack of a deci-
sion procedure for elementary number theory, however unsurprising,
can be quickly shown to have a startling consequence. Quantification
theory, though lacking a decision procedure, has its complete proof
procedure; but elementary number theory cannot even have that.
For, suppose there were a procedure whereby each true sentence
written in the notation of elementary number theory could be
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proved. Then there would also be this complete disproof procedure:
to disprove a false sentence, prove its negation. But then, combining
the proof procedure and the disproof procedure as at the top of
p- 191, we would have a decision procedure.

Quantification theory was capable of lacking a decision procedure
and still possessing a complete proof procedure. This is because a
complete procedure for proving validity does not carry with it 2
complete procedure for disproving validity; and this is because non-
valid schemata do not always have valid negations. On the other
hand a complete procedure for proving truth does carry with it 2
complete procedure for disproving truth (if negation is available),
and hence also a decision procedure.

The discovery of the undecidability and incompletability of elementary
number theory is due to Gédel (1931). Since it antedated Church’s theo-
rem, Godel’s proof did not take the line of p. 245. Anyway, that line is
pretty roundabout if one counts in the proof of Church’s theorem itself,
which I have omitted. Godel’s way was to argue directly to the incom-
pletability of elementary number theory, by showing how, for any given
proof procedure B for elementary number theory, a statement Sy of ele-
mentary number theory can be constructed which will be true if and only
if it is not provable by the procedure . Either Sy is provable, in which
case it is false and so the general proof procedure P is discredited, or else
Sg is true and not provable, in which case the proof procedure P is incom-
plete.

In broadest outlines, Gédel’s construction of Sy is as follows. He assigns
Gédel numbers to the sentences that can be written in the notation of
elementary number theory, and then shows that, given P, it is possible
within the notation of elementary number theory to formulate an open
sentence, ‘+--x- -+’ say, which is true of any number x if and only if x is
the Gédel number of a statement provable by B. If we put for ‘*’ in
‘—(+++x--+) the actual numeral designating some particular number 7,
clearly the resulting statement, schematically ‘— (-++n---), will be true if
and only if that chosen 7 is not the G8del number of a statement provable
by PB. But Godel shows that 7 can be so chosen as to turn out to be the
Gédel number of an equivalent of ‘—(...n...)’ itself. The statement pro-
duced by that sly choice of 7 is the sought Sg, true if and only if not
provable by B.!

Fyller details of Gédel’s argument may be found not only in his 1931 paper but also
in his 1934 English presentation, and in Carnap’s Logical Syntax (esp. pp. 129-134), and
in Chapter 7 of my Mathematical Logic. For a less detailed survey of the argument, to-
gether with useful indications of related results, see Rosser’s “Informal exposition”. The
spirit of Gédel’s argument is cleverly conveyed in a non-technical vein by Findlay.
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Gadel’s discovery came as a shock to preconceptions. Common
sense had been on the side of supposing that complete methods of
proof for elementary number theory and indeed for mathematics
generally not merely were possible in principle, but were even already
at hand in at least a rough and ready form. Wherein does mathe-
matical truth lie if not in the possibility of proof? Puzzling though the
situation be, however, we must face the fact that Gédel’s result is
established beyond peradventure. We may well rephilosophize in the
light of it, but we cannot philosophize it away.

From Godel’s result there follows the corresponding conclusion
regarding the theory of classes. Since elementary number theory is
translatable into the notation of the theory of classes (cf. §39), the
incompletability of elementary number theory entails, a forziori, the
incompletability of the theory of classes. So the fact is that (A) and
(E) and their analogues for higher types are inadequate to the theory
of classes, and can never be adequately eked out by adding even an
infinity of further axioms. The only qualifications to which this
sweepingly defeatist conclusion is subject are of a kind from which nc
comfort is to be drawn: it is assumed that the added axioms, if not
actually listed, will at least be specified in such a way as to be recog-
nizable by a mechanical process; and it is assumed that they will not
be such as to enable us to deduce falsehoods.

So whereas the concepts of the general logic of classes are adequate
to classical mathematics, any effort toward a complete deductive
theory of classes and therewith of classical mathematics is doomed to
failure. It is doomed to failure as soon as it aspires to encompass ever
that well-behaved infinity of objects called natural numbers. One can
do no better, from that point forward, than add special axioms now
and again to strengthen the system for specific purposes.

Presburger and Skolem have shown that when elementary number
theory is further limited to the extent of dropping multiplication and
keeping just addition, or vice versa, the resulting theory does admit
of a decision procedure. What is more surprising, Tarski has shown
that the elementary algebra of real numbers likewise admits of a
decision procedure. The notation of this elementary algebra is pre-
cisely the same as that described above for elementary number
theory, including both addition and multiplication; the only differ-
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ence is that the variables are construed now as referring to real
numbers generally rather than to natural numbers. Despite the
seemingly greater complexity of its subject matter, elementary alge-
bra is completable and mechanically decidable while elementary
number theory is not.

Now if in view of Gédel’s result our knowledge about class and
number is subject to unexpected limitations, the very opposite is
true of our knowledge about such knowledge. One of the few things
more surprising than the incompletability of elementary number
theory is the fact that such incompletability can actually have become
known to us. Godel’s result brings a new branch of mathematical
theory to maturity, a branch known as “metamathematics” or proof
theory, whose subject matter is mathematical theory itself.

Much remains to be discovered regarding the limits of completable
theories, and the essential structural features which set such theories
apart from those which are incompletable. But the reader who would
acquire the key concepts and techniques of this crucial new field of
study, metamathematics or the theory of proof, must look beyond the
bounds of this logic book. See Tarski, Undecidable Theories; Hilbert
and Bernays; Kleene.

EXERCISES

1. Can there be a complete disproof procedure for elementary
number theory? Or a decision procedure adequate to all but a finite
number of the statements in the notation of elementary number
theory?

2. Using (A), devise formal proofs of the theorems:

(Ha)(x)(x £ @)y (Ha)(x) —(x e ).

§42. VARIANT THEORIES OF CLASSES

The practice of distinguishing the logical types U, Uy, U, , etc. by the
use of distinctive styles of variables is due to Russell (1908). An essential
point of the procedure is that forms like “x ¢ 2, xey, ‘aed, ‘aex,etc,
are rejected as meaningless; ‘¢’ is declared grammatically admissible be-
tween variables only of consecutive ascending types.

The obvious alternative to this procedure would be to pool the types and
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use the single style of variables ‘x’, ‘y’, etc., to represent entities of all sorts
Five considerations count in favor of this alternative .

(1) The notation is simpler. .

2 Thc application of quantification theory to class theory comes to be
more direct: ‘¢’ comes to represent simply a particular interpretation of a
two-place predicate letter of quantification theory. Supplementary adjust-
ments of styles of variables cease to be called for. Y
. (3) Principles such as (A) and (E) no longer need to be repeated for each

ype-

(4) A curious reduplication of constants is obviated. E.g., as long as we
keep the logical types apart the number 12 to which the clas; a of Apostles
belongs is not identifiable with the number 12 to which some class « of a
fiozen classes belongs; for the one number 12 is of type U, while the other
is of type Us; . Each succeeding type, correspondingly, demands a fresh
numl.)er 12 of its own. When on the other hand we pool the types, this
multiple mirroring ceases; all dozens, whatever their texture, come ;o be
members of a single number 12. ,

(5) The distinct existence of the full quota of natural numbers ceases to
depend upon there being infinitely many individuals, or non-classes (cf. end
of §39). Once types are pooled, infinitely many entities are bound to be
aYallablc for simultaneous membership in classes; for we then have at our
disposal not only some few individuals but also classes of them, classes of
such classes, and so on, all on an equal footing. '

'Dcspitc these five considerations, however, Russell had a good reason for
his type restrictions. As soon as we waive his type distinctions, and read
(A) simply as:

(&) (@) (x)(x ey .= Fr),

we find ourselves 1n trouble. For, introducing ‘— (@ £ @)’ at the occur-
rence of ‘F’, we can deduce a palpable falsechood as follows:

Q) @)@Wkey.=—(rex)]

@ @lrey.=—(rex) @O
B) yey=—(yey) )}

@ @yey.=—(ey) 3)

This diﬂiﬂ:u‘lty is called Russell’s paradox, for its discoverer (1901).

I'n addition to (1) there are an infinite variety of other cases of (A’)
which lead to contradiction just as surely, if less quickly. But it happens
t!lat a}ll such cases, like (1), cease to be expressible once variables are dis-
tinguished as to type and ‘¢’ is held to positions between variables of con-
secutive ascending types.

However, there are also other ways of avoiding the contradictions. In the
same year (1908) in which Russell’s theory of types appeared, a different
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expedient was suggested by Zermelo. Further alternatives, departing from
Zermelo’s and Russell’s in varying degrees, have appeared down the years.
In the Zermelo tradition (A’) is restricted not by complicating the notation
of class theory so as to render such cases as (1) inexpressible, but more
directly: by treating (A") as holding for some open sentences in the ‘Fr’
position and failing for others. According to this theory some predicates
have classes as extensions while others, notably the ‘— (D & @)’ of (1),
do not. The task of a foundation of class theory in the Zermelo line then
comes to be the setting up of conditions under which a predicate is to be
viewed as having an extension; in other words, the setting up of conditions
on ‘Fx’ under which (A’) is to be regarded as holding. Different sets of
conditions to this end yield the different class theories in the Zermelo line.
In Zermelo’s own theory, (A’) is assumed for the case where the sentence
put for ‘Fx’ has the form of a conjunction ‘¢ & z . Gx’; in other words,
Zermelo adopts not (A') itself but:

@)@ (xey . =.xez. Gt

Given any class z, this law furnishes other classes y all of which are sub-
classes of z; but of itself it furnishes no nonempty classes z to begin with.
So Zermelo then goes on to assume various additional and still more special

cases of (A’) individually:

@)R)(xey =:1x=z.v.2=w)
Ty)@)xey .= (H)(xrez.zew)
@y))fxey .= ()(zex.D.zew)]

This combination of principles can be shown to guarantee the existence of
any class whose existence would be guaranteed under the theory of types
by assuming (A) for each type.?

In class theories not involving types, the extensionality law (E) becomes:

(E) (@)(zex.=.zey).xew.D.yew.

This gives rise to a certain perplexity where x and y are not classes; for in
this case ‘z & 2’ and ‘z £ y’ are felt to be trivially false for everything z, so
that “(z)(z € x .=. z £ )’ comes true regardless of identity or diversity of
x and y. An exception to (E’) thus seems called for where x and y are not
classes. This gives rise to a further problem of distinguishing between non-

classes and the empty class, which share the peculiarity of memberlessness.

1See first footnote of preceding section. This is what Zermelo called the dussonderungs-
sxiom. But I have stated it in an adapted form due to Skolem (1930).

2For a detailed development of Zermelo’s system, with modifications, see Fraenke!
(1919 et seq.). For other variants see my “Set-theoretic foundations for logic™ (1936) and
Ackermann’s “Mengentheoretische Begriindung der Logik” (1937). More radical depar-
tures are noted below.
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However, all these difficulties are conveniently resolved by treating so-
called non-classes not as memberless, but as having themselves as sole
members.! (E’) can then be held to in its full generality. Moreover the
notation ‘x = y’ comes to be definable as an abbreviation for ‘(z)(z e x .=.
2 ¢ y)’ without restriction to classes. (This definition has to be preferred to
‘(2)(x e 2 .=, y £ 2)’ when we come to systems in the von Neumann branch
of the Zermelo line, touched on below.)

The Zermelo tradition and the Russell tradition become fused in the
class theory of my “New foundations” (1937). Here, in keeping with the
Zermelo tradition, (A’) is preserved subject to special restriction of ‘Fx’;
but the condition on ‘Fx’ is itself derived now from the theory of types, in
the following way. A sentence S is called szratified if its variables, though all
of the single style ‘%’, ‘y’, ‘', - -+ , are so disposed that there is a way of
assigning types to them which will cause ‘¢’ to appear only between vari-
ables of consecutively ascending types. Thus the theory of types is not
actually adopted, but sentences are merely classified as stratified or other-
wise according as their forms are such as could or could not be adapted to
the theory of types. Unstratified sentences, e.g. ‘¢ & x* and ‘— (x e x)’, are
admitted as meaningful on a par with stratified ones. But (A”), in particular,
is assumed true only for cases where the statement put for ‘Fx’ is stratified.

Every one of the advantages (1)-(5) noted at the beginning of this
section is enjoyed by the theory just described, or, indeed, any other theory
in the Zermelo line. It should be stressed, however, that the theory of
types has virtues of its own. This fact is evident in the naturalness with
which we found ourselves led up through U, , U, , etc., in the course of
the past few sections.

In a class theory of the Zermelo line due essentially to von Neumann
(1925),? certain things called elements are viewed as capable of belonging to
classes, while other things are not. We can express elementhood of x by
‘(dz)(x £ 2)°. Now (A’) gives way to:

(A" @)@ ey .=. (Fz)(xe2) . Fx].

'fIi’:; definition of class abstraction (§38) needs correspondingly to be modi-

‘$Fx’ for  ‘(E)[rey.=. (H)(x e2). Fx].

Thus £Fx is now construed as the class of all elements x such that Fx.
When the general theory of classes is developed along these lines, the

1See my Mathematical Logic, pp. 122-123, 135-137. This expedient was not used by
Zermelo.

2Von Neumann's system has been reformulated and extensively developed by Bernays,
“A system of axiomatic set-theory.” But the ensuing sketch departs in certain theoretical
respects from both von Neumann and Bernays.
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great burden of further axioms comes in specifying what sorts of classes are
to count as elements—i.e., as capable of membership in further classes.
It can be proved from (A”), by an argument related to Russell’s paradox
itself, that # — (x € x) is not an element; and various other proofs of non-
elementhood are likewise forthcoming. But elementhood can be proved
of nothing, pending special assumptions for the purpose. Varied assurances
of elementhood will be needed, however, if familiar laws of arithmetic and
higher branches of mathematics are to be derivable from the theory of
classes. So we must add some axioms of elementhood.

Knowing as we do from Godel’s result that a complete system is not to
be hoped for, we may reasonably incline to either of two attitudes in the
adding of axioms: we may favor either strength or weakness. There is much
to be said for a conveniently powerful set of axioms, incomplete though
it be.! But it is also illuminating to minimize the assumptions from which a
given familiar body of theorems of classical mathematics can be derived.
Weakness as an objective is principally attractive on account of the lingering
risk, in strong systems, of undetected contradiction.

In this spirit of minimization, the most interesting offering is perhaps
Wang’s “A new theory of element and number” (1948). His single meager
axiom of elementhood is the following, which assures him of no elements
with more than two members:

(Fz)({x, y} € 2). (See §40 for notation.)

His prior assumptions are just (A”) and (E’). On this basis, by dint of
redefining natural numbers along lines other than those which were followed
in §39 but equally justifiable, he is able to construct the theory of natural
numbers and derive all the usual theorems. More, he is able to develop the
theory of real numbers, rational and irrational, and derive the classical
body of theorems for that domain. For the theory of functions of real
numbers, however, or the Cantorian theory of infinite cardinal numbers,
axioms need to be added. Such times as further blocks of theorems in
further reaches of mathematics come thus to be wanted, the axioms may be
supplemented to the necessary minimum for the purpose; and each such
supplementation is a record of the added risk of contradiction.

1Such was the spirit of the too sweeping assumption of elementhood which I adopted
in Mathematical Logic. This assumption was shown by Rosser to lead to contradiction; see
Mathemarical Logic, second printing, p. 154, where a makeshift repair is made. Wang has
lately devised a more skillful repair, which restores much of the freedom of operation of
the original system; see his “A formal system of logic” (1950), and the third printing of
Mathematical Logic.

Appendix
Completeness of Quantification Theory. Lowenheim’s Theorem

What is to be shown is that

(D) Each valid quantificational schema is obtainable as the un-
starred last line of a finished deduction.

From thic it obviously follows also that, if schemata Sy, ..., S,
together imply a schema S, then § is deducible from 8y, ..., S»in a
finished deduction. (For, if we can get as an unstarred line the valid
conditional formed of 81, ..., §, as antecedent and § as consequent,
we can then subjoin § to it and 83, ..., §, by TF. Not that this is
the likely order of events.)

But it will suffice, for (I), to prove:

(II) Each valid closed quantification schema is obtainable as the
unstarred last line of a deduction.

The ‘closed’ is no real restriction. For, if an open schema is valid,
so is its universal closure (p. 139); and if we can get this closed
schema as last line of a deduction, we can get the open one too, just
by adding some steps of UI. (If these added steps happen to free any
old flagged variables, thus making for an unfinished deduction, we
can easily mend matters by rewriting the deduction of the closed
schema with a happier choice of letters for the flagged variables.)

Note that in (II) itself we did not have to say ‘finished’. A de-
duction with unstarred closed last line is of necessity finished; cf.
definitions.

But it will suffice, for (II), to prove:

(III) From any inconsistent closed premiss a truth-functionally
inconsistent combination of schemata can be deduced.

For, we know from p. 174 how to frame a deduction of a valid
schema once we have deduced truth-functionally inconsistent con-
sequences from its negation.

But it will suffice, for (III), to prove:

253
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(IV) From any inconsistent closed prenex premiss a truth-func-
tionally inconsistent combination of schemata can be deduced.

We know how, given any schema, to find a prenex equivalent (cf.
p. 227); and, furthermore, there is no difficulty, starting with the
former schema, in actually deducing the prenex one under our de-
ductive rules. Pp. 168-172 and 180f may make this plausible enough.

Actually we shall find that something stronger than (IV) can be
proved, viz.:

(V) From any inconsistent closed prenex premiss a truth-func-
tionally inconsistent combination of schemata can be deduced using
only EI and UL

We shall thus be assured of the completeness not only of our regu-
lar method of deduction, but also of a more economical one, which
runs as follows: to show a schema valid, just take its universal
closure, negate it, get the prenex equivalent, and go to work on this
last with EI and UI until you accumulate a truth-functional incon-
sistency. This method is certainly worth knowing on its own
account, so simple is it to state and justify. Apart from inessentials
of its outward form, it is due to Herbrand. §§27ff could have been
made much briefer by adopting it originally in place of the claborate
apparatus there introduced. However, that elaborate apparatus has
real practical advantages, as the reader will appreciate if he tries
some comparative exercises. It is well to know both.

(V) may be rephrased thus: If § is a closed prenex schema, then
cither we can deduce a truth-functionally inconsistent combination
of consequences from § by continued use of EI and Ul, or else § is
consistent. ‘Consistent’” here means true under some interpretation
in some non-empty universe. Actually, though, something yet
stronger will be proved, viz.:

(VD) If §is a closed prenex schema, then either () we can deduce
a truth-functionally inconsistent combination of schemata from § by
continued use of EI and UI, or else (b) some interpretation in a non-
empty universe of positive integers makes § true.

As an aid to proving (VI), I shall first prove this law of
infinite conjunction: If C is a class (finite or infinite) of- truth-
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functional schemata, there is some assignment of truth values to the
sentence letters that makes all members of C true unless some (finite)
conjunction of members of C is inconsistent.

Let us refer to the sentence letters in some fixed order as Py, P, ....
For any given number 4, let us speak of a given assignment of truth
values to Py, Py, ..., P; as condemning a given conjunction of members
of C if it makes that conjunction come out false for all values of
Py, Py, ... Then let #;, for each number 4, be one or other of the
truth values, | or 1, according to this rule:

@) #:is Tif assignment of #1, ..., #;,, and T respectively to Py, ...,
P; condemns no conjunction of members of C; otherwise it is 1.

Thus £, by (i), is T if assignment of | to P; condemns no conjunction
of members of C; otherwise 1. The rule (i) then fixes #, in turn, and
#3, and so on. Now what will be shown, as proof of the law of infinite
conjunction, is that if assignment of #,, #,, ... to P, P,, ... falsifies
a member § of C, then some conjunction of members of C is incon-
sistent. For, let j be a number great enough so that none of Pj,,,
Pjis, ... is in §. Then assignment of #,, ..., #; respectively to Py, ...,
P; is sufficient to falsify §. Then there is a least number 5 (< I);
such that

(ii) Assignment of #1, ..., #, to Py, ..., P, condemns a conjunction
(say K) of members of C.

By (i) and (ii),

(i) # = J.
By (ii) and (iii),

(iv) Assignment of #, ..., #_1, ] to Py, ..., Py condemns K.
By (i) and (iii),

(v) Assignment of #,, ..., #4—1, | to Py, ..., P; condemns some
conjunction K’ of members of C,

If 5 > 1, then, by (iv) and (v), assignment of 7y, ..., #-1to Py, ...,
Pj_; condemns the conjunction of K and K/, contrary to the least-
ness of 4. &

(i) b=1
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By (iv), (v), and (vi), assignment of | to P, condemns K and assign-
ment of T to P: condemns K’. Then the conjunction of K and K’ is
inconsistent, q.e.d.

Our task now is to prove (VI). Suppose, then, a closed prenex
schema §. So as to have an ordered and limitless stock of instantial
variables for EI and UL let us take ‘2", ‘22’, ‘%3’ ..., declaring these
alphabetically later than all in §. Now let us subjoin lines to lines
by EI and UI, beginning with § and proceeding according to the
following rigid plan. When the latest line at hand begins with an
existential quantifier, immediately subjoin a line to it by EI, using
as instantial variable the earliest of ‘21, ‘%2, ... not yet used. When
the latest line at hand does not begin with an existential quantifier,
enter as the next line something that can be got from some past
universally quantified line by Ul, using some one of ‘2, ‘%, ... a8
the instantial variable. For this step the chosen one of ‘21’ Z2’, .. is
to be one already flagged, or else ‘z1’; and the new line resulting
by Ul is to be no mere duplicate of a line already at hand. The
variable chosen from among ‘21", ‘zz’, ... is, moreover, to be as eatly
a one as it can be compatibly with the foregoing requirements; and,
given the variable, the universally quantified line used is to be as
early a one as it can be.

Here is an example. ‘®vwxy’ in it is to be conceived as any quanti-
ficational schema, say ‘Fv . Gwx .v. Fy . Gow’, containing the four
variables and no quantifiers.

*(1) @) EwX( %)) Prwsxy

*(2) Aw)(x)() Brawxy CHE
*(3) D) P21R2%y @ z
*(4) ()PRRY €))
*(5) PR @
*(6) () P12y €))
(D) ez 6
*(8) ®z1%2 @
*(9) Pr1z2%0%2 )

Here the process ends. But the next example goes on forever.

*( @) Ex)C) Brwxy
*(D) (WX @) Puwxy @
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*(3) (X)) Prazixy @
*(4) (DP122y 3) 2
*(5) ®ziRizak1 @
*(6) (w)(@x)(y) Prarwxy @
(D @0 Pzerrxy ®
*(8) () Pz201%5y D zs
*(9) PrariZK1 ®
*(10) (@) Pray @
*(AD) () PireRey - Q0)
*(12) Buxeveta (1)
*(13) P1%2%e @
and so on.

Let all the lines that proceed from § by the described process be
called sequents of S. If there is any conjunction of them that is truth-
functionally inconsistent, then (a) of (VI) is fulfilled. To complete
the proof of (VI), therefore, it will be sufficient to assume that no
conjunction of sequents of § is inconsistent, and then produce an
interpretation as promised in (b) of (VI).

Let Ay, As, ... be, in an arbitrary order, all the expressions obtain-
able by applying predicate letters of § to ‘21’, ‘%', etc. Thus, if the
predicate letters of § are just a monadic ‘F’ and a dyadic ‘G, then
Ay, A, ... mlght be ‘le', ‘Gzlzl’, ‘Fzz’, ‘Gzlzz., ‘GZzzl’, ‘GZy(g',
‘Fzs’, and so on. Clearly all the unquantified sequents of § are truth
functions of various of A4, A, .... Moreover, under our assumption,
no conjunction of sequents is truth-functionally inconsistent. By the
law of infinite conjunction, then (with A, 4s ... in place of Py,
P, ...), there is an assignment of truth values #,, #,, ... to A1, 4s, ...
that makes all unquantified sequents of § true. Now let us interpret
the free variables ‘21, ‘%, ... as naming the respective integers 1,
2, .... Since A1, As, ... show the predicate letters applied to ‘z1’, ‘22,
... in all combinations, any full assignment of truth values to A,
As, ... now amounts simply to an interpretation of those predicate
letters in the universe of positive integers. In particular, therefore,
the assigning of #y, #s, ... to Ay, A, ... determines an interpretation
3 of the predicate letters of S, in the universe of positive integers,
that verifies all unquantified sequents of §.
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Case 1: All of ‘z¢’, ‘ze’, ... without end turn up in sequents of S.
It is evident from our general method of generating sequents that,
given any sequent Q (of §) whose first quantifier is universal, an
instantiation of Q with respect to each of ‘21, ‘22, ... will eventually
occur. So, given the universe of positive integers and the stated
interpretation of ‘z1’, ‘z2’, ..., it follows that will count as true if
all sequents with fewer quantifiers than Q count as true. But also
any sequent Q’ whose first quantifier is existential will be true if all
sequents with fewer quantifiers are true, for these latter will include
an instance of Q’. So, to sum up, any sequent with quantifiers will
count as true if all sequents with fewer quantifiers do. But J makes
all unquantified sequents true. Hence it also makes all singly quanti-
fied sequents true; hence also all doubly quantified sequents; and so
on. Hence finally, § itself; q.e.d.

Case 2: ‘zi’, ‘%2’ ... up to only some finite number #» turn up in
sequents of §. Then take the universe as comprising only the integers
up to #, and argue as before.

This ends the proof of (VI) and, therewith, of the completeness
of our deductive method in quantification theory.

It was Gédel who, in 1930, first proved the completeness of a
deductive method in quantification theory. The deductive method
which he proved complete was very different from ours and more
like the one on p. 191. But this difference is of little moment, since
a completeness proof for one method of quantification theory can
be adapted fairly easily to others. In the above adaptation, actually,
I have depended partly on Gddel's original argument and partly on
a variant due to Dreben.

(VD) has as corollary a celebrated theorem which, antedating
Godel, goes back to Lowenheim: Any consistent quantificational schema
comes out true under some interpretation in the universe of positive integers.
For, consider any consistent quantificational schema §. Let §' be its
prenex equivalent, closed by existential quantification of any free
variables. Then §”, like S, is consistent. Then certainly, in view of
the soundness of EI and UI (§28), no truth-functional inconsistencies
can be got by EI and UI from S§”. Then, by (VI), §’ is true under
some interpretation in a non-empty universe of positive integers.
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But then, by the reasoning of p. 97n, §’ will be true also under some
interpretation in the full universe of positive integers. Then so will §.

The notion of consistency admits of a natural extension from
schemata to classes of schemata. A class of schemata is consistent
if, under some interpretation in a non-empty universe, all its mem-
bers come out true together. (If some of the schemata of the class
contain ‘F’ monadically, say, and others contain ‘F’ dyadically,
what sense is there in speaking of a joint interpretation? Let us
settle this point by treating the monadic ‘F’ and the dyadic ‘F’ as if
they were different letters.) Now Lowenheim’s theorem admits im-
mediately of this superficial extension: If a finite class of quantifica-
tional schemata is consistent, all its members come out true together
under some interpretation in the universe of positive integers. For,
we have merely to take the schema in Léwenheim’s theorem as a
conjunction of all the schemata in the finite class.

Actually this limitation to finite classes can be lifted, as Skolem
showed in 1920. The result is the Léwenheim-Skolem theorem: If 4
class of quantificational schemata is consistent, all its members come out
true together under some interpretation in the universe of positive integers.
The proof is omitted here.!

Consider any non-empty universe U and any assortment of predi-
cates, all interpreted in that universe. Consider, further, the whole
infinite totality of truths, known and unknown, that are expressible
with help of those predicates together with the truth functions and
quantification over U. Then the Lowenheim-Skolem theorem assures
us that there is a reinterpretation of the predicates, in the universe
of positive integers, that preserves the whole body of truths.

E.g., taking U as the universe of real numbers, we are told that
the truths about real numbers can by a reinterpretation be carried
over into truths about positive integers. This consequence has been
viewed as paradoxical, in the light of Cantor’s proof that the real
numbers cannot be exhaustively correlated with integers. But the
air of paradox may be dispelled by this reflection: whatever dis-
parities between real numbers and integers may be guaranteed in

IFor a version of the proof, see my *‘Interpretations of sets of conditions."” Journal
of Symbolic Logic, vol. 19 (1954), pp. 97-102.
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those original truths about real numbers, the guarantees are them-
selves revised in the reinterpretation.

In a word and in general, the force of the Lowenheim-Skolem
theorem is that the narrowly logical structure of a theory—the
structure reflected in quantification and truth functions, in abstrac-
tion from any special predicates—is insufficient to distinguish its
objects from the positive integers.
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Russell’s paradox 249

Schema 22, 82, gif,, 12¢f.; canonical
101, 105, 107ff.; fundamental 56,
104; mixed 116f., 192; monadic
135n., 175, 192ff.; normal 56ff,
62f., 104f.; of identity theory 212f.;
predicate- 140ff.; quasi-normal 63;
sentence 140, 141n. See also Con-
sistency, Equivalence, Implication,
and Validity

Schematic letter 22, 64, 82, g1f., 120,
225. See dlso Interpretation

ScHroDER, E. 12, 50.

ScHRODINGER, E. 19910,

Science xiiff., 33

Scope of quantifier 84ff., 125f, 183

Sentence go, 129, 212; introduction
of 134; letter 22, 82, 116f, 134,
138; schema 140, 141n. See dlso
Schema

SueFFER, H. M. 12

Simple: conversion #70; predicate 221

Simplification  xiv, 47, s5off., s53ff.,
106f., 180f.
Singular: conditional 15; inference
78, 196f. See also Singular term
Singular term %8, 196-208; descrip-
tive 215fl.; elimination of 220ff.;
non-descriptive 218f.; open 223

SroLem, T. 247, 250n., 250f.

Soundness of deduction ¢4, 157ff,
1621

Standard monadic schema 192

Star 154ff, 239

Statement xiff., 1, 22f., 42ff., 65; as
closed sentence go; function gon.;
singular 48, 196. See also Categori-
cal

Stencil 132n. See @lso Predicate

Stoics 12

Strategy in deduction 170-174, 181,
190

Stratification 251

Strong system 252

Subject %6

Subjoin 156fF.

Substantive 64, 119; spurious 123f.

Substitution: for ‘p’, ‘q’, etc. 32, 48f,,
o7f., 141ff.; for ‘Fr’, ‘Gx’, etc. 99;
for ‘F’, ‘G’, etc. 131f,, 140ff.

Sum, see Addition

Suppressed premiss 185ff.

Syllogism  43ff.

Symmetry 177f.; in substitution
143f.; of identity 214

Synonymy 200, 218f.

Tarskr, A. 4, 166, 231, 247f.
Telescoping 18
Term 64ff., 92, 130; absolute 64n.,
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119, 130; abstract 204ff.; concrete
204ff.; dyadic, triadic, etc. 120,
130; general 64n., 203ff., 225; ma-
jor, middle, minor #6; relative
119f., 130f. See also Singular term

TF 157f., 169, 171, 176, 180

Tilde 1n,

Total reflexivity 175f,

Transitivity 177ff.; of equivalence
48, 104f.; of identity 213; of im-
plication 34, 151

Transformation 45ff.; into canonical
ro1fl.; into normal s3ff.; into
quasi-normal  62f.; into standard
monadic 192ff.

Translation, see Paraphrasing

Truth xi, xiv, xvii, 1, 43f.; function
8ff., 22; -functional equivalence, im-
plication, validity 37, 48, 98, 149;
Afunctional inference 157f., 169,
171, 176, 180; -functional schema
22; table 27; value 8, 22f., 90, 95;
-value analysis 26f., 20ff., 47, 50f.,
58

Type 236, 248(f.; U,, U, etc. 226,
233, 236, 239, 241

U, see Type and Universe

UG 160ff., 165£., 169, 172f., 191

Ul 147f., 157, 160, 169, 172f., 254fF.

Uniform quantificational schema
oif., 116, 192; consistency, equiva-
lence, implication of gof.,, 113ff.;
validity of oaff.) 113, 115

Universal: affirmative and negative
66; closure 139, 213, 214n.; gen-
eralization 160ff.,, 165f., 169, 172f.,

INDEX

191; instantiation 147f., 157£., 160,
169, 172f., 254fF.; quantification, see
Quantification

Universe 88f., g5ff.; finite 88f., 123.
See also Type

Unless 41f.

Usage, see Paraphrasing

Use and mention 37f., 9In., 209

Validity 28ff.; in general quantifica-
tion theory 136ff., 142f., 150f., 190;
in identity theory 2r12ff.; in uni-
form quantification theory o4ff.,
113, 115; of syllogism 74, 77f;
patent 2off., 47n., 56f.; truth-func-
tional 37, 98; under duality 62;
under equivalence 48, s50; under
implication 34, 100, 150

Variable 127ff., 225f, 248f.; alpha-
betical order of 164, 169; instantial
165, 169

Vel 5

Venw, J. 69

Venn’s diagrams 69ff., 74£., 7off.

Verb 64, 119

Wang, H. 252

Weak system 252

WEIERSTRASS, K. xvil

WHarTEHEAD, A. N. 132n,, 21110, 243N,
Wiener, N. 241, 243

WITTGENSTEIN, L. 27

Words, see Paraphrasing

WricHT, G. H. von 116n.

ZerMmzLo, E.  250ff
Zero 233




