Книга: Эволюция. Классические идеи в свете новых открытий



Эволюция. Классические идеи в свете новых открытий

Александр Марков

Елена Наймарк

ЭВОЛЮЦИЯ

Классические идеи в свете новых открытий

Предисловие

Почему жизнь прекрасна?

Удивительная сложность живых существ, их фантастическое разнообразие, их почти совершенная приспособленность к среде, друг к другу, к занимаемому «месту в экономии природы» [1]— факты примечательные и требующие объяснений. В прошлом они поражали воображение ничуть не меньше, чем теперь. Впрочем, в донаучную эпоху и с объяснениями было, прямо скажем, попроще: годились на эту роль чуть ли не любые эстетически сбалансированные выдумки.

По мере развития науки отношение грамотных людей к традиционно-мифологическим «объяснениям» становилось более прохладным. «Напрасно многие думают, что все, как видим, с начала Творцом создано… Таковые рассуждения весьма вредны приращению всех наук, следовательно, и натурному знанию шара земного. Хотя оным умникам и легко быть философами, выучась три слова наизусть: Бог так сотворил, и сие дая в ответ вместо всех причин», — писал М. В. Ломоносов.

Но как объяснить поразительную гармонию живой природы, не привлекая гипотез о сверхъестественном? Несмотря на попытки многих незаурядных умов — от Эмпедокла до Ламарка — предложить рациональное объяснение, вплоть до 1859 года общепринятым ответом на этот вопрос оставалось твердое «никак». Сложность и приспособленность живых организмов считались чуть ли не самым наглядным и неопровержимым свидетельством божественного сотворения мира. «Книгу природы» называли вторым Писанием, ее изучение — «естественным богословием». Читаем, к примеру, у того же Ломоносова: «Создатель дал роду человеческому две книги. В одной показал свое величество, в другой свою волю. Первая — видимый сей мир, им созданный, чтобы человек, смотря огромность, красоту и стройность его зданий, признал божественное всемогущество по мере себе дарованного понятия. Вторая книга — Священное Писание. В ней показано Создателево благоволение к нашему спасению».

Казалось, чем больше новых фактов мы откроем, тем яснее постигнем высший замысел.

Все пошло наперекосяк после выхода в свет книги Дарвина «Происхождение видов путем естественного отбора» (1859). До Дарвина человечеству был известен только один надежный способ создания сложных, целесообразно сконструированных объектов: разумное проектирование. Ранние эволюционные гипотезы, такие как гипотеза Ламарка, изложенная в его книге «Философия зоологии» (1809), предлагали лишь непроверяемые и неполные альтернативы. Например, ламарковская идея наследования результатов упражнения и неупражнения органов предлагала рациональное объяснение (хоть и неверное, как мы теперь знаем) увеличения или уменьшения уже имеющихся структур, но не объясняла происхождение новых органов. Поэтому Ламарку пришлось вдобавок к упражнению постулировать еще и особую движущую силу, заставляющую организмы развиваться по пути усложнения, — загадочное «стремление к совершенству». Это было немногим лучше Божьего промысла.

Дарвин предложил другой, гораздо более простой, изящный и очевидный путь самопроизвольного совершенствования живых существ: естественный отбор случайных наследственных изменений. Гипотеза Дарвина не постулировала никаких неведомых сил и новых законов природы и вообще, казалось бы, лежала на поверхности [2]. Если объекты умеют размножаться, если они передают потомкам по наследству свои индивидуальные черты, если черты эти иногда случайным образом меняются и если, наконец, хотя бы некоторые из таких изменений повышают эффективность размножения, то такие объекты просто обязаны — и будут! — сами собой, без всякого разумного вмешательства, становиться все более совершенными с течением поколений. Под совершенством в данном случае понимается приспособленность, она же эффективность размножения.

Ученый мир был потрясен. Правда, Лаплас (в ответ на вопрос Наполеона, где же Бог в его модели Солнечной системы) еще полвека назад заявил, что «не нуждается в этой гипотезе». Но Лаплас говорил о физике. Почти всем казалось, что уж в биологии-то без «этой гипотезы» никуда.

Конечно, высказать красивую догадку мало; логически обосновать ее — тоже мало; догадка должна еще оказаться верной (и проверяемой). Теория Дарвина могла и не подтвердиться в ходе дальнейшего развития науки. Но у него был особый дар выдвигать верные гипотезы на основе неполных данных. Не зная генетики, не зная природы наследственности, задолго до открытия ДНК Дарвин сумел правильно сформулировать главный закон жизни.

Для «естественного богословия» книга Дарвина стала началом конца. Именно этого никогда не простят Дарвину ортодоксы и фундаменталисты (пресловутое «человек произошел от обезьяны» — в общем-то мелочь, частный случай). Вектор развития биологии, да и всего научного осмысления мира, сменился на противоположный. Новые открытия снова и снова подтверждали Дарвина, а не сотворение. Естественный отбор, слепая природная сила, торжествовал над «разумным замыслом». Дарвин опрокинул мироздание, каким его представляли прежде, заменив красивую сказку не менее красивой, но, увы, более трудной для понимания научной теорией.

Дарвиновская модель отбора небольших наследственных изменений вроде бы проста — но простота ее лишь кажущаяся. Неслучайно эта модель, лежащая теперь в основе биологии, вошла в науку так поздно — во второй половине XIX столетия. В других науках — математике, физике, астрономии — теоретические прорывы, сопоставимые с ней по своему значению и уровню, начались на одно-два столетия раньше. Даже сегодня нередки случаи, когда не самые глупые люди «спотыкаются» на дарвиновской модели, не могут понять, как она работает, как объясняет наблюдаемые факты (а некоторым и вовсе кажется, что эти факты не нуждаются в объяснениях).

Возможно, одна из причин непонимания — недостаточное внимание к деталям. Исходя из общих принципов можно почти любое явление истолковать и так и эдак: философские рассуждения, как известно, хороший инструмент для обоснования прямо противоположных выводов. Эволюция контринтуитивна. Мы привыкли к тому, что все получится как следует лишь при четко поставленной цели и грамотном руководстве. В этом смысле нам комфортнее существовать, когда кто-то набросал планчик развития на пять лет вперед, а не в условиях жестокой стихии «свободного рынка». Мы прекрасно знаем, что победить легче, если наступление ведет расставленная на запланированных позициях армия, а не множество разрозненных индивидов, преследующих какие-то свои личные цели. Так или иначе, интуиция обычно подсказывает нам, что без сознательного планирования и контроля ничего хорошего не выйдет, только хаос. Эволюционная биология навсегда останется непостижимой для тех, чей разум не в силах освободиться от плена этих интуитивных ощущений.

Задача, которую мы поставили перед собой, приступая к работе над книгой, — попробовать на основе новых научных данных разобраться в том, как работает дарвиновский отбор. Почемуи какиз хаоса случайных наследственных изменений рождается что-то новое, полезное, красивое, гармоничное и сложное. Здесь важно отказаться от общих рассуждений и разговоров на уровне «здравого смысла» — они сейчас мало кого убедят. Мы должны приглядеться к фактам, деталям, примерам, из которых проявится во всей своей сложности и логичности механизм великого исторического двигателя — естественного отбора.

Как появляются новые гены, новые признаки, новые адаптации [3], новые виды, новые типы? В чем вообще состоит биологическое значение этих слов: новое, полезное, красивое, гармоничное, сложное? Ведь все эти термины в биологии имеют особые оттенки смысла. Что считать настоящим «новшеством» — обретение ли новой мутации, нового облика, нового гена, новой функции или нового места жительства? Попробуйте ответить на такие вопросы с налету… А что такое «красота» с точки зрения пчелы или цветной озерной рыбки? Уж наверное, не то же самое, что для жюри конкурса «Мисс мира». Чтобы разобраться в устройстве живой природы, чтобы понять смысл всех ее составных частей и взаимосвязей, необходимо прежде всего понять их эволюционный контекст. Мы хотим разглядеть эволюцию вблизи. Мы хотим развинтить эволюционный механизм на все его шестеренки и винтики, изучить их, понять, как они соединяются, а потом свинтить обратно и убедиться, что он по-прежнему тикает. Но эта работа даст нам представление обо всем устройстве — если тикает, значит, мы поняли его механику.

В «Рождении сложности», нашей первой книге по эволюционной биологии, акцент был сделан на «опровержении догм». Действительно, многие выводы, которые казались абсолютными лет 50 назад, сегодня приходится пересматривать. Стало ясно, что жизнь устроена сложнее, чем представлялось еще недавно. В естественных науках вообще, а в биологии в особенности с абсолютными истинами туго. Из любого правила найдутся исключения. С другой стороны, «Рождение сложности» может создать в сознании читателей своего рода «догмоопровергательный перекос». Кто-то может подумать, что слишком уж многое из того, о чем писали классики эволюционной биологии, не выдержало проверки временем.

Так вот, исправление этого перекоса — еще одна задача книги, которую вы держите в руках. Ведь на самом деле классические идеи не столько опровергаются новыми открытиями, сколько конкретизируются, уточняются и развиваются. Так, палеонтологи могут сколько угодно корректировать систематическое положение трилобитов, сближая их то с ракообразными, то с паукообразными, то выделяя в отдельный подтип — из этого вовсе не следует, что наши знания о трилобитах недостоверны или что наука топчется на месте, теряясь в догадках, — напротив, эти процессы отражают все более полное и правильноепонимание учеными этой вымершей группы животных, причем наиболее фундаментальные, классические истины остаются незыблемыми и только укрепляются (например, уверенность в том, что трилобиты — представители членистоногих, а значит, последний общий предок трилобита и мухи жил позже, чем последний общий предок трилобита и воробья). Классические идеи зачастую потому и являются классическими, что они надежно подтверждены с многих сторон. Они позволяют развивать и видоизменять представления о мире без всякого для них ущерба. Это, конечно, лучший вариант «классических идей»: иногда под них успешно маскируются действительно устаревшие догмы. И то и другое — поднадоевшие штампы, но что поделаешь — именно с ними то и дело встречаешься в научном быту. Так или иначе, те классические идеи, о которых пойдет речь в книге, — это классика в хорошем смысле слова. Мы постараемся подкрепить это утверждение новейшими научными данными.

В последние годы биологи получили целый блок новых данных, позволивших лучше понять, как крутятся шестеренки эволюционного механизма. Чудесные вещи происходят прямо у нас на глазах. Скелеты теорий обрастают плотью реальных фактов. Многие красивые гипотезы и модели, которые до сих пор не удавалось проверить экспериментально, наконец подверглись такой проверке. Закономерности, до сих пор существовавшие лишь в воображении теоретиков, мы теперь можем разглядывать в микроскоп. Мы можем пользоваться ими! «Прикладная эволюционная биология» — уже не фантастика, а реальность. Именно таким открытиям посвящена книга.

Нам предстоит рассмотреть на конкретных примерах, как работают наследственность, изменчивость, отбор, конкуренция, изоляция, дрейф и другие слагаемые великой природной машины, неустанно создающей новые виды живых существ.

Мы надеемся, что читатель уже обладает минимальными знаниями по биологии — а если не обладает, то сможет сам подсмотреть недостающие сведения в доступных источниках, например в учебнике или в «Википедии» [4]. В конце концов, нельзя же в каждойнаучно-популярной книге повторять одни и те же сведения из школьной программы. Жалко времени, бумаги и тех читателей, для которых это будет не первая биологическая книга, которую они взяли в руки. Поэтому мы не будем подробно в сотый раз пересказывать, что такое репликация ДНК и клеточная мембрана, а перейдем сразу к делу.

—————

Несколько терминов, без которых не обойтись

Наследственная информация, содержащаяся в ДНК, разнородна и записана на нескольких разных «языках». Лучше всего изучен язык белок-кодирующих участков ДНК [5]. Последовательность нуклеотидов в таком участке представляет собой инструкцию по синтезу белковой молекулы, записанную при помощи генетического кода— общей для всего живого системы соответствий между определенными тройками нуклеотидов ДНК (триплетами, или кодонами) и аминокислотами, составляющими белок. Например, тройка нуклеотидов ААА кодирует аминокислоту лизин, ЦГГ — аргинин.

Чтобы синтезировать белок на основе такой инструкции, информацию сначала нужно переписать с ДНК на РНК — молекулу, отличающуюся от ДНК некоторыми деталями: например, вместо нуклеотида Т (тимидин) в РНК используется У (уридин). Переписывание информации с ДНК на РНК (синтез РНК на матрице ДНК) называется транскрипцией. Ген может транскрибироваться часто, и тогда в клетке будет производиться много молекул данного белка, или редко, и тогда белка будет мало. Это называют уровнем экспрессиигена. Уровень экспрессии контролируется специальными белками-регуляторами.

Затем получившаяся молекула РНК используется для синтеза белка. Молекулярная «машинка» для синтеза белка на основе инструкций, записанных в РНК, называется рибосомой, а сам процесс белкового синтеза — трансляцией.

—————



Глава 1

Наследственность: куда катится мир?

ДНК — главная «шестеренка» наследственности

В истории биологии за последние полтора века было несколько острых моментов, когда дарвиновская модель подвергалась серьезной проверке — и наверняка была бы опровергнута, окажись она ошибочной. Один из них наступил в начале 1950-х, когда несколько талантливых биологов и химиков [6]всерьез занялись расшифровкой структуры ДНК — загадочного «вещества наследственности». Дело, как известно, завершилось открытием знаменитой двойной спирали в 1953 году. Согласно легенде, Фрэнсис Крик на радостях воскликнул: «Мы открыли главную тайну жизни!» Что он имел в виду? Не погорячился ли?

—————

Четыре важнейших события в истории биологии

1. 1859 год. Теория эволюции путем естественного отбора.

2. 1900–1910-е годы. Классическая генетика, хромосомная теория наследственности. Поначалу многим казалось, что генетика противоречит дарвинизму: ведь Дарвин ставил во главу угла небольшие, плавные изменения, а ранние генетики работали с «грубыми и зримыми» дискретными изменениями — мутациями с сильным эффектом.

3. 1930-е годы. Кажущееся противоречие благополучно разрешилось. Сложилась генетическая, она же синтетическая, теория эволюции (ГТЭ или СТЭ) — триумфальное объединение дарвинизма с генетикой.

4. 1950–1960-е годы — открытие материальной природы наследственности и изменчивости: структура ДНК, репликация, транскрипция, трансляция, генетический код.

—————

Чтобы понять, почему вокруг открытия двойной спирали ДНК был поднят такой шум, нам понадобится совсем чуть-чуть исторического контекста. Уже была генетика. Уже было известно, что наследственная информация состоит из дискретных единиц — генов, которые находятся в хромосомах и расположены там линейно, один за другим. В состав хромосом входят белки и ДНК. Сначала казался вполне возможным вариант, что наследственная информация записана в белках. Ведь белки состоят из 20 разных аминокислот, а ДНК — только из четырех нуклеотидов. ДНК казалась слишком «однообразной» молекулой. В этом есть логика: записать длинный текст 20-буквенным алфавитом, казалось бы, проще, чем четырехбуквенным [7]. Но потом выяснилось, что наследственная информация все-таки хранится в ДНК. Это было показано в экспериментах с мечеными вирусами. Оказалось, что для того, чтобы вирус-бактериофаг размножился в бактериальной клетке, необходимо и достаточно, чтобы в клетку попала вирусная ДНК. Вирусным белкам проникать в бактерию не нужно. Вся необходимая для их производства информация находится в ДНК. Значит, именно ДНК является «веществом наследственности».

Оставалось два величайших вопроса.

Каким способом, на каком языке записана наследственная информация в молекуле ДНК?

Как удается клетке копировать эту информацию перед каждым делением?

Ответ на первый вопрос уже напрашивался. Было известно, что ДНК — это длинная молекула, полимер, состоящий из нуклеотидов четырех типов. Их, как вы, конечно, помните, обозначают буквами А, Г, Т, Ц. Наследственная информация как-то закодирована в последовательности нуклеотидов — записана этим четырехбуквенным алфавитом.

Более загадочным представлялся второй вопрос. Тут нужно пояснить, что Жизнь (не любая жизнь, а такая, развитие которой адекватно описывается генетической теорией эволюции) может быть основана не на всяком полимере, в котором что-то закодировано. Это должна быть молекула, во-первых, способная к размножению, во-вторых — обладающая наследственной изменчивостью. Белки, между прочим, этими свойствами не обладают (за одним интересным исключением, о котором мы скоро расскажем).

Начнем с размножения. Молекула, лежащая в основе жизни, должна содержать в себе инструкцию по производству копий самой себя. Говоря химическим языком, это должна быть молекула, способная катализировать синтез своих копий. Без этого живые существа просто не смогут размножаться. Наследственная информация должна копироваться, чтобы родители могли передавать ее потомкам.

Способность «молекулы наследственности» к размножению — достаточное условие для того, чтобы Жизнь, основанная на такой молекуле, могла существовать. Например, если бы это была искусственно сотворенная кем-то Жизнь, не подверженная эволюционным изменениям, то «молекуле наследственности» достаточно было бы просто уметь размножаться.

Этого, однако, недостаточно для Жизни, способной к эволюции на основе дарвиновского механизма. Если ГТЭ адекватно описывает реальность, то «молекула наследственности» обязана обладать еще одним свойством — наследственной изменчивостью. Это значит, что молекулам-потомкам должны передаваться не только «общеродовые характеристики» родительской молекулы, но и ее индивидуальные, частные особенности, которые время от времени подвергаются небольшим случайным изменениям. Эти изменения обязательно тоже должны наследоваться.

Системы, способные размножаться и обладающие наследственной изменчивостью, называют репликаторами.

—————

Размножение без наследственности

Пример размножения без наследственной изменчивости — автокаталитическая реакция Бутлерова. В ходе этой реакции формальдегид (CH 2O) превращается в сложную смесь разных сахаров, причем катализатором реакции служат те самые сахара, которые в ней образуются. Именно поэтому реакция и является автокаталитической: ее катализируют ее собственные продукты.

Такую реакцию можно описать в терминах размножения, изменчивости и наследственности. Молекулы сахаров катализируют синтез других молекул сахаров: можно сказать, что они размножаются, используя формальдегид в качестве «пищи». У них есть и изменчивость, ведь в итоге получается смесь разныхсахаров. Но вот наследственнойэта изменчивость не является, потому что состав получающейся смеси практически не зависит от того, какие именно сахара катализировали реакцию. Вот если бы, скажем, рибоза избирательно катализировала синтез именно рибозы, но при этом иногда «по ошибке» синтезировались молекулы глюкозы, которые начинали бы избирательно катализировать синтез других молекул глюкозы, тогда мы могли бы сказать, что в системе есть наследственная изменчивость.

Другой пример приводит в своих книгах Ричард Докинз: горение. Мы можем зажечь спичку, ее огнем поджечь свечу, огнем свечи — еще что-нибудь. Огоньки как будто размножаются, но индивидуальные черты конкретного огонька — например, его цвет — не зависят от свойств огонька-родителя. Они зависят только от «среды», например, от состава горючего материала. Как и сахара в реакции Бутлерова, огонь передает по наследству только свои «общеродовые характеристики», но не индивидуальные особенности. В такой системе есть размножение и изменчивость, но нет наследственности в узком смысле. Подобные системы могли бы лежать в основе каких-то живых существ, но только искусственных, сотворенных в готовом виде, — как если бы роботы собирали других роботов из подручных материалов. Самостоятельно развиваться и усложняться, эволюционируя «по Дарвину», такие существа не смогли бы.

—————

Задолго до расшифровки структуры ДНК генетики уже точно знали, что мутации(случайно возникающие изменения генетического материала) тоже копируются и наследуются. Это значит, что система копирования наследственной информации не зависит от того, какая именно информация с ее помощью копируется. Это универсальная система: не штамп, раз за разом производящий одинаковые тексты, а нечто вроде ксерокса, который размножает любой текст независимо от его содержания. Если в тексте случайно возникнет изменение, то копии, снимаемые с измененного текста, тоже будут содержать в себе это изменение.

Таким образом, молекула ДНК должна обладать удивительным свойством — она должна быть способна к самокопированию, причем нужно, чтобы все нуклеотиды у копии стояли в той же последовательности, что и в оригинале. Если возникает мутация, то копии с мутантной молекулы тоже должны содержать эту мутацию. Только такая молекула — молекула- репликатор— может лежать в основе земной жизни. Это следовало из дарвиновской теории. Это следовало из данных генетики. И это блестяще подтвердилось — открытием Уотсона и Крика.

Главное, что они открыли, — принцип специфического спаривания нуклеотидов, или комплементарности. В двойной спирали ДНК аденин (А) всегда соединяется с тимином (Т), а гуанин (Г) — с цитозином (Ц). Комплементарные нуклеотиды подходят друг к другу по размеру (пары А — Т и Г — Ц имеют одинаковый размер, и поэтому спираль ДНК получается ровная и прочная), а также по расположению положительно и отрицательно заряженных участков. В силу последнего обстоятельства между А и Т образуются две водородные связи, а в парах Г — Ц таких связей три.

В конце своей эпохальной статьи с описанием структуры ДНК авторы обронили: «От нашего внимания не ускользнуло, что специфическое спаривание, постулированное нами, непосредственно указывает на возможный механизм копирования генетического материала» ( Watson, Crick, 1953). Эту фразу считают одним из двух самых скромных высказываний в истории биологии [8]. Разумеется, от их внимания не ускользнуло, что они открыли главную тайну жизни!

Итак, открытие состояло в том, что молекула ДНК оказалась так устроена, что ее очень легко скопировать. Для этого достаточно расплести двойную спираль на две нити, а затем к каждой из них достроить вторую нить в соответствии с принципом комплементарности. Это значит, что молекула ДНК кодирует сама себя. Каждая из нитей двойной спирали кодирует вторую нить, в точности определяя ее строение. ДНК кодирует также и многое другое — все строение организма в конечном счете, но в первую очередь она кодирует себя. Она сама контролирует производство своих копий. Механизм копирования ( репликации) ДНК заложен непосредственно в ее структуру. Естественно, любая ошибка-мутация, любая нуклеотидная замена при таком способе копирования будет унаследована дочерними молекулами ДНК.

Молекула наследственности оказалась именно такой, какой она должна была оказаться в соответствии с предсказаниями ГТЭ. Ученые любят, когда все сходится, когда теоретические построения подтверждаются фактами. Так что у Крика был достойный повод для громких заявлений о «тайне жизни».

Еще один важный вывод состоит в том, что из структуры молекулы ДНК непосредственно вытекает неизбежность дарвиновской эволюции. Живые существа, обладающие такой молекулой наследственности, просто не могут не эволюционировать «по Дарвину». Никакая система копирования не может быть абсолютно точной. Время от времени обязательно будут возникать сбои, ошибки, т. е. мутации. Они будут передаваться по наследству. Поскольку ДНК определяет львиную долю наследственных свойств организма (оставим чуть-чуть на всякого рода эпигенетику и материнские эффекты [9]), какие-то мутации непременно будут влиять на эффективность размножения — как самих молекул ДНК, так и организмов, чье строение ими контролируется. Таким образом, ДНК обеспечивает выполнение набора условий, необходимых и достаточных для дарвиновской эволюции: 1) размножение; 2) наследственная изменчивость; 3) влияние второй на эффективность первого [10].

Нестандартные репликаторы: дарвиновская эволюция без участия генов

Земная жизнь основана на размножении репликаторов определенного типа — полинуклеотидов РНК и ДНК. Но это не единственный тип репликаторов, существующий в природе. Многие философы и социологи считают, что в культурной эволюции важную роль играют мемы— единицы культурной информации, которые используют наш разум для собственного выживания и размножения примерно так же, как гены используют клетку. Предполагается (хотя и не доказано), что мемы, как и гены, обладают всеми свойствами, необходимыми для дарвиновской эволюции: наследственной изменчивостью и дифференциальным размножением. Если объект обладает этими свойствами, то он является репликатором, и он будет автоматически эволюционировать, приспосабливаясь к среде своего обитания.

Прионы — нестандартные репликаторы, представляющие собой особым образом свернутые молекулы белка PrP (называемого также прионным белком). Этот белок в норме присутствует на мембранах нейронов и выполняет какие-то полезные функции, связанные с передачей сигналов. Какие именно — пока не совсем ясно ( Chiesa, Harris, 2009). Безобидный прионный белок превращается в смертоносный прион в результате «неправильного сворачивания».

Прион обладает двумя удивительными свойствами. Во-первых, он заставляет нормальные прионные белки сворачиваться неправильно, превращая их в свои копии. Так прион размножается: он катализирует синтез собственных копий, используя в качестве «пищи» (материала для построения этих копий) нормальные, правильно свернутые молекулы белка PrP. Во-вторых, прион устойчив к действию протеолитических ферментов, задача которых состоит в уничтожении отслуживших белковых молекул. Оба свойства связаны со способностью прионов слипаться в большие комки из множества молекул. Первые несколько слипшихся прионов становятся «центром кристаллизации», к которому прилипают все новые и новые молекулы. В конце концов это приводит к нарушению работы нервной клетки.

Эволюция. Классические идеи в свете новых открытий

Два варианта пространственной конфигурации прионного белка: a — нормальная конфигурация (преобладают так называемые альфа-спирали); б — патологическая конфигурация (преобладают «бета-листы»). Стрелки — условные, они показывают направление от N-конца белковой молекулы (где находится аминогруппа) к C-концу (где находится карбоксильная группа).

Самое неприятное, что нейрон, в котором «завелись» прионы, заражает ими соседние нейроны. В результате прионная инфекция распространяется по нервной системе. Способность к размножению, устойчивость к протеолитическим ферментам и заразность делают прионы опасными инфекционными агентами, похожими по своим свойствам на вирусы. Как и вирусы, прионы могут размножаться только за счет ресурсов, предоставляемых хозяйской клеткой. Вирусу необходимо, чтобы клетка синтезировала для него вирусные белки согласно инструкциям, записанным в вирусной ДНК или РНК. Приону необходимо, чтобы клетка синтезировала для него нормальные молекулы прионного белка PrP, а прион уже сам превращает их в свои копии. Разница между вирусом и прионом существенна для молекулярного биолога, но совсем не так заметна для эпидемиолога или тем более заболевшего животного. Прионы вызывают смертельные нейродегенеративные заболевания у человека и других млекопитающих, в том числе коровье бешенство и куру.

То, что прионы умеют размножаться, сомнений не вызывает. Но до недавних пор было неясно, являются ли они полноценными репликаторами. Иными словами, есть ли у них весь необходимый «джентльменский набор» для дарвиновской эволюции. Способны ли прионы мутировать и передавать мутации по наследству, и если да, то влияют ли эти мутации на эффективность размножения прионов? Действует ли на прионы естественный отбор? Могут ли они приспосабливаться к изменениям среды, например к лекарствам, применяющимся для борьбы с прионными инфекциями? Эксперименты, проведенные американскими биологами, дали положительные ответы на эти вопросы ( Li et al., 2010).

В нейронах одного и того же вида животных встречаются разные штаммы(разновидности) прионов. Например, у мышей из одной и той же лабораторной линии, имеющих одинаковые прионные белки PrP, может встречаться до 15 разных прионных инфекций, различающихся по скорости развития болезни и неврологическим симптомам. Было замечено, что если взять штамм прионов у одного вида животных, заразить им другой вид, а потом взять прионы у второго вида и снова заразить ими первый, то симптомы в некоторых случаях оказываются уже другими.

Это позволило предположить, что у белка PrP есть несколько разныхвариантов неправильного сворачивания и превращения в прион. При этом каждый из вариантов наследуется, т. е. сохраняется в ряду «поколений» прионов. Возможно, прионы могут «мутировать» и передавать свои мутации по наследству. Мутации прионов, конечно, не связаны с изменениями аминокислотной последовательности белка, а представляют собой изменения его пространственной структуры (способа сворачивания).



Чтобы проверить эти предположения, ученые провели эксперименты с разными штаммами прионов и разными клеточными культурами. Выяснилось, что свойства прионов закономерным образом меняются, когда их пересаживают из одних клеток в другие, причем изменения происходят не сразу, а постепенно.

Для начала исследователи заразили клеточную культуру под условным названием PK1 прионами штамма 22L из мозга больной мыши. Оказалось, что чем дольше прионы живут и размножаются в клетках PK1, тем сильнее они отличаются по своим свойствам от исходных прионов из мозга мыши. Исходные прионы 22L успешно заражают другую клеточную культуру (R33) и нечувствительны к действию алкалоида сваинсонина, который замедляет размножение некоторых прионов в клетках. Однако по мере жизни прионов в клетках PK1 они постепенно утрачивают способность заражать клетки R33 и становятся все более чувствительными к сваинсонину.

Простейшее объяснение состоит в том, что популяция прионов в мозге больной мыши исходно была гетерогенной (разнородной), и в ней преобладали прионы, устойчивые к сваинсонину и заразные по отношению к R33. Однако жизнь в клетках PK1 приводит к тому, что в популяции растет доля прионов, чувствительных к сваинсонину и не способных заражать R33. Прионы с этими свойствами быстрее размножаются в клетках PK1, т. е. налицо вытеснение одних прионов другими под действием отбора [11].

Способны ли прионы восстанавливать утраченную устойчивость к лекарству? Чтобы выяснить это, ученые пересаживали прионы, чувствительные к сваинсонину, из клеток PK1 в мозг мышей. К тому времени, когда заболевание достигло терминальной стадии (через 147 дней после заражения), прионы полностью восстановили устойчивость к сваинсонину. Значит, они действительно эволюционируют!

Более того, оказалось, что если выращивать прионы, чувствительные к сваинсонину, в клеточной культуре в присутствии небольших концентраций этого алкалоида, то прионы быстро вырабатывают устойчивость к нему. Таким образом, эти необычные репликаторы приспосабливаются к меняющимся условиям совсем как вирусы или бактерии.

Выработка устойчивости в экспериментах могла происходить либо за счет преимущественного размножения устойчивых разновидностей прионов, которые уже существовали в исходной популяции (хоть и в малом количестве), либо за счет появления новых мутаций в ходе эксперимента. Дополнительные эксперименты показали, что прионы-мутанты, устойчивые к сваинсонину, возникают спонтанно. Это происходит даже в отсутствие сваинсонина, т. е. когда в такой мутации нет необходимости. Частота мутаций — примерно один случай на миллион клеточных делений. Напомним, что «мутация» приона не связана с изменением последовательности аминокислот — это просто другой способ сворачивания белковой молекулы. Мутация наследуется, потому что прион, свернутый определенным образом, заставляет «исходный материал» (прионный белок PrP) сворачиваться точно так же.

Итак, прионы мутируют, передают мутации по наследству, и эти мутации влияют на эффективность их размножения. У прионов есть все необходимое, чтобы эволюционировать под действием отбора.

Ключевой вопрос, ответа на который пока нет, состоит в том, как далеко может зайти такая эволюция. По идее, у прионов должно быть гораздо меньше эволюционных возможностей, чем у тех же вирусов, потому что число возможных пространственных конфигураций белка PrP вряд ли может сравниться с невообразимо громадным числом возможных последовательностей нуклеотидов в геноме вируса. Неясно, может ли отбор у прионов быть «накопительным» — может ли он создавать новые свойства путем последовательного закрепления множества изменений. Скорее, отбор у прионов все-таки «одноразовый», работающий с единичными мутациями, причем набор возможных мутаций невелик.

Практический вывод состоит в том, что при разработке лекарств от прионных болезней лучше не бороться с конкретными штаммами прионов — к таким лекарствам прионы могут приспособиться, — а пытаться повысить устойчивость нормального прионного белка, чтобы он всегда сворачивался правильно. Самым радикальным средством было бы полное отключение гена, кодирующего белок PrP. Правда, пока неясно, к каким побочным последствиям это приведет. Мыши с отключенным геном прионного белка выживают и даже не имеют каких-то особо тяжелых дефектов, но у них много мелких странностей: от нарушенного суточного ритма до склонности к ишемии и судорогам.

Белковая вселенная

Прионы — это, конечно, экзотика и редкость. Мы познакомились с ними, чтобы лучше разобраться в свойствах репликаторов. А еще для того, чтобы понять: не всякий репликатор способен обеспечить длительное и интересноеэволюционное развитие.

Эволюция земной жизни основана в первую очередь на изменениях белков, инструкции по созданию которых записаны в белок-кодирующих участках ДНК. Сами по себе белки не являются репликаторами. Но они могут эволюционировать «по Дарвину», потому что их строение определяется информацией, записанной в молекулах ДНК — подлинных репликаторах, на эффективность размножения которых влияют свойства кодируемых ими белков. Фенотип [12]организма определяется в первую очередь белками. Поэтому если мы хотим оценить эволюционный потенциал земной жизни, то для начала необходимо выяснить, в каких пределах способны меняться — под действием мутаций и отбора — структура и функции белков.

В рассказе Борхеса «Вавилонская библиотека» описана невообразимо огромная библиотека, содержащая абсолютно все возможные тексты определенной длины. При этом в библиотеке нет двух одинаковых книг. Схожий образ громадного, но все же конечного пространства последовательностей используют биологи, изучающие эволюцию белков ( Maynard Smith, 1970) [13]. Это воображаемое пространство включает все возможные «тексты», записанные 20-буквенным аминокислотным «алфавитом». Например, для белка длиной в 300 аминокислот существует 20 300возможных последовательностей. По сравнению с этим числом количество атомов во Вселенной (примерно 10 80) пренебрежимо мало.

Каждая точка в пространстве последовательностей соответствует одному белку, а расстояние между точками отражает степень различий между двумя белками. Эволюцию белковой молекулы можно представить как движение в пространстве последовательностей.

Каждой функции, выполняемой белками, соответствует некая область в пространстве последовательностей, в пределах которой любая точка — это белок, способный справиться с данной функцией. До тех пор пока эволюция белка идет без смены функции, его движение ограничено этой областью.

Главный вопрос в том, насколько велики такие области и какова их структура. Теоретически они могут быть как сплошными полями, так и лабиринтами узких тропинок, разделенных «запретными зонами».

Полезным дополнением к образу пространства последовательностей является образ ландшафта приспособленности, введенный в употребление в 1932 году выдающимся американским генетиком Сьюэлом Райтом (1889–1988). Каждой точке пространства последовательностей соответствует та или иная величина приспособленности. Если речь идет об аминокислотной последовательности белка, то приспособленность можно понимать как эффективность выполнения белком своей функции. Если речь идет о нуклеотидной последовательности генома, то приспособленность — это эффективность размножения организма с таким геномом. Принято представлять области высокой приспособленности в виде возвышенностей, низкой — в виде долин или ям. При этом вышеупомянутые «поля» приобретают вид горных плато, «тропинки» становятся хребтами, а «запретные зоны» — долинами и пропастями.

Эволюция. Классические идеи в свете новых открытий

Примерно так представляют себе биологи «ландшафт приспособленности». Два горизонтальных измерения символизируют «белковую вселенную», т. е. все возможные аминокислотные последовательности белка (или нуклеотидные последовательности ДНК, если речь идет о «генетической вселенной»). Вертикальное измерение отражает приспособленность. Эволюционируя путем накопления нейтральных или полезных аминокислотных замен, белок может двигаться по этому ландшафту горизонтально или вверх. Спуск в долины запрещен, потому что мутации, снижающие эффективность работы белка, отсеиваются отбором. В результате белок может оказаться в «ловушке локального максимума», т. е. застрять на одной из второстепенных вершин. Однако реальные ландшафты приспособленности, по-видимому, представляют собой не множество одиноких пиков, а лабиринты горных хребтов. Двигаясь по гребням, белок может обходить пропасти, но на это уходит много времени. Именно поэтому некоторые белки, унаследованные современными организмами от последнего общего предка всего живого, до сих пор так и не достигли предельного уровня несхожести и продолжают медленно расходиться в пространстве «белковой вселенной».

Вредные мутации — это движение вниз по склону, полезные — путь наверх. Мутации нейтральные, не влияющие на приспособленность, соответствуют движению вдоль горизонталей — линий одинаковой высоты. Отбраковывая вредные мутации, естественный отбор мешает эволюционирующей последовательности двигаться вниз по ландшафту приспособленности. Поддерживая мутации полезные, отбор пытается загнать последовательность как можно выше [14].

Отбор — игра по правилам

Методом случайного поиска (случайных блужданий) найти в необозримой «белковой вселенной» одну конкретную точку, соответствующую оптимальному выполнению белком данной функции, совершенно нереально. К счастью, такие оптимумы, как правило, — не точки, а обширные области. А главное, поиск оптимума в ходе эволюции осуществляется вовсе не методом случайных блужданий. Он идет методом направленного отбора. Направленность возникает благодаря тому, что случайные отклонения в «неправильную» сторону, ухудшающие рабочие качества белка, отбраковываются, отменяются и забываются, тогда как случайные отклонения в «правильную» сторону запоминаются и сохраняются.

Если исходная последовательность уже находится у подножия некоей возвышенности на ландшафте приспособленности — там, где уже есть хотя бы небольшой наклон (это значит, что белок хотя бы в минимальной степени, но уже выполняет какую-то функцию), отбор загоняет последовательность на вершину горы с поразительной эффективностью. Это можно показать с помощью компьютерной программы, впервые описанной Ричардом Докинзом в книге «Слепой часовщик». Пусть в роли исходной последовательности выступает произвольный набор букв, например, такой:


weiusdhsdklj dfg dfgghkjhjh qnlsvtnxuvsf qw kjhgj jfdjkfflmc


Программа размножит эту последовательность в тысяче экземпляров, внося в нее случайные мутации с заданной частотой. Например, пусть каждая буква в каждой копии с вероятностью 0,05 мутирует, т. е. заменяется другой случайной буквой. В результате каждая двадцатая (в среднем!) буква у каждого потомка будет отличаться от родительской. Зададим оптимум, к которому нужно стремиться, — некую осмысленную фразу. Попробуем сначала прийти к оптимуму без помощи отбора, методом случайных блужданий. Для этого из 1000 потомков выберем одного наугади снова размножим в 1000 экземпляров с мутациями. И еще раз, и еще.

Вот что у нас получилось. Справа указаны номер поколения и степень отличия от целевой последовательности, т. е. удаленность от оптимума:


weiusdhsdklj efg dfgghkjhjh qnlsvtnxuvsfuqt kjhgj jfdjkfflmc 1 1101

weiusdhshklj efg dfgghkchjh qnlsvtxxuvmfuqt kjhgj jfdjkfflmc 2 1102

weiusdhshqxj efg dfgghkchjh qnudvtxxuvnfuqt kjhgj jfdjkfflmc 3 1073

weiusdhshqxj efg dfgghkchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 4 1068

weiuydhshqxjmefg dfgghgchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 5 995

miokytvohujkuefhjefghhgcajtrjnfdqnxxutdzuftfihfgz ufdjkfszyc 21 1179

miokytvohuwtuefhjefghhgcajyrjnfdqnxxutdzuftfiufgz ufdjkfszyc 22 1173

jzvsztfxtuggublusgidhpgxauyranrwqbwsjtdoxykfinfzvyufdoluszyh 51 1152

jzvsztfxtuggublusgidhpgxauyranrwqjwsjtdoxykfinfzvyufdoluszyh 52 1144

pkvlrqsxoqrewqoidyofypjlsjvwcjxdjlkhbzdyonhdeyuydlusjzbmeeiu 99 1078

pkvlrqsxoqoewqoidyofysjlsjvwcjxdjlkhbzdyonhdeyuydlusjubmeeiu 100 1073


Бесполезно! За 100 поколений — ни малейшего прогресса, никакого приближения к оптимуму. Фраза осталась такой же бессмысленной, какой и была. Случайное блуждание в пространстве последовательностей, которое мы сейчас смоделировали, практически не дает шанса найти конкретную точку в белковой вселенной.

Нет, конечно, будь у нас бесконечный запас времени, когда-нибудь мы все же наткнулись бы на оптимум. Когда, вот в чем вопрос. Мы использовали 26 букв латинского алфавита и пробел, итого 27 знаков. Длина фразы — 60 знаков. Оптимум — это одна комбинация из 27 60(~7,6×10 85) возможных. Вариантов больше, чем атомов во Вселенной. Примерно столько поколений нам и потребуется, чтобы случайно наткнуться на нужную точку.

К такому способу поиска вполне приложимы известные рассуждения об урагане, пролетевшем над свалкой, который ни за что не соберет из мусора «боинг-747», и об обезьяне, которая, бессмысленно стуча по клавиатуре, никогда не напишет «Войну и мир». Таким способом — и впрямь не напишет. К счастью для нас, эволюция идет вовсе не этим способом. Или, если быть совсем уж точными, не толькоэтим способом.

Мы все-таки не зря моделировали случайные блуждания — у них тоже есть аналог среди эволюционных процессов. Именно так идет нейтральная эволюция. Так меняются последовательности (аминокислотные или нуклеотидные), от которых приспособленность организма не зависит и которые поэтому не находятся под действием отбора.

Между прочим, хоть блуждания и случайные, некие закономерности можно заметить и в этом случае. Обратите внимание, что эволюционирующая последовательность постепенно становилась все менее похожа на исходную. Фраза из поколения № 1 отличается от исходной только тремя знаками, в поколении № 2 мы видим уже семь отличий, в поколении № 4–13, в пятом поколении — 16 отличий. К 50-му поколению никакого сходства с исходной последовательностью не осталось. Но в течение первых 20–25 поколений сходство сохранялось, постоянно уменьшаясь. Поэтому мы могли по степени этого сходства примерно определить номер поколения, к которому принадлежит данная фраза. Мы могли, сравнив данную фразу с исходной и зная скорость мутирования, примерно оценить, сколько поколений разделяет эти две фразы! На этом принципе основан замечательный метод молекулярных часов, с которым мы познакомимся в следующем разделе. А пока вернемся к отбору.

Изменим немного нашу программу. Пусть теперь для размножения выбирается не любая из 1000 последовательностей наугад, а лучшая — наиболее похожая на «оптимальную». Все прочее оставим как было. Запускаем программу и получаем следующее:


wbiusdhsdkljvdfgfdbgghkjhjh qnlsvtnxuvsf qw kjhgjajfdjkfflmc 1 992

jfiusdhsd ljvqfgfdbggbkjhjh qnlsvtnxuvsfyqw kjhgjajfdjkfflmc 2 844

jfiusdhsd ljvqfgfdbggnkjhjh qnl vtnxuvsfyqw djhgjajfdjkfflmc 3 756

jfiusdhsd ljvqqgfdbggnkjhjh qnj vtnx vsfyqw djhgjajfdjkfflmc 4 684

jfiusdhsd ljrr gfdbggnkjhme qnj vtnx vsfyqw djhgjajfdjkfflmc 5 594

tdkfdrhsm vjlr nfdbgmu jhoe anw crbm hs ygj vqptjam vjjzbpnc 21 113

tdkfdrhsm vjlr nfdbgku jhoe anw crbm hs ygj vqpteam vjjvbprc 22 104

tekfdrhom vjll rfaeiky jhoe any fobm hm tgd oqptehm vmjvepse 41 37

tekfdriom vjll rfaeiky fhoe any fobm hm tgd oqptehm vmjvepse 42 32

tekectiom will readily fime any gobl hn thd oroteim universe 61 10

tekectiom will readily fime any gobl in thd oroteim universe 62 9

selection will readily fime any goal in the orotein universe 73 3

selection will readily fimd any goal in the orotein universe 74 2

selection will readily fimd any goal in the protein universe 87 1

selection will readily fimd any goal in the protein universe 88 1

selection will readily find any goal in the protein universe 89 0

selection will readily find any goal in the protein universe 90 0


Ну вот, совсем другое дело! Под действием отбора наша последовательность уверенно двигалась к оптимуму — взбиралась на пик ландшафта приспособленности — и достигла его в 89-м поколении, с чем мы ее и поздравляем.

Главный урок из этих упражнений состоит в том, что эволюция под действием отбора совсем не похожа на попытки напечатать «Войну и мир», случайным образом нажимая на клавиши. Отбор — мощная организующая сила, которая придает эволюции направленность, формируя из хаоса случайных мутаций закономерный, упорядоченный результат.

Но позвольте, не отступили ли мы от реальности, произвольно задав оптимальную последовательность — фразу, к которой нужно было стремиться? Не похоже ли это на «божественное вмешательство»?

Вовсе нет. Для любой полезной функции, выполняемой белком при данных условиях (температуре, составе среды и т. д.) действительно существует одна или несколько оптимальных аминокислотных последовательностей, которые справятся с этой функцией лучше всего. Возможно, реального белка с такой последовательностью еще нет в природе — эволюция не успела его создать, — но ведь идеальная последовательность все равно существует, подобно тому как потенциально существовал химический элемент углерод со всеми своими свойствами еще до того, как первые атомы углерода начали синтезироваться в недрах звезд, вспыхнувших в молодой Вселенной. Отбор будет двигать эволюционирующую последовательность к этому идеалу независимо от того, есть уже на свете такие белки или им еще только предстоит появиться.

В чем мы действительно погрешили против истины, так это в том, что в неявном виде ввели в модель несколько допущений о форме ландшафта приспособленности, сильно упрощающих реальность. Мы допустили, что ландшафт — это одна большая гора с гладкими склонами и единственной вершиной, причем любая случайная последовательность, с которой начинается эволюция, уже находится на склоне этой горы, так что движение «вверх» (к идеалу) повышает ее приспособленность. Нахождение на склоне означает, что исходная последовательность хоть чуть-чуть, хоть совсем плохо, но все-таки уже справляется с данной функцией.

Рассмотренная модель справедлива лишь для ситуации, когда отбору уже есть за что «зацепиться», когда эволюционирующая последовательность уже на что-то годна.

Как удается эволюционирущим последовательностям переходить с одной горы на другую и со склона на склон? Иными словами, как белок, уже приспособившийся выполнять какую-то функцию — начавший взбираться по склону одной из гор, — может приобрести другую функцию, т. е. перейти на другую гору? Как он преодолеет разделяющую их низменность?

Это важный вопрос, и мы к нему еще вернемся. Ну а пока ограничимся несколькими замечаниями.

Во-первых, действительно, чем выше белок забрался по одному склону, тем меньше у него шансов перейти на другой. Глубокие низины между горными массивами, соответствующими основным группам белковых функций — так называемым надсемействамбелков, — как правило, непроходимы. Крайне редко удается преодолеть пропасть одним отчаянным прыжком — макромутацией. В подавляющем большинстве случаев такие прыжки в горной местности кончаются понятно чем. Но все же бывают и удачные приземления. И тогда всем на диво какой-нибудь фермент, миллиарды лет занимавшийся превращением одного углевода в другой, вдруг превращается в кристаллин — белок хрусталика глаза, а пищеварительный фермент трипсин — в белок-антифриз, защищающий кровь антарктических рыб от замерзания [15].

Но это исключения. Как правило, эволюционное движение большого и сложного современного белка ограничено одним горным массивом — одной группой родственных функций. На больших высотах ландшафт приспособленности белков сильно разобщен, фрагментирован, так что с одного массива на другой попасть почти невозможно. Но вот на малых высотах, у подножья величественных горных массивов, простирается холмистая местность, передвигаться по которой простым и примитивным древним белкам было намного легче. Среди искусственно синтезированных коротких белковых молекул с произвольной последовательностью аминокислот можно найти молекулы, выполняющие — пусть и с низкой эффективностью — различные функции, выполняемые природными белками в клетке. Это значит, что, передвигаясь по этим низинам, можно наткнуться на предгорья какого-нибудь горного массива даже методом случайных блужданий!

Скорее всего, основные функции белков, соответствующие белковым надсемействам, были «нащупаны» еще в самом начале эволюционного становления генетического кода и синтеза белка у древних РНК-организмов [16]. Потом эти функции бесконечно совершенствовались и подразделялись на множество вариаций. Эволюционирующие последовательности взбирались все выше по склонам «своих» горных массивов, разбредаясь по развилкам и отрогам, и чем выше они поднимались, тем меньше оставалось у них шансов перейти с однажды выбранной горной системы на какую-то другую.

По-видимому, только для самых простых и коротких (но при этом все же полезных) белковых молекул существует реальная вероятность возникновения «из ничего», «на голом месте» — из случайной комбинации нуклеотидов, случайно закодировавших некоторую последовательность аминокислот. Такой способ формирования новых белков исчерпал себя еще в РНК-мире. С тех пор новые белки появляются только из старых — не с нуля, а путем модификации того, что есть. Это одно из главных правил эволюции. Почти все новое — это перекроенное старое.

Нейтральные мутации и генетический дрейф — движение без правил

Ландшафт приспособленности — образ яркий и полезный, но, как и всякая модель, он несовершенен. Многие аспекты эволюционного процесса с его помощью отразить трудно или невозможно. Реальный ландшафт приспособленности переменчив (впрочем, как и реальные горные системы). Если один белок в клетке изменился, это хоть немного, но изменит свойства клетки, ее поведение и внутреннюю среду — а значит, и «требования», предъявляемые отбором к другим белкам. Их ландшафты приспособленности станут немного другими. Изменение одного вида в сообществе неизбежно повлияет на факторы отбора, действующего на другие виды, и т. д.

Кроме того, трудно представить себе такой ландшафт, который точно отразил бы реальное соотношение вредных, полезных и нейтральных мутаций. Как правило, большинство мутаций нейтральны — по крайней мере у высших организмов, эукариот, у которых в геномах много участков, слабо влияющих на приспособленность. На втором месте по численности вредные мутации, на последнем — полезные. Нелегко вообразить склон такой формы, чтобы из каждой точки было больше разных путей, параллельных горизонту, чем путей, ведущих вверх или вниз. Но реальные склоны реальных ландшафтов приспособленности именно таковы.

Нейтральные мутации — это по определению такие мутации, которые не влияют на приспособленность, или, что то же самое, не подвергаются действию отбора. Нам пора познакомиться поближе с этим самым распространенным в природе классом мутаций. Забудем на время о ландшафте приспособленности и обратимся к другой модели, которая описывает процессы, происходящие с генетическими вариантами (аллелями) в популяции.

Допустим, у нас есть маленькая популяция мюмзиков из 40 особей. Для простоты примем, что мюмзики гаплоидны, т. е. имеют одинарный набор хромосом — один-единственнный экземпляр генома, а не два, как у нас с вами, диплоидныхорганизмов. Достигнув возраста в один год, каждый мюмзик рожает нескольких детенышей, а потом сразу умирает от старости. Все детеныши одинаковые, но выжить из них могут только 40 — больше мюмзиков просто не помещается в старой железной бочке на дне пруда, где живет изучаемая популяция. Смертность детенышей случайна — ровно 40 случайно выбранных везунчиков станут взрослыми и через год произведут потомство.

Поскольку смертность случайна, приспособленность мюмзиков определяется только их плодовитостью, т. е. числом детенышей. Плодовитость зависит от генотипа. Допустим, у мюмзика есть один ген, влияющий на плодовитость. Обозначим его буквой А. Между прочим, не смейтесь: такая модель вполне годится для изучения некоторых законов популяционной генетики.

Некогда у всех мюмзиков был только один вариант (аллель) гена А. Обозначим его А 1. Но потом у одной особи произошла мутация, и в результате появился второй вариант гена — аллель А 2. Допустим (опять-таки для простоты), что в нашей популяции, когда мы приступили к ее изучению, у половины мюмзиков ген А был представлен первым вариантом, у другой половины — вторым. Таким образом, частота аллеля А 2равна 0,5 (q 2 = 0,5) и частота аллеля А 1такая же (q 1 = 0,5).

Нам нужно ответить на вопрос: как будет меняться со временем частота аллеля A 2, если мутация, которая привела к его возникновению, была нейтральной?

Раз мутация была нейтральной, значит, плодовитость обладателей обоих аллелей одинакова. Допустим, они все рожают ровно по десять детенышей. Разумеется, потомство наследует родительский аллель гена А.

Может показаться, что раз аллели имеют одинаковую приспособленность, то их так и останется поровну. Это неверный ответ. На рисунке [см. ниже] показан результат четырех запусков нашей модели. Мы видим, что частота А 2во всех четырех случаях хаотически колебалась (по-научному такие колебания как раз и называются случайными блужданиями). Блуждания продолжаются до тех пор, пока частота аллеля не упрется либо в верхнюю «точку невозврата» (q 2 = 1, частота аллеля достигла 100 %, аллель зафиксировалсяв генофонде), либо в нижнюю (q 2 = 0, частота упала до нуля, аллель элиминировалсяиз генофонда).

Так бывает всегда. Если аллель нейтрален, его частота будет «случайно блуждать» между нулем и единицей до тех пор, пока не упрется либо в верхний, либо в нижний предел. Рано или поздно нейтральный аллель либо зафиксируется (достигнет частоты 1), либо элиминируется — исчезнет из генофонда. Третьего не дано. Таким образом, блуждания хоть и случайны, их исход предсказуем. Мы точно знаем, что дело кончится либо фиксацией, либо элиминацией. Чем больше популяция, тем в среднем дольше придется ждать исхода [17], но он все равно неизбежен.


Эволюция. Классические идеи в свете новых открытий

Здесь самое время сказать, что случайные, не зависящие от приспособленности изменения частот аллелей называются генетическим дрейфом. Под властью дрейфа находятся все нейтральные мутации (а в маленьких популяциях отчасти также и вредные с полезными, но об этом позже).

Можно ли вычислить вероятность того, что нейтральный аллель в конце концов зафиксируется, а не элиминируется? Да, это просто. В нашем примере аллели А 1и А 2исходно находились в равном положении, потому что у обоих была частота 0,5. Очевидно, что в такой ситуации шансы на фиксацию у них должны быть одинаковыми и равными 0,5. В половине случаев А 1зафиксируется, А 2элиминируется, в половине — наоборот.

Ну а если конкурирующих нейтральных аллелей не два, а, скажем, четыре и начальные частоты у них тоже одинаковые (0,25)? В этом случае дело кончится фиксацией одного из аллелей и элиминацией трех остальных, причем для каждого аллеля вероятность фиксации равна 0,25. Таким образом, очевидно, что вероятность фиксации нейтральной мутации в будущем просто-напросто равна ее частоте в данный момент: P fix = q.

Если вы, дорогие читатели, еще не устали от этой примитивной математики, то позвольте познакомить вас еще с двумя простыми, интересными и полезными формулами.

Сколько нейтральных мутаций будет фиксироваться в популяции в каждом поколении? (Имеются в виду мутации уже не в одном и том же, а в разных генах.) Если мы сумеем это вычислить, то получим прекраснейший инструмент — молекулярные часы. Тогда мы сможем по количеству нейтральных генетических различий определить, когда жил последний общий предок сравниваемых организмов.

Вывод этой формулы — подлинный шедевр «биологической математики». Судите сами. Определим сначала, сколько новых мутаций появляется в популяции в каждом поколении. Будем считать для простоты, что подавляющее большинство мутаций нейтральны (это недалеко от истины). Ответ очевиден: U × N, где U — темп мутагенеза (среднее число новых мутаций у каждой новорожденной особи), N — численность популяции. Определить U можно, просто сравнивая геномы детей и родителей.

Теперь нужно понять, какая часть из этих U × N только что появившихся мутаций в итоге зафиксируется. Это и будет искомая величина — темп фиксации нейтральных мутаций в генофонде популяции за одно поколение. Обозначим ее буквой V.

Мы уже знаем, что вероятность фиксации мутации равна ее частоте: P fix = q. Чему же равна частота только что появившейся мутации? Это совсем просто. Поскольку мутация только что появилась, она пока есть только у одной особи. Следовательно, ее частота равна 1/N. Вот, собственно, и все. Умножаем количество новых мутаций на вероятность фиксации каждой из них (т. е. на долю мутаций, которые в итоге зафиксируются) и получаем ответ: V = U × N × 1/N. Поразительно! Численность популяции волшебным образом сокращается, и величина N уходит из уравнения. Мы приходим к выводу, что темп фиксации нейтральных мутаций не зависит от численности и равен просто-напросто скорости мутагенеза: V = U. Не знаю, как вы, дорогие читатели, а мы, биологи, приходим в восторг от такой красоты.

Нам остался один шаг до молекулярных часов. После того как два вида, произошедшие от общего предка, разделились, в их генофондах независимо накапливаются нейтральные мутации. За время t (измеряемое в поколениях) первый вид накопит V × t = U × t нейтральных мутаций, и второй вид накопит столько же. Совместными усилиями они накопят 2U × t нейтральных отличий друг от друга. Зная темп мутагенеза U и подсчитав число различий между геномами сравниваемых видов (обозначим его буквой D), определяем время жизни их последнего общего предка: t = D/2U. Это и есть знаменитые молекулярные часы.

Если бы темп мутагенеза и скорость смены поколений были одинаковыми у всех живых существ, все было бы совсем просто. Но они, конечно, неодинаковы, поэтому в вычисления приходится вносить поправки. А еще есть проблема насыщения: в какой-то момент — обычно по прошествии десятков, а чаще сотен миллионов лет — гены разделившихся когда-то видов оказываются настолько «переполнены» нейтральными различиями, что величина D перестает расти, хотя нейтральные мутации продолжают фиксироваться. Ниже мы увидим пример исследования, показавшего, как уровень сходства между «случайно блуждающими» последовательностями приблизился к минимально возможному и дальше снижаться уже не мог.

К счастью, разные участки генома накапливают нейтральные изменения с очень разной скоростью [18]. Быстро меняющиеся участки ДНК используются для датировки недавних событий, а те, что меняются медленно, хороши для датировки событий глубокой древности.

Дрейф и отбор: кто кого?

Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор — над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, — отрицательным, или очищающим.

Впрочем, все так хорошо и просто только в больших популяциях. В маленьких ситуация сложнее, потому что отбор и дрейф — две главные движущие силы эволюции — начинают конкурировать друг с другом за контроль над слабовредными и слабополезными мутациями.

Посмотрим, как это происходит. Воспользуемся для этого той же моделью с мюмзиками. Изменим только характер мутации, которая привела к появлению аллеля А 2. До сих пор мы считали, что мутация была нейтральной. Поскольку она была нейтральной, обладатели аллелей А 1и А 2имели одинаковую плодовитость. Давайте теперь предположим, что мутация была полезной, что она повысила плодовитость мюмзиков на 5 %. Это можно смоделировать так: пусть мюмзики с генотипом А 1рожают по 20 детенышей, а мюмзики с генотипом А 2— по 21. Начальная частота аллеля А 2пусть будет по-прежнему равна 0,5. Только теперь мы рассмотрим популяции с разной численностью (N).

На рисунке [см. ниже] показано, как будет меняться частота А 2в том случае, если его носители имеют пятипроцентное адаптивное преимущество. Мы видим, что в большой популяции (N = 5000) частота А 2неуклонно растет, приближаясь к единице. Так работает отбор в идеальных для него условиях, т. е. в больших популяциях, где влияние дрейфа на полезные и вредные аллели пренебрежимо мало. Форма у кривой довольно правильная, и это наводит на мысль, что ее можно описать какой-нибудь математической формулой. Это действительно так, но выводить формулу мы не будем, чтобы не утомить читателей (а любители математики могут сделать это самостоятельно) [19].

Перед нами, между прочим, важнейший эволюционный процесс — аллельное замещение, т. е. вытеснение более приспособленным аллелем менее приспособленного. Процесс идет не слишком быстро. В большой популяции, например состоящей из миллиона особей, для того чтобы зафиксировалась новая полезная мутация, дающая 5-процентное адаптивное преимущество, требуется около 560 поколений. А ведь 5 % — это серьезное преимущество. Такие мутации — редкость. Ждать, пока зафиксируется мутация с преимуществом в 1 %, придется уже 2800 поколений! Тем не менее в большой популяции отбор «чувствует» даже самую незначительную разницу в приспособленности. Это обеспечивает эффективную (пусть и медленную) фиксацию слабополезных мутаций и элиминацию слабовредных [20].


Эволюция. Классические идеи в свете новых открытий

На среднем графике мы видим, какая судьба ждет такую же полезную мутацию, повышающую приспособленность на 5 %, в популяции меньшего размера (N = 200). Частота полезного аллеля и в этом случае росла и в конце концов достигла 1 (мутация зафиксировалась), но путь был труден и извилист. Пожалуй, нашей мутации могло и не повезти, ее шансы на фиксацию не были стопроцентными.

Наконец, на правом графике мы видим, что происходит с точно таким же полезным аллелем в совсем крошечной популяции (N = 30). На рисунке показаны результаты двух запусков модели. В одном случае мутация зафиксировалась, в другом — элиминировалась. Не правда ли, картинка похожа на результат работы дрейфа, а не отбора?

Так оно и есть. В этом заключается главный урок, который мы можем извлечь из наших экспериментов. Чем меньше популяция, тем слабее в ней власть отбора и тем могущественнее дрейф. В маленьких популяциях слабополезные и слабовредные мутации начинают вести себя фактически как нейтральные. Их частоты «случайно блуждают», пока не наткнутся на верхний или нижний порог. В маленьких популяциях, где царствует дрейф, небольшие различия в приспособленности становятся невидимыми для отбора. Поэтому слабовредная мутация запросто может зафиксироваться, а слабополезная — элиминироваться.

Хорошо это или плохо? В большинстве случаев, конечно, плохо. Потеря слабополезных мутаций мешает маленькой популяции приспосабливаться к меняющимся условиям. Бесконтрольное накопление слабовредных мутаций и вовсе может поставить ее на грань вымирания. Именно в этом, между прочим, видят биологи одну из причин того, что крупные животные вымирают в среднем чаще, чем мелкие. У крупных животных, таких как носороги или слоны, популяции не могут быть такими же большими, как у мышей или насекомых. Это снижает приспособляемость крупных животных.

Но у этой медали есть и обратная сторона. У маленьких популяций больше шансов выйти из «ловушки локального оптимума», т. е. сползти с невысокого пика ландшафта приспособленности и взобраться на другой, повыше. Ведь отбор гонит организмы вверх и только вверх. Если популяция велика и малейшее различие в приспособленности «заметно» для отбора, спуск по склонам становится невозможен. Однажды взобравшись на одинокий холм, большая популяция уже никогда с него не слезет. Что касается дрейфа, то он ведет организмы по ландшафту приспособленности хаотическим образом, не замечая подъемов и спусков. Если популяция невелика и дрейф силен, у организмов есть шанс иногда двигаться не только вверх, но и немного вниз (и в сторону). Спустившись в ложбинку, организмы могут «обнаружить», что отсюда есть другой, более перспективный подъем. Если, конечно, не вымрут раньше, чем на него наткнутся.

Вселенная древних белков продолжает расширяться

В 2010 году журнал Natureопубликовал интересную статью об эволюционном движении белков по ландшафтам приспособленности ( Povolotskaya, Kondrashov, 2010). Авторы работы решили сравнить аминокислотные последовательности 572 древних белков, которые имелись уже у последнего общего предка всего живого [21]и были унаследованы его потомками, а также нуклеотидные последовательности соответствующих генов 836 прокариот (бактерий и архей). Эти белки называют древними, потому что после более чем 3,5 млрд лет эволюции в телах разнообразных потомков LUCA они до сих пор сохранили сходство своих аминокислотных последовательностей (вплоть до поразительного 40-процентного сходства рибосомных белков L14 у бактерий и архей) и продолжают выполнять те же функции, что и у Луки.

Эволюция. Классические идеи в свете новых открытий

Расширение физической и белковой Вселенной. Стрела времени направлена сверху вниз. Слева: в ходе расширения физической Вселенной увеличиваются расстояния от произвольно выбранного объекта (например, Земли) до других объектов, причем скорость удаления пропорциональна расстоянию. Справа: в ходе расширения «белковой вселенной» дочерние молекулы удаляются в пространстве последовательностей от исходной точки, которая соответствует одному из белков LUCA. При этом дистанции между произвольно выбранным объектом (например, белком, принадлежащим эволюционной линии, которая привела к кишечной палочкеE. coli ) и другими объектами (родственными белками других эволюционных линий) постепенно растут. Однако белки с данной функцией не могут выйти за пределы «своей» подобласти в пространстве последовательностей — иначе это будет уже другой белок, выполняющий другую функцию (эволюционные события, связанные со сменой функции белка, в обсуждаемой работе не рассматриваются). Границы этой функциональной области показаны внутренним кругом. Рано или поздно расходящиеся белки достигнут этой границы, и дальнейшее расхождение станет невозможным. Стрелочками показано направление движения белков в пространстве последовательностей. По рисунку изPovolotskaya, Kondrashov, 2010 .

Для начала Поволоцкая и Кондрашов решили выяснить, достигли уже эти белки максимального расхождения в пространстве последовательностей или их расхождение (накопление различий) все еще продолжается. Сохранение сходства после 3,5 млрд лет независимой эволюции, казалось бы, говорит о том, что возможности изменения этих белков ограниченны. Можно предположить, что области в пространстве последовательностей, соответствующие их функциям, невелики и предел расхождения давно достигнут. Но возможно и другое объяснение. Эти области могут быть велики, но труднопроходимы. Например, они могут представлять собой лабиринт из узких хребтов, разделенных пропастями, и поэтому на «освоение» всего доступного пространства не хватило миллиардов лет, прошедших со времен LUCA.

Исследователи проводят аналогию между эволюцией белков и расширением Вселенной. Эдвин Хаббл обнаружил, что галактики удаляются друг от друга, причем расстояние между галактиками положительно коррелирует со скоростью их разлетания. Экстраполируя эту тенденцию в прошлое, Хаббл пришел к выводу, что разлетание должно было начаться из одной точки. Эта идея легла в основу теории Большого взрыва. Нечто подобное происходит и с белками, расходящимися от общего предка — исходного белка с данной функцией, который был закодирован в геноме LUCA.

Эволюция. Классические идеи в свете новых открытий

Принцип анализа белковых последовательностей, примененный Поволоцкой и Кондрашовым. Использовались четверки гомологичных белков, родственные отношения между которыми изображены в виде дерева. Анализ такой четверки позволяет понять, растет или снижается сходство между первыми двумя белками и четвертым. В данном случае считается, что у первого белка «предковая» (имеющаяся у белков 2 и 3) аминокислота R в 11-й позиции (выделена жирным шрифтом ) заменилась на E, что привело к росту сходства первого белка с четвертым, т. е. к их сближению в пространстве последовательностей. У второго белка «предковая» аминокислота K в 3-й позиции (выделена полужирным шрифтом ) заменилась на Y, что привело к снижению сходства второго белка с четвертым, т. е. к их расхождениюв пространстве последовательностей. По рисунку изPovolotskaya, Kondrashov, 2010 .

Чтобы выяснить, закончилось ли уже расширение «вселенной древних белков» или оно продолжается до сих пор, авторы применили оригинальные методы анализа белковых последовательностей. Нам будет полезно с ними ознакомиться — хотя бы для того, чтобы понять логику биоинформатики, молодой науки, занимающейся сравнением и осмыслением генетических текстов.

Использовались четверки гомологичных (происходящих от одного предка) и выполняющих одну функцию белков. Первые два белка в каждой четверке — это близкородственные молекулы с похожими аминокислотными последовательностями. Эти два белка назывались «сестринскими», и именно их эволюция анализировалась в рамках данной четверки.

Третий белок отличался от сестринских белков сильнее, чем они друг от друга. Он выполнял роль «внешней группы», позволяя понять, какие аминокислотные замены произошли в первом, а какие во втором сестринском белке. Например, если у внешнего белка в данной позиции стоит аминокислота K (лизин) и такая же аминокислота стоит здесь у первого из двух сестринских белков, а у второго в этом месте находится другая аминокислота (например, Y — тирозин), то считалось, что K в данной позиции — это «предковое», исходное состояние, а у второго сестринского белка произошла замена K на Y.

К этим трем белкам добавлялся четвертый, еще более далекий от сестринских, чем третий. Если у четвертого белка в данной позиции стоит аминокислота K (как на рисунке), то делался вывод, что у второго сестринского белка произошло эволюционное изменение, увеличившее дистанцию между белками 2 и 4: белки разошлись. Если бы у четвертого белка здесь стояла аминокислота Y, то был бы сделан вывод, что в результате изменения, затронувшего белок 2, белки 2 и 4 сблизились.

В общей сложности было обработано 13,6 млн таких четверок. Для каждой четверки определялось число замен, ведущих к сближению последовательностей и к их расхождению. По соотношению этих двух величин можно понять общую тенденцию: расходятся ли белки, сближаются или балансируют вокруг некого постоянного уровня сходства последовательностей.

Оказалось, что даже у наиболее удаленных друг от друга гомологичных белков тенденция к расхождению значительно преобладает над тенденцией к сближению. Следовательно, «вселенная древних белков» продолжает расширяться и пределы областей, соответствующих их функциям, за 3,5 млрд лет так и не были достигнуты. Эволюция этих белков была крайне медленной. Что же ее сдерживало? Решению этой проблемы посвящена вторая часть статьи, приводящая на память другой рассказ Борхеса — «Сад расходящихся тропок».

Лабиринт расходящихся тропок

Обычного отрицательного отбора, отсеивающего вредные мутации, явно недостаточно для того, чтобы объяснить медленную эволюцию древних белков. Предположение о том, что каждая аминокислота, стоящая в данной позиции, влияет на приспособленность одинаковым образом независимо от «контекста» (т. е. от того, какие аминокислоты стоят в других позициях в том же белке или в других белках, взаимодействующих с ним), соответствует представлению о легкопроходимомландшафте приспособленности (см. рисунок ниже). Но со времен LUCA в каждом синонимичном сайте (так называют те нуклеотиды в цепи ДНК, изменение которых не влияет на структуру кодируемого белка) произошло уже свыше 100 замен. Синонимичные нуклеотидные замены — это пример движения по ровным горизонтальным поверхностям ландшафта приспособленности. Из этого следует, что в случае хорошей проходимости ландшафта изучаемые белки давным-давно должны были освоить всю потенциально доступную им область в пространстве последовательностей, и тогда мы не наблюдали бы их продолжающегося расхождения.

Резко уменьшить проходимость ландшафта приспособленности — превратить его в лабиринт узких тропок или горных хребтов — может эпистаз. Так называют взаимное влияние разных мутаций (аллелей) на вредность или полезность друг друга. Замена одной аминокислоты может менять эффективность работы белка не сама по себе, а в зависимости от комбинации других аминокислот, занимающих определенные позиции в том же белке. Также эффект мутации может зависеть от других белков, находящихся в непосредственном взаимодействии с белком-мутантом. Иными словами, для определения смысла биологического текста важен контекст. В этом и состоит суть эпистаза. Мы еще не раз встретимся с этим явлением в последующих главах.

Наличие эпистаза предполагает, что многие аминокислотные замены являются допустимыми только в определенном окружении. Если окружение (контекст) неподходящее, то данная замена будет снижать приспособленность, и отбор ее выметет. Это явление в эволюции белков изучалось ранее на конкретных примерах [22]. Если эпистаз широко распространен, белок может добраться до многих потенциально достижимых пунктов в пространстве последовательностей только долгим обходным путем.

Для проверки гипотезы о действенности эпистаза в эволюции белков Поволоцкая и Кондрашов придумали хитроумный тест, основанный на сопоставлении темпов накопления «сближающих» и «разводящих» мутаций с дистанциями между белками. Основная идея состояла в том, что гипотезы о наличии и отсутствии эпистаза дают противоположные предсказания о частоте закрепления сближающих и разводящих мутаций. Если влияние эпистаза невелико, то у двух близких белков темп накопления разводящих мутаций должен быть высоким, а по мере расхождения последовательностей он должен снижаться (если ландшафт приспособленности легкопроходимый, то белки сначала свободно и быстро «блуждают» по ровному плато, соответствующему данной функции, уходя все дальше от исходной точки, но по мере приближения к его краям их расхождение замедляется). Темп накопления сближающих мутаций при этом должен оставаться примерно постоянным. Если же эпистаз оказывает сильное влияние на эволюцию белков, все должно быть наоборот: разводящие мутации должны накапливаться с примерно постоянной скоростью, а темп накопления сближающих мутаций по мере расхождения белков должен снижаться.

Эволюция. Классические идеи в свете новых открытий

Пространство последовательностей можно изобразить в графа, вершины которого соответствуют разным последовательностям (в данном случае показаны последовательности из двух нуклеотидов), а ребра — единичным эволюционным событиям (нуклеотидным заменам). В первом случае (a) ландшафт приспособленности представляет собой сплошное ровное плато: все 16 последовательностей имеют одинаково высокую приспособленность и все возможные мутации разрешены (не будут отбракованы отбором). Два кратчайших пути, соединяющие последовательности AT и GC, состоят всего из двух мутационных шагов (жирные стрелки). Во втором случае (б) половина последовательностей имеют пониженную приспособленность (отмечены жирными кругами). При этом снижение приспособленности определяется не конкретным нуклеотидом в конкретной позиции, а уникальной комбинацией обоих нуклеотидов (т. е. имеется эпистаз). Это резко снижает проходимость ландшафта: число доступных траекторий уменьшается и кратчайший путь между двумя пунктами (например, от AT к GC) удлиняется. В третьем случае (в) тоже половина последовательностей имеют пониженную приспособленность, но эпистаза нет: нуклеотиды A и G во второй позиции снижают приспособленность независимо от состояния первой позиции. Отсутствие эпистаза способствует тому, что ландшафт остается легкопроходимым, и от AT к GC можно прийти всего за два шага, как и в первом случае. По рисунку изPovolotskaya, Kondrashov, 2010 .

Проведенные расчеты подтвердили гипотезу о сильном влиянии эпистаза на эволюцию белков. Оказалось, что темп накопления разводящих мутаций не зависит от дистанции между белками. В каждый момент времени лишь около 2 % аминокислотных позиций могут быть изменены без снижения приспособленности, хотя в долгосрочной перспективе более 90 % позиций могут измениться — но к этим изменениям нужно идти долгими обходными путями по лабиринту узких «горных хребтов» ландшафта приспособленности. У близких, недавно разошедшихся белков темп накопления сближающих мутаций очень высок, потому что у близких белков аминокислотный «контекст» для каждой позиции является сходным. Поэтому та аминокислота, которая недавно стояла в данной позиции, с большой вероятностью может «вернуться» на свое место, и это не снизит приспособленность. Напротив, у сильно различающихся белков данная позиция уже находится в разных контекстах, и поэтому «возвращение» аминокислоты, которая стояла здесь у далекого предка, скорее всего, снизит приспособленность, и мутация будет отсеяна.

В снижении вероятности сближающих мутаций по мере расхождения белков проявляется правило необратимости эволюции. Чем сильнее разошлись белки, тем меньше у них шансов снова стать похожими (мы еще вернемся к этому правилу в главе 5).

Таким образом, ландшафт приспособленности древних белков отличается повышенной «складчатостью». Он похож на сложный лабиринт узких горных хребтов, передвигаться по которому эволюционирующие белки могут лишь очень медленно. Мало того, некоторые узкие мостики норовят обрушиться в бездну после того, как по ним «прополз» эволюционирующий белок, — совсем как в голливудских боевиках, — что придает эволюции элемент необратимости.

Между прочим, полученные результаты — еще один аргумент в пользу единства происхождения всего живого. Подобно тому как разбегающиеся галактики указывают на существовавший в прошлом единый центр, из которого все объекты во Вселенной начали свое движение, так и продолжающееся «разбегание» древних белков указывает на их происхождение от единого предка.

Глава 2

Полезные ошибки

Все здание теории эволюции, а значит и биологии в целом, основано на том, что некоторые случайныенаследственные изменения оказываются полезными, т. е. повышают эффективность размножения (по-другому называемую приспособленностью). Термин «полезные мутации» означает только это. В эволюционной биологии бессмысленно говорить о пользе, не имея при этом в виду размножение. Если организм-мутант лучше подлаживается к своей среде, лучше себя чувствует и дольше живет, но при этом проигрывает в размножении, то мутация, какой бы полезной она ни казалась, является вредной. Обычно все эти вещи коррелируют друг с другом, но не всегда.

Для биолога существование полезных мутаций — самоочевидный, банальный факт. Однако многие непрофессионалы склонны усматривать здесь парадокс. Ведь мутации — это ошибки, сбои в системе копирования наследственной информации. Из повседневного опыта мы знаем, что случайные ошибки ничего не улучшают, а только портят. Разве можно улучшить текст, внося в него случайные ошибки?

Это рассуждение верно, если текст совершенен. Действительно, не будем же мы подправлять «Евгения Онегина» или кое-что переписывать в «Женитьбе Фигаро». А если текст черновой и небрежный? Тогда можно и исправить, и улучшить, в том числе путем внесения случайных изменений с отбором удачных вариантов.

Рассмотренная в главе 1 модель с эволюционирующими фразами показывает, как постепенно текст становится лучше. Если нет даровитого цепкого редактора, то особенно важно, чтобы текст тиражировался во множестве копий. В каждую из них вносятся разные ошибки, и для последующего тиражирования раз за разом отбираются лучшие варианты.

В отличие от «Евгения Онегина» биологические тексты редко бывают совершенными [23]. К тому же мир имеет обыкновение меняться. То, что было превосходным вчера, сегодня уже устарело и никуда не годится. Если вчера пределом мечтаний считалось обладание игровой приставкой, то сегодня продвинутый подросток должен иметь последнюю модель айпада (кое-кто из отставших и устаревших уже путают айпад и айпод). Так и в мире природы — меняется биологическое окружение, климат, очертания континентов, и нужно постоянно им соответствовать… Правда, в природе перемены обычно происходят медленнее, чем в современной моде и технологиях, но из этого правила тоже есть исключения.

Итак, мутации — случайные изменения ДНК — бывают полезными. Процесс приспособления неостановим и бесконечен. Но общие рассуждения, как бы громко, уверенно и веско они ни были высказаны, не убедят нашего вдумчивого и скептического читателя. Поэтому постараемся показать на простых примерах, что полезные мутации — это повседневная реальность. В этой главе мы познакомим читателя с несколькими ясными случаями.

Один верный шаг — и на полях вырастает рис

Ключевым моментом в доместикации риса (как и многих других злаков) было появление разновидности с неопадающими семенами. Это позволило древним земледельцам не подбирать зрелые зерна с земли, а срезать их со стеблями и сократить потери при сборе урожая. Предком культурного риса ( Oryza sativa) был дикорастущий вид с опадающим семенами O. nivaraили близкий к нему O. rufipogon(или, возможно, оба этих вида).

Опадение семян зависит от гена sh4. Для дикого риса O. nivaraхарактерен доминантный аллель [24]этого гена, соответствующий опадающим семенам. Очевидно, что в дикой природе полезны именно опадающие семена. Рецессивный аллель, характерный для домашнего риса, обеспечивает неопадающие семена. В 2006 году ученым из Мичиганского университета (США) удалось выяснить, какую функцию выполняет кодируемый этим геном белок и как он контролирует опадение семян ( Li et al., 2006). Обычно в том месте, где должно произойти отделение (например, спелых плодов или отслуживших листьев), формируется «отделительный слой» из клеток особого строения. У дикого риса между зерном и плодоножкой тоже образуется отделительный слой, состоящий из мелких тонкостенных клеток. У культурного риса этот слой формируется только частично, поэтому зерно остается прочно прикрепленным к плодоножке. Так вот, выяснилось, что ген sh4экспрессируется там и только там, где формируется отделительный слой. Значит, sh4участвует в организации функционального отделительного слоя. У культурного риса его функциональность нарушилась, и рис приобрел нужные земледельцу свойства.

В последовательности этого гена, расположенного на четвертой хромосоме, удалось определить нужную мутацию. Оказалось, что это одна-единственная нуклеотидная замена: тимин (T) дикого риса заменился на гуанин (G) домашнего, что привело к замене аминокислоты лизина на аспарагин в соответствующем белке. Неужели всего одна аминокислота — и такой чудесный результат? Именно так. И чтобы не было сомнений — а они всегда остаются, пока не выполнишь проверку или не заглянешь в ответы в конце задачника, — ученые ввели в геном культурного риса «дикий» вариант гена sh4. У культурного риса созрели колосья с неудобными, опадающими семенами.

Исследование показало, что доместикация риса была связана с отбором растений, несущих мутантный вариант гена sh4. Мутация немного «подпортила» механизм формирования отделительного слоя, хотя и не вывела его из строя полностью, иначе отделительный слой не формировался бы вовсе, что создало бы большие проблемы при обмолоте. По-видимому, небольшие изменения регуляторных генов сыграли важную роль и в доместикации других растений. Соответствующие данные уже имеются, например, по кукурузе и томатам.

Итак, вот первый конкретный пример полезной мутации. Кстати, почему мы говорим, что она была полезной? Для дикого риса мутация, не позволяющая созревшему зерну своевременно отделиться от колоса, была бы однозначно вредна — она снизила бы число посеянных семян, т. е. снизила эффективность размножения. Но «ландшафт приспособленности» изменился для риса, когда его размножение (сбор урожая и сев) взяли в свои руки земледельцы. Теперь семена, прочно держащиеся в колосе, получили больше шансов добраться до мест обмолота, а значит, быть посеянными и дать потомство. Бессознательный отбор, осуществлявшийся ранними земледельцами, дал преимущество мутантным растениям с неопадающими семенами, т. е. сделал растения с этим признаком более приспособленнымипо сравнению с «диким типом» — растениями с опадающими семенами. Это, собственно, и означает, что мутация, мешающая семенам опадать и вредная для диких злаков, стала полезнойдля тех растений, размножение которых люди взяли в свои руки.

Можно также заметить, что новый полезный признак — между прочим, признак важный, составляющий главное отличие культурного злака от дикого, — на молекулярном уровне был связан не с созданием чего-то нового, а всего лишь с повреждением, порчей чего-то старого. Мутация повредила механизм формирования отделительного слоя. Это соответствует общепринятому — и в целом верному — представлению о том, что случайные мутации, как и любые «случайные ошибки», с большей вероятностью могут испортить что-то сложное, чем создать. Однако, как видим, повреждение на молекулярном уровне не обязательно сопровождается упрощением на уровне организма. Оно может приводить к появлению новых полезных признаков и обеспечивать адаптацию к меняющимся условиям. Эволюция, как всякий вероятностный процесс, обычно выбирает самые простые (вероятные) пути из всех возможных. Если можно улучшить приспособленность, всего лишь упростив систему (например, выведя из строя какой-то ген), то именно это, скорее всего, и произойдет [25].

Кто-нибудь может подумать, что так просто все получается лишь с искусственным отбором, если в дело вмешивается человек со своим разумением и целеполаганием. Это не так. Есть превосходные примеры полезных мутаций и среди природных объектов. Скажем, таких, как американские белоногие хомячки.

Десять тысяч лет, три нуклеотида и защитная окраска

Американские белоногие хомячки, называемые также оленьими мышами ( Peromyscus maniculatus), в норме имеют темную окраску, однако представители этого вида, обитающие в районе с очень светлой почвой (Песчаные Холмы в штате Небраска), окрашены светлее своих сородичей. Хомячки с Песчаных Холмов стали хрестоматийным примером эволюции адаптивных признаков. Этому способствовали два обстоятельства. Во-первых, адаптивность (полезность) светлой окраски не вызывает сомнений: хищные птицы гораздо лучше видят на светлом фоне темного хомячка, чем светлого. Во-вторых, Песчаные Холмы — молодое геологическое образование: они сформировались после отступления ледника около 10 тыс. лет назад. Это дает основания думать, что мы имеем дело с адаптацией, появившейся — в эволюционном масштабе времени — совсем недавно. Однако для понимания механизмов адаптации важно выяснить ее генетические основы.

Известно, что окраска шерсти млекопитающих зависит от распределения двух пигментов: черно-коричневого эумеланина и рыжего феомеланина. Клетки меланоциты, отвечающие за окраску волоса, могут поочередно синтезировать то один, то другой пигмент по мере роста волоса. В результате волос получается неоднородно окрашенным. Часто кончик и основание волоса темные (эумеланиновые), а посередине имеется светлая (феомеланиновая) полоса. И вот любопытно, что же определяет разницу в окраске у темных и светлых хомячков? Если вглядеться попристальней, то окажется, что никаких специальных ухищрений и особой цветовой палитры не требуется. Всего лишь нужно в каждой шерстинке светлых хомячков расширить феомеланиновую полосу. И больше ничего! Элементарно! И вот американские генетики из Гарвардского и Калифорнийского университетов решили изучить, что же стоит за этим элементарным решением ( Linnen et al., 2009).

Известно, что на окраску шерсти может влиять ген Agouti. Сигнальный белок, кодируемый этим геном, подает команду меланоцитам синтезировать феомеланин вместо эумеланина. Влияние мутаций Agoutiна окраску шерсти подробно изучено на домовых мышах ( Mus musculus). Оказалось, что мутанты с отключенным геном Agoutiимеют черную окраску, а повышенная активность гена приводит к очень светлой окраске. Светлый аллель — доминантный по отношению к темному.

Чтобы проверить, действительно ли светлая окраска хомячков с Песчаных Холмов определяется доминантной мутацией, ученые скрещивали разномастных родителей. Все потомство от скрещивания получилось светлым, и эта гипотеза подтвердилась.

Дальнейшие эксперименты показали, что непосредственным результатом мутации является повышенная активность Agoutiв первую неделю жизни хомячат, т. е. в тот период, когда у них отрастает шерсть. Максимальная активность Agoutiприходится на четвертый день жизни как у темных, так и у светлых хомячков, однако абсолютная величина этой активности (измеряемая по количеству матричных РНК, считанных с гена) у светлых особей с Песчаных Холмов в несколько раз выше.

После была проведена весьма трудоемкая и кропотливая работа — секвенирование нуклеотидной последовательности Agoutiу сотни хомячков из темных и светлых лабораторных линий, а также у диких зверьков из зоны смешения темной и светлой популяций. В результате было выявлено около 20 полиморфных сайтов, т. е. таких участков гена, которые не у всех особей одинаковы. Существуют эффективные методы статистического анализа нуклеотидных последовательностей, которые позволяют обнаруживать следы действия положительного отбора на те или иные участки генов. Иными словами, отличать изменения ДНК, которые поддерживались отбором (т. е. полезные, адаптивные), от нейтральных изменений, которые распространялись в популяции за счет дрейфа. Применив эти методы, ученые пришли к выводу, что ключевая мутация, в результате которой мыши приобрели светлую окраску, находится только в одном месте, а изменения в остальных 19 полиморфных сайтах тоже внесли свой вклад, но менее значительный.

Эта мутация находилась лишь в одном из 20 сайтов. Она состояла в выпадении трех нуклеотидов, кодирующих аминокислоту серин. Удивительно, что такой важный признак, как маскирующая окраска, может определяться всего тремя нуклеотидами! Какая поразительная несоразмерность: с одной стороны, три молекулы, их даже в микроскоп не видно, а с другой стороны — невидимость для врага, долгая жизнь, многочисленная семья и потомство… Когда сравниваются такие категории, то кажется, что три молекулы — это ничто, не могут они определить хомячьего счастья. Но эта несоразмерность — мнимая.

—————

Следы естественного отбора

Влияние естественного отбора на генофонд популяции трудно наблюдать в природе из-за медленности процесса. Непосредственно наблюдать отбор, действовавший на популяцию в прошлом, и вовсе невозможно без машины времени. К счастью, это и не обязательно, потому что отбор, нацеленный на тот или иной локус (участок молекулы ДНК), оставляет в геномах легкоразличимые следы. Мы можем их увидеть, потому что разрешающая способность молекулярного метода исследования теперь фантастическая — один нуклеотид. Еще 15–20 лет назад это казалось чудом, волшебством. Геномы изучали с помощью скрещиваний мутантов, составляли генные карты, разрешение такого метода было не выше частей хромосом или групп генов, но уж никак не одного нуклеотида. Это все равно что заменить 20-кратную лупу на электронный микроскоп. И если уж эволюционные механизмы работают с наследственным материалом — последовательностями ДНК и РНК, то при такой разрешающей способности молекулярного метода мы это увидим.

Следы работы эволюционных механизмов бывают двух типов. Каждая аминокислота кодируется или одним, или, чаще, несколькими определенными тройками (триплетами) нуклеотидов. Если аминокислота кодируется одним-единственным триплетом, то замена любого нуклеотида в триплете приведет к замене аминокислоты; если она кодируется несколькими триплетами, то замена одного нуклеотида может привести либо к замене аминокислоты, либо к замене триплета другим из возможного набора, а аминокислота останется той же. Замена нуклеотида без замены аминокислоты называется синонимичной, а если аминокислота меняется, то получим несинонимичную, или значимую, замену. Если, сравнивая какой-то ген у двух организмов, мы видим, что среди наблюдаемых различий преобладают значимые замены, это указывает на действие положительного отбора, который поддерживал полезные мутации в этом гене. Если, наоборот, резко преобладают синонимичные замены, а значимых нет или очень мало, — это след отрицательного отбора, который отбраковывал все значимые мутации, потому что они оказывались вредными. Промежуточное соотношение указывает на нейтральную эволюцию. Таким образом, отношение синонимичных и несинонимичных заменсвидетельствует о направлении отбора, и это первый тип «следов», оставляемых в геноме естественным отбором.


Эволюция. Классические идеи в свете новых открытий

Пример «селективного выметания». У такс по сравнению с обычными собаками резко понижен генетический полиморфизм на участке третьей хромосомы, включающем ген FGFR3. Это указывает на то, что отбор, осуществлявшийся собаководами, выводившими новую породу коротконогих охотников на лис (было это менее 100 собачьих поколений назад), благоприятствовал какой-то мутации на этом участке хромосомы. В условиях отбора на «таксовость» некая мутация, произошедшая в этом участке, оказалась для собак «полезной», поскольку она обеспечивала успешное размножение, тогда как щенки, не имевшие этой мутации, отбраковывались селекционерами. Что же это за ген — FGFR3? Имеет ли он какое-то отношение именно к таксам? Оказывается, имеет. Белок, кодируемый этим геном, называется рецептором фактора роста фибробластов. Мутации в нем приводят к разнообразным нарушениям развития скелета, в том числе к укорочению конечностей. По рисунку изPollinger et al., 2005 .


Второй тип следов выявляется при изучении уровня полиморфизма (разнообразия) нуклеотидных последовательностей в популяции. Если мы отсеквенируем геномы множества представителей какого-нибудь вида и сравним их между собой, то увидим, что уровень полиморфизма, т. е. индивидуальных различий между геномами, распределен по геному неравномерно. Где-то полиморфизм выше — это те участки генома, в которых большинство мутаций оказываются нейтральными, поэтому полиморфизм свободно накапливается. Скорее всего, это просто не очень нужные участки, «генетический балласт». Где-то генетическое разнообразие ниже — это важные участки генома, в которых большинство мутаций оказываются вредными и удаляются очищающим отбором. Ну а в некоторых местах — и это самое интересное — мы увидим резкое, чуть не до нуля, снижение полиморфизма. В таких участках нет (или очень мало) не только значимых, но и синонимичных различий. Как правило, это означает, что здесь поработала «метла» положительного отбора. Это явление так и называют — selective sweep, т. е. « выметание посредством отбора». В середине участка с резко пониженным полиморфизмом обычно сидит какая-то полезная мутация. Она возникла не очень давно у какой-то особи, а потом быстро распространилась под действием положительного отбора. Вместе с мутацией автоматически распространялись и прилегающие к ней участки ДНК. Это явление называют сцепленным наследованием. До появления полезной мутации уровень полиморфизма в данном участке хромосомы был, скорее всего, примерно таким же, как на соседних участках. Но, когда отбор начинает распространять полезную мутацию, он автоматически распространяет и ее окружение со всеми индивидуальными (и в основном нейтральными) особенностями, присущими вовлеченному в сценарий участку ДНК. Повезет тем нейтральным аллелям, которые находились рядом с полезной мутацией. Остальные нейтральные вариации исчезнут из генофонда, а выживут те, что были у счастливого обладателя первого экземпляра мутантного гена. Как будто все варианты, кроме одного, из данного фрагмента генома «выметаются».

Со временем следы метлы стираются за счет накопления новых нейтральных мутаций. Таким образом, глубокие ямы на графике распределения полиморфизма указывают на относительно недавние случаи действия положительного отбора.

—————

Как в первую неделю жизни хомячат работает мутантный сигнальный белок Agouti — пока неизвестно. Зато удалось показать, что данная мутация, по всей видимости, появилась и начала распространяться в популяции совсем недавно — позже, чем отступил ледник и сформировались Песчаные Холмы с их светлым грунтом. В пользу этого свидетельствуют результаты статистических тестов. В частности, оказалось, что «светлые» варианты гена Agouti(в которых отсутствуют вышеупомянутые три нуклеотида) меньше варьируют по остальным полиморфным сайтам, чем «темные» варианты. Уровень полиморфизма в окрестностях полезной мутации относительно низок. Это типичный пример « выметания посредством отбора», и этого не должно было бы наблюдаться, если бы данная мутация (выпадение трех нуклеотидов) существовала в популяции в качестве нейтральной задолго до того, как появились Песчаные Холмы и она стала полезной.

Исследование показало, что быстрое формирование новых адаптаций может происходить за счет новых мутаций, которые появляются уже после того, как в них «возникла потребность». В тот момент, когда условия среды (а значит, и направление отбора, действующего на популяцию) вдруг меняются, в популяции может не оказаться подходящих генетических вариантов, которые были до сих пор нейтральными, а теперь стали полезными. Скорее всего, светлая окраска была не нейтральной, а однозначно вредной для хомячков, пока они жили в районах с темной почвой. Но, когда образовались Песчаные Холмы — подходящая для жизни хомячков территория со светлой почвой, — ситуация сразу изменилась, и изредка появляющиеся в популяции светлоокрашенные мутанты, которых отбор до сих пор безжалостно отсеивал, получили свой шанс.

—————

Отбору все равно

Есть другие случаи адаптивных изменений окраски, где механизм адаптации на молекулярном уровне хорошо изучен. Один из таких примеров — скальные щетинистые прыгуны ( Chaetodipus intermedius), грызуны, обитающие в пустынях юго-запада США, где участки светлого грунта чередуются с черными лавовыми полями. Как читатели уже догадались, на светлых участках преобладают светлоокрашенные животные, на лавовых полях — темноокрашенные. Показано, что отбор в данном случае осуществляется хищными птицами, в том числе совами, которые лучше видят на темном фоне светлую добычу, а на светлом — темную. Самое интересное, что у обитателей разных лавовых полей отбор зафиксировал разные мутации, приводящие к одному и тому же фенотипическому эффекту — темной шерсти. На одном из лавовых полей все черные грызуны несут мутацию в гене меланокортинового рецептора MC1R (это один из генов, регулирующих синтез черного пигмента эумеланина) [26]. У прыгунов, обитающих на лавовых полях, удаленных на 700 км от первого, черная окраска определяется мутациями в других генах ( Majerus, Mundy, 2003).

Отбору все равно, мутацией какого гена вызвано изменение окраски. Никто не проектирует эволюционное изменение, все происходит само собой. Если возникает мутация, фенотипический эффект которой здесь и сейчас повышает эффективность размножения (приспособленность) ее носителей, то оные носители, эффективно размножаясь, передают мутацию по наследству своим потомкам. А это автоматически ведет к росту частоты встречаемости данной мутации в генофонде. Вот и все. Как видите, можно точно описать дарвиновский эволюционный механизм, не используя слово «отбор» (дабы не вводить читателя лишний раз в искушение, ведь в привычных метафорических формулировках типа «отбор поддерживает» или «отбору все равно» легко усмотреть то, чего там на самом деле нет, — приписывание отбору свойств разумного деятеля, имеющего какие-то цели и планы).

—————

Перед нами классический пример адаптации животных к внезапно изменившимся природным условиям. Чтобы приобрести полезный признак, хомячкам потребовалось изменить всего один ген, а если еще точнее — всего лишь три нуклеотида в нем. И в результате мутации хомячки обрели защитную окраску. Эта мутация, как и в случае с культурным рисом, стала полезной после изменения условий среды и направленности отбора, а до того она была для организмов вредной. В геноме остались следы работы отбора, и мы умеем их находить и анализировать. И мы видим, что все случилось не по взмаху волшебной палочки, а здесь действовал мелочный и постепенный положительный отбор.

Но полезная мутация может быть связана не только с дефектом того или иного потерявшего актуальность гена, как в случае с рисом, или с изменением активности гена на определенной стадии развития организма, как в случае с хомячками. Очень своевременной может стать и замена аминокислоты в активном центре фермента, в результате которой фермент приобретает способность работать с новыми веществами. Следующий пример — как раз из этой серии.

Малярийный плазмодий о пользе точечных мутаций

Начиная с 1960-х годов по всему миру распространились штаммы малярийного плазмодия, устойчивые к хлорохину — лекарству, которое прежде было самым эффективным противомалярийным средством. Хлорохин впервые синтезировали в 1934 году. Благодаря своей эффективности и дешевизне он вскоре стал главным оружием медиков в борьбе с малярией, оттеснив хинин и другие препараты на второй план. Но уже через четверть века, в конце 1950-х годов, почти одновременно в двух точках земного шара — в Колумбии и Таиланде — появились штаммы возбудителя малярии Plasmodium falciparum, устойчивые к хлорохину. В течение последующих 20 лет они распространились из этих двух центров по всем территориям, где встречается малярия.

Генетики установили, что причиной устойчивости являются мутации в одном из генов паразита. Белок, кодируемый этим геном, получил название PfCRT ( Plasmodium falciparumChloroquine Resistance Transporter). Этот белок находится в мембране, окружающей пищеварительную вакуоль паразита — пузырек, в котором происходит переваривание гемоглобина. По аминокислотной последовательности белка PfCRT было ясно, что это мембранный белок, выполняющий транспортную функцию.

Эволюция. Классические идеи в свете новых открытий

Схема распространения штаммов малярийного плазмодияPlasmodium falciparum , устойчивых к хлорохину.

У «нормальных», восприимчивых к хлорохину плазмодиев хлорохин проникает в пищеварительную вакуоль путем диффузии. Внутри вакуоли pH ниже, чем снаружи. Попав в кислую среду, молекула хлорохина присоединяет к себе дополнительный протон и приобретает положительный заряд. Это лишает ее возможности выйти обратно из вакуоли — молекула оказывается в ловушке. В результате хлорохин накапливается в вакуоли, мешая паразиту переваривать гемоглобин.

Но у паразитов, устойчивых к хлорохину, лекарство в пищеварительной вакуоли не накапливается. Поскольку устойчивость связана с изменениями в транспортном белке, логично было предположить, что благодаря этим мутациям белок PfCRT приобрел способность откачивать хлорохин из вакуоли. Чтобы проверить это предположение, ученые ввели ген PfCRT из устойчивого плазмодия в яйцеклетки лягушки и заставили его там работать ( Martin et al., 2009). Новый чужеродный белок встроился в наружную мембрану яйцеклетки и занялся тем, что он умел, — стал перекачивать хлорохин из внешней среды через мембрану в цитоплазму яйцеклетки. Процесс шел, если значение pH в окружающей среде было примерно такое же, как в пищеварительной вакуоли плазмодия. Тот же белок, взятый у чувствительного к хлорохину плазмодия, не перекачивал хлорохин ни при каких условиях.

Таким образом, устойчивость паразитов к хлорохину объясняется тем, что белок PfCRT в результате мутаций приобрел новую функцию. Исходный вариант этого белка отвечал за транспорт каких-то других веществ из пищеварительной вакуоли в цитоплазму. Каких именно — пока неизвестно.

Существует несколько мутантных вариантов белка PfCRT, обеспечивающих устойчивость к хлорохину. У всех этих вариантов есть только одна общая особенность — замена лизина треонином в определенной позиции в молекуле белка. Аминокислота, стоящая в этой позиции, входит в состав активного центра, который отвечает за узнавание и связывание транспортируемой молекулы. Лизин, в отличие от треонина, имеет положительный заряд. По-видимому, два положительных заряда и у хлорохина, и у транспортера не позволяют молекулам соединиться; а если у транспортера заряд активного центра становится нейтральным, то пожалуйста — белок-транспортер начинает работу.

На примере приспособления малярийного плазмодия к хлорохину мы познакомились с одним из магистральных (наиболее вероятных, простых и часто реализуемых) путей приобретения белками новых функций. Работа большинства белков в клетке связана со специфическим распознаванием определенных молекул. Фермент безошибочно «узнает» свой субстрат — молекулу, которую он должен преобразовать. Антитело распознает свой антиген (чужеродный белок или углевод). Транскрипционный фактор [27]находит на длинной молекуле ДНК свой сайт связывания — последовательность нуклеотидов, к которой он прикрепляется, чтобы регулировать активность соседнего гена. Рецептор избирательно связывается со «своим» сигнальным веществом. Транспортный белок узнает молекулу, которую он транспортирует с одной стороны мембраны на другую… Специфическое распознавание (называемое также сродством) обеспечивается свойствами активного центра белка, который должен подходить к субстрату как замок к ключу: во-первых, по форме, во-вторых — по распределению положительных и отрицательных зарядов. Конфигурация активного центра, как правило, зависит от небольшого числа «ключевых» аминокислот.

Мутация, изменившая одну-две аминокислоты в активном центре, с большой вероятностью изменит специфичность белка, так что он начнет связываться с другими субстратами. Скорее всего, единичная мутация изменит спектр субстратов не очень сильно, т. е. новые субстраты будут похожи на старые. Способность узнавать старые субстраты при этом может сохраниться, а может и пропасть. К сожалению, мы не знаем, каковы были старые субстраты транспортного белка PfCRT и сохранил ли он сродство к ним после того, как приобрел способность связывать хлорохин. Но то, что он изменил свою специфичность и приобрел новую функцию из-за замены аминокислоты в активном центре, не вызывает сомнений. То, что эта мутация оказалась полезнойдля паразита в новых условиях, когда его повсеместно травили хлорохином, тоже не нуждается в пояснениях (и, к сожалению, неважно, что думает заболевший пациент или врач, прописавший ему хлорохин).

В иммунной системе позвоночных появление рецепторных белков с новыми функциями поставлено «на поток». Лимфоциты используют для создания новых антител и Т-клеточных рецепторов, необходимых для обезвреживания бактерий, вирусов и прочих паразитов, чисто «дарвиновский» механизм: внесение случайных мутаций в активный центр (так называемую вариабельную область антитела) с последующим отбором и размножением удачных вариантов. Об этом подробно рассказано в книге «Рождение сложности».

—————

Защита от биологического оружия

Множество примеров классической «эволюции по Дарвину» стало известно в ходе изучения приспособлений наших природных врагов — вирусов, болезнетворных бактерий, вредителей — к тем средствам, которые мы используем для борьбы с ними. Малярийный плазмодий — это один из таких. Но имеются и другие. К сожалению.

Травить насекомых-вредителей обычными ядами (пестицидами) — гиблое дело как в прямом, так и в переносном смысле. Во-первых, трудно разработать яд, вредный только для данного насекомого и больше ни для кого. Во-вторых, насекомые быстро приспосабливаются к ядам. Они хорошо научились этому за 300 млн лет сопряженной эволюции с растениями, которые испокон веков пытались защищаться от вредителей при помощи ядов-алкалоидов. Что же удивительного в том, что за последние 50 лет зарегистрировано более 2500 случаев адаптации насекомых-вредителей к различным пестицидам?

Более перспективным средством контроля численности вредителей (в первую очередь бабочек) считаются бакуловирусы. Эти вирусы обладают несколькими замечательными свойствами, которые делают их почти идеальным биооружием против вредителей. Бакуловирусы безопасны для всего живого, кроме насекомых определенного вида, имеют прочную белковую оболочку, устойчивы во внешней среде, и поэтому ими можно просто опрыскивать деревья при помощи обычных распылителей. Зато «свои» виды насекомых бакуловирусы прилежно заражают и доводят до смерти. До недавних пор не было случаев выработки насекомыми устойчивости к бакуловирусам. Ежегодно в мире бакуловирусами обрабатывают 2–3 млн га.

Для борьбы с яблонной плодожоркой Cydia pomonellaв Западной Европе с успехом использовался мексиканский штамм вируса CpGV ( Cydia pomonella granulovirus). Кстати, это одно из очень немногих инсектицидных средств, которые еще не запрещены в цивилизованных странах. Но гром все-таки грянул: начиная с 2003 года из разных садоводческих хозяйств Германии и Франции стали поступать тревожные сообщения о том, что проверенный препарат перестает действовать.

Германские генетики немедленно приступили к изучению проблемы. В 13 яблоневых садах в Южной Германии было установлено непрерывное наблюдение за ситуацией. Выяснилось, что многие популяции вредителя действительно приобрели устойчивость к вирусу. Это привело к снижению эффективности вирусного препарата в 100-1000 раз (иными словами, для достижения «исходного» уровня смертности гусениц необходимо увеличить дозировку от 100 до 1000 раз). В 2005 году уже появились популяции, устойчивость которых выросла в 100 тыс. раз по сравнению с исходной ( Asser-Kaiseret al., 2007).

Одна из устойчивых популяций начиная с 2003 года подвергалась классическому генетическому анализу: бабочек скрещивали, размножали потомство от разных пар, определяли устойчивость к вирусу в разных линиях. Выяснилось, что популяция генетически неоднородна: наряду с устойчивыми особями в ней есть и какая-то доля неустойчивых. Для удобства исследований генетики выделили «чистую линию» устойчивых бабочек. Результаты скрещивания этой линии с «контролем» — бабочками, сохранившими восприимчивость к вирусу, — поначалу выглядели противоречивыми. В одних случаях устойчивость к вирусу вела себя как доминантный признак, в других — как рецессивный, в одних — как сцепленный с полом, в других — как несцепленный.

После дополнительных экспериментов и многочисленных перепроверок картина прояснилась. Оказалось, что трудности были связаны, во-первых, с тем, что доминантность признака зависит от концентрации вируса (при низких концентрациях признак доминантен, при высоких — рецессивен) [28], во-вторых, характер действия связан с полом: зараженные самцы и самки погибают на разных стадиях жизненного цикла. Поэтому, например, гусеницы, которых считали «выжившими» после 7- или 14-дневного эксперимента, в действительности могли быть уже «генетически мертвыми», так как потеряли способность к окукливанию.

В итоге стало ясно, что полезная мутация, определяющая устойчивость к вирусу, локализована в половой хромосоме Z (у бабочек, как у птиц, мужской набор половых хромосом — ZZ, женский — WZ). При низких концентрациях вируса устойчивый аллель (Z r) ведет себя как доминантный, а «нормальный», не дающий устойчивости к вирусу аллель (Z s), — как рецессивный. Это значит, что самцы, гетерозиготные по этому признаку (генотип Z rZ s), при низких концентрациях вируса остаются живы. Гомозиготные самцы Z rZ r, естественно, тоже выживают, Z sZ s— погибают. Самки имеют только одну копию хромосомы Z, поэтому те, у которых генотип Z rW, выживают, а Z sW — погибают.

При высоких концентрациях вируса у самок все остается по-прежнему, а вот для самцов ситуация меняется. Им теперь уже не хватает для выживания одной копии «гена устойчивости», и выжить могут только гомозиготы (Z rZ r), а гетерозиготы (Z rZ s) погибают. Таким образом, устойчивость к вирусу из доминантного признака превращается в рецессивный.

Такой способ наследования признака создает идеальные условия для его быстрого распространения и закрепления в популяциях. На начальном этапе распространения новой полезной мутации, пока носители мутантного аллеля редки, скорость распространения мутации под действием отбора будет максимальна именно в том случае, если мутация доминантна и сцеплена с полом. Эти условия создают сами фермеры, опрыскивающие свои сады малыми концентрациями вируса. На втором этапе, когда частота мутантного аллеля уже успела увеличиться, его дальнейшее распространение будет происходить наиболее быстро, если он рецессивен. И фермеры сами делают его рецессивным: они видят, что червивых яблок становится больше, и увеличивают дозировку препарата. Таким образом, садоводы выступают в качестве фактора, ускоряющего эволюцию. Дело заканчивается полной фиксацией (закреплением) аллеля Z rи исчезновением из популяции аллеля Z s(именно это и произошло в вышеупомянутых популяциях, где устойчивость к вирусу выросла в 100 тыс. раз).

Исследователи указывают на необходимость разработки мер, препятствующих распространению генов устойчивости в популяциях вредителей. Нарождающаяся научная дисциплина, призванная заниматься разработкой таких мер, называется «прикладная эволю ционная биология». Один из многообещающих методов борьбы с выработкой устойчивости состоит в повышении генетического разнообразия применяемых вирусов. Используемые сейчас в садоводстве вирусы CpGV генетически очень однообразны. Ситуацию можно исправить, если дать возможность самим вирусам немного поэволюционировать.

—————

Полезные мутации переключателей

Устойчивость к ядам, вирусам, бактериям и прочим паразитам, защитная окраска, превращение опадающих семян в неопадающие — все это примеры простых адаптаций, для развития которых бывает достаточно одной-двух удачных мутаций, поддержанных отбором. Более глубокие преобразования складываются из десятков и сотен подобных «мелочей». Одна простая полезная мутация может изменить ландшафт приспособленности для организма (или вывести его в новую область этого ландшафта) — например, изменить взаимоотношения организма со средой, сделав возможной жизнь в условиях, доселе неприемлемых, — и в результате какие-то другие мутации, прежде бывшие вредными, станут полезными и рано или поздно зафиксируются, открыв возможности для новых изменений.

Поскольку для крупных эволюционных преобразований требуется последовательное закрепление множества мутаций, такие изменения трудно «расшифровать» на молекулярном уровне, а уж пронаблюдать воочию и вовсе невозможно из-за длительности процесса. Те случаи, которые все-таки удается расшифровать, — это, по-видимому, редкие, нетипичные случаи, когда крупное изменение обеспечивается всего несколькими мутациями. Но такие случаи есть, и мы пока не знаем наверняка, так ли уж мала их роль на больших — эволюционно значимых — отрезках времени. Мы познакомимся с одним из таких случаев, когда всего две мутации обеспечили интересное и важное адаптивное приобретение у многоклеточного животного — нематоды (круглого червя). В результате двух мутаций нематоды приобрели способность к самооплодотворению — стали гермафродитами. Этот пример важен нам также для того, чтобы показать, как в ходе эволюции подстраиваются друг к другу разные гены, регулирующие определенную функцию.

У большинства нематод, как и у многих других животных, пол определяется генетически, при помощи половых хромосом. Если в оплодотворенном яйце две X-хромосомы, из яйца разовьется самка, если одна — самец ( Haag, 2005). Однако у двух наиболее изученных видов нематод, Caenorhabditis elegansи C. briggsae, особи с двумя X-хромосомами — не самки, а гермафродиты. Их гонады (половые железы) на поздних личиночных стадиях производят спермии. Нематоды утратили в ходе эволюции жгутики, поэтому и спермии у них безжгутиковые. Они похожи на амеб и передвигаются при помощи псевдоподий. У гермафродитов безжгутиковые спермии поздних личинок переползают в специальные хранилища — сперматеки — и здесь ждут своего часа. Гонады взрослых гермафродитов производят уже не спермии, а яйцеклетки. Они могут быть оплодотворены как собственными спермиями из сперматеки, так и спермиями самца в результате спаривания.

Предки C. elegansи C. briggsaeбыли нормальными раздельнополыми червями. Это следует, в частности, из того, что все прочие виды рода Caenorhabditis— раздельнополые. По-видимому, гермафродитизм у C. elegansи C. briggsaeявляется «эволюционно молодым», новым признаком. Чтобы разобраться, как он возник, понадобились выдумка, знание геномов нескольких видов нематод и эксперименты, осуществленные американскими биологами ( Baldi et al., 2009). Вот как это было.

Для начала уточним, какие гены работают при формировании половых различий у нематод. Наличие одной (а не двух) X-хромосом у самцов служит триггером, включающим синтез белка HER-1, который ингибирует белок TRA-2. Подавление активности TRA-2 через пару промежуточных шагов приводит к уничтожению белка TRA-1, функция которого состоит в том, чтобы отключать ряд ключевых генов, направляющих развитие по «мужскому» пути (в том числе ген fog-3, контролирующий сперматогенез) [29]. У гермафродитов белок HER-1 не образуется, но они все равно производят спермии, потому что активность гена tra-2на стадии личинки подавляется белками FOG-2 и GLD-1. Таким образом, гермафродиты получаются из-за введения в игру дополнительного правила, связанного с регуляцией гена tra-2.

Запутались? Ничего страшного, это в порядке вещей. Регуляторные сети, управляющие развитием животных, как правило, сложны, громоздки и неоптимальны [30]. К счастью, их не нужно учить наизусть никому, кроме студентов соответствующих специальностей. Чтобы облегчить дело, можно представить устрашающее описание из предыдущего абзаца в виде графической схемы (см. следующую страницу).

На таких схемах стрелочками обозначают положительные влияния (включение гена, активация белка), а «тупичками» — отрицательные (ингибирование белка, подавление активности гена).

Так вот, зная все это, исследователи подумали, что можно попробовать превратить самок раздельнополого вида C. remaneiв гермафродитов, подавив активность какого-нибудь гена, блокирующего сперматогенез. Например, гена tra-2.

Начали они с того, что отключили tra-2при помощи РНК-интерференции [31]. В результате из яиц с двумя X-хромосомами развились вместо самок обыкновенные самцы, производящие нормальные спермии, но никаких яйцеклеток.

Эволюция. Классические идеи в свете новых открытий

Схема регуляции развития пола у нематодыC. elegans , у которой вместо самок гермафродиты.

Тогда ученые справедливо рассудили, что они, видимо, перестарались. Ведь у настоящих гермафродитов активность гена tra-2хоть и снижена, но не до нуля. Когда эту ситуацию удалось воспроизвести у C. remanei, уменьшив экспрессию tra-2, на свет появились животные, которых авторы назвали псевдогермафродитами. Тело у них было «женское», но в гонадах формировались одновременно и яйцеклетки, и спермии. Правда, эти существа оказались неспособны к самооплодотворению (отсюда и приставка «псевдо»). После скрещивания с самцом превдогермафродиты откладывали оплодотворенные яйца, хоть и в меньшем количестве, чем обычные самки. Это значит, что яйцеклетки у них более или менее нормальные, а неспособность к самооплодотворению, скорее всего, объясняется дефектами спермиев.

Действительно, спермии псевдогермафродитов оказались нормальны по всем параметрам, кроме одного: они неактивны, никуда не ползут, и в частности не перебираются в сперматеки.

У обычных нематод спермии активируются (начинают ползать) под воздействием белков, содержащихся в семенной жидкости. Сохранили ли спермии псевдогермафродитов способность активироваться под действием этих белков? Чтобы это проверить, авторы скрещивали псевдогермафродитов с самцами C. elegans. Самцы C. elegansохотно спариваются с самками C. remanei, но эти браки бесплодны (как-никак два вида разошлись, судя по показаниям молекулярных часов, около 80 млн лет назад, а для развития генетической несовместимости обычно хватает нескольких миллионов лет [32]). Идея такого спаривания как раз и состояла в том, чтобы половые клетки от разных видов не сливались, но при этом псевдогермафродиты могли получить нормальные белки семенной жидкости.

И когда после этого адюльтера псевдогермафродиты C. remaneiотложили оплодотворенные яйца, некоторые из них оказались жизнеспособными! Из них вывелись нормальные самки C. remanei(не псевдогермафродиты, потому что им никто не подавлял активность гена tra-2). Это означает, что спермии у псевдогермафродитов получились нормальными, не хватает только активирующих белков.

Это открытие сузило круг потенциальных генов-мишеней, на которые нужно воздействовать, чтобы превратить псевдогермафродитов в полноценных гермафродитов. «Подходящим» геном оказался swm-1, который кодирует белок, подавляющий активность других белков — протеаз, активирующих спермии. Ген swm-1отвечает за предотвращение преждевременной активации спермиев у самцов C. elegans, но у него есть и другие функции. Ученые понизили активность этого гена у псевдогермафродитов — и те, к большой радости исследователей, приобрели способность к самооплодотворению.

Таким образом, для появления нового признака — гермафродитизма — достаточно уменьшить активность двух генов, входящих в два разных регуляторных каскада. Для этого нужны две мутации. Изменение активности того или иного гена в результате случайной мутации — дело самое обычное. Проблема в другом: одновременное возникновение двух мутаций, полезных только вместе, но не по отдельности, крайне маловероятно. Могли ли они появиться последовательно или это равносильно преодолению пропасти в два прыжка? Исследователи рассмотрели два возможных сценария.


1. Сначала произошла мутация, уменьшившая активность swm-1у самок, что позволяет активировать собственные спермии (если они есть). Эта мутация поначалу была нейтральной, потому что самки еще не умели производить спермии. В дальнейшем возникла мутация, понизившая активность tra-2. Эта мутация сразу оказалась полезной (т. е. была поддержана отбором), потому что превратила самок в самодостаточных гермафродитов (о полезности гермафродитизма см. ниже). Но могла ли первая мутация не принести вреда, если известно, что ген swm-1многофункционален? И вот тут-то на помощь приходит знание геномов изучаемых червей (недаром в последние годы биологи столько сил и средств тратят на прочтение геномов всевозможных тварей). Оказывается, в геномах раздельнополых видов есть только одна копия swm-1, а у гермафродитных есть еще и вторая, немного отличающаяся копия. По-видимому, становлению гермафродитизма способствовала дупликация(удвоение) этого гена, что и позволило снять «адаптивный конфликт». Одна из копий изменилась, чтобы обеспечить активацию спермиев у гермафродитов, а вторая продолжила выполнение остальных функций [33].

2. Второй сценарий начинается с мутации, снизившей активность tra-2. Это привело к появлению псевдогермафродитов. Лишь после этого возникла и закрепилась мутация, снижающая активность swm-1. Однако псевдогермафродиты фактически являются всего лишь неполноценными самками: к самооплодотворению они не способны, а с ролью самок справляются хуже, чем настоящие самки. Поэтому на первый взгляд кажется, что отбор должен был отсеять первую мутацию. Но вспомним, что самки C. remaneiпривлекательны для самцов других видов, а спаривание с этими самцами дает им возможность самооплодотвориться. Эта особенность могла стать «мостиком», с помощью которого эволюционирующий вид сумел преодолеть опасный промежуточный этап и дождаться возникновения второй мутации. В некоторых ситуациях псевдогермафродиты, способные к самооплодотворению после спаривания с самцами других видов, могли иметь адаптивное преимущество — например, когда численность популяции критически снижалась.


Таким образом, при ближайшем рассмотрении оказывается, что червям не нужно было «преодолевать пропасть в два прыжка». Там все-таки были мостики.

Изменение активности гена в сторону уменьшения или увеличения может произойти в результате самых разных мутаций. Это могли быть мутации в регуляторных областях самих генов tra-2и swm-1, или мутации генов-регуляторов, управляющих их работой, или мутации регуляторов регуляторов, и т. д. Важно, что в такой ситуации — когда оказывается выгодно уменьшить или увеличить экспрессию какого-либо гена — вероятность того, что случайная мутация, меняющая активность гена, окажется полезной, а не вредной, приближается к 1/2, т. е. становится чрезвычайно высокой. Скорее всего, именно поэтому очень многие «прогрессивные» эволюционные преобразования, как теперь выясняется, были связаны с изменениями уровня активности генов, а не их белок-кодирующих последовательностей. Между прочим, это относится и к эволюции человека ( Gilad et al., 2006).

Появление новых признаков путем изменения активности генов — один из магистральных путей эволюции. Почему? Да прежде всего потому, что это просто. В инструкциях по устранению неисправностей в работе электроприборов неизменно присутствует «мудрый совет», раздражающий многих: проверьте, включена ли вилка в розетку. За ним кроется универсальный принцип: во многих случаях нужного эффекта можно добиться, манипулируя только выключателями и не развинчивая весь механизм.

Конкретные мутации, ответственные за снижение активности генов tra-2и swm-1у предков C. elegansи C. briggsae, возможно, были разными. Например, известно, что у гермафродитов первого вида в подавлении активности tra-2участвует ген fog-2, отсутствующий у второго вида. Предки C. briggsaeутратили ген fog-2, вероятно за ненадобностью. У этого вида ключевую роль в обеспечении нормального сперматогенеза у гермафродитов играет другой ген — she-1. Этот пример показывает, что в ходе эволюции «переключатели» генетических регуляторных каскадов могут меняться, в то время как структура и функции каскадов остаются прежними.

Это относится и к механизмам определения пола. Разделение на самцов и самок есть у большинства животных. Соответственно, есть и генетические «программы» (большие и сложные) развития по мужскому и женскому пути. Однако переключатели, направляющие развитие по одному из двух путей, часто меняются в ходе эволюции. Например, у тех же нематод многие виды перешли от хромосомной детерминации пола к «средовой», т. е. пол у них зависит не от генов, а от условий, в которых проходит развитие. Мы теперь понимаем, что такие эволюционные изменения относятся к числу высоковероятных. Точно так же вы можете заменить кнопку электрического выключателя в своей комнате на систему последовательно и параллельно соединенных тумблеров, реле или повесить шнурок с кисточкой, не меняя при этом проводку и люстру. Управлять освещенностью, возможно, станет удобнее, но сам «фенотип» от этого не изменится: свет по-прежнему будет или включен, или выключен.

Ну и последнее: зачем вообще кому-то понадобилось переходить к гермафродитизму? Как могли мутации, превратившие самок в гермафродитов, оказаться полезными для предков C. elegansи C. briggsae? Дело в том, что в некоторых ситуациях гермафродитизм дает очевидное преимущество [34]. Например, если участки, пригодные для жизни нематод данного вида, встречаются очень редко (это вполне справедливо для представителей рода Caenorhabditis) и вероятность того, что хотя бы один червь попадет на новый, незаселенный участок, очень мала, то вероятность того, что на этот участок попадут сразу два червя — самец и самка, — будет и вовсе ничтожной. Естественно, в такой ситуации преимущество получат черви, способные размножаться без посторонней помощи, путем самооплодотворения. Или, на худой конец, с помощью самцов других видов.

Гены взаимной дружбы

В книге «Рождение сложности» немало говорилось об эволюционной роли симбиоза. На одних мутациях и отборе можно уехать далеко, но возможность комбинировать эволюционные «достижения» разных организмов в одном симбиотическом сверхорганизме открывает еще более впечатляющие перспективы. Впрочем, чтобы наладить с кем-то эффективный симбиоз, без мутаций и отбора тоже не обойтись. Такие договоры на гербовой бумаге не подписываются, тут нужно тщательно приладиться друг к другу.

Одним из таких межорганизменных «договоров» является симбиоз наземных растений с почвенными грибами и бактериями. Эволюционный успех наземных растений во многом был обеспечен именно этими взаимовыгодными отношениями: грибы и бактерии снабжают растение соединениями азота и фосфора, получая взамен углеводы, образуемые растением в ходе фотосинтеза. Ведь сами наземные растения так и не научились фиксировать азот.

Самой древней разновидностью такого симбиоза является микориза, известная в двух вариантах: более простая эктомикориза (гриб не проникает внутрь растительных клеток) и эндомикориза, или арбускулярная микориза, при которой гифы гриба врастают внутрь клеток корня. Судя по палеонтологическим данным, арбускулярная микориза существовала уже у древнейших наземных растений, робко пытавшихся освоить негостеприимную сушу 450 млн лет назад, в ордовикском периоде. Весьма вероятно, что без симбиоза с грибами эти попытки были бы обречены на провал — или, что еще вероятнее, их бы не было вовсе. Некоторые данные указывают на то, что симбиоз с грибами зародился у зеленых водорослей, предков наземных растений, еще в водной среде, что и обеспечило возможность освоения суши. О древности арбускулярной микоризы свидетельствует, помимо прочего, ее широкое распространение во всех группах наземных растений.

Помимо грибной микоризы пользуется спросом и симбиоз с азотфиксирующими бактериями. Отношения растений с азотфиксаторами тоже имеют древнюю историю, однако в большинстве случаев речь идет о внеклеточных бактериальных симбионтах. Только некоторые покрытосеменные (цветковые) растения сравнительно недавно научились культивировать бактерии внутри клеток своих корней, в особых органах — клубеньках. Клубеньковые симбиозы бывают двух типов: 1) симбиоз бобовых с ризобиями (бактериями из группы альфапротеобактерий); 2) актинориза — симбиоз с актинобактериями рода Frankia. Актинобактерии образуют многоклеточный мицелий наподобие грибов; раньше их относили к грибам и называли актиномицетами.

Клубеньковые симбиозы встречаются только в четырех группах (порядках) покрытосеменных: у бобовых ( Fabales), розовых ( Rosales), тыквенных ( Cucurbitales) и буковых ( Fagales), причем не у всех, а только у части представителей. Недавно на основе молекулярно-генетических данных было установлено, что эти четыре порядка представляют собой монофилетическую кладу, т. е. группу, происходящую от общего предка и включающую всех его ныне здравствующих потомков. Вероятно, у общего предка этой группы произошли какие-то генетические изменения, обусловившие возможность развития клубенькового симбиоза. Одни представители группы впоследствии воспользовались этой возможностью, другие нет.

Симбиоз бобовых с ризобиями изучен лучше, чем актинориза. Но у двух типов клубеньковых симбиозов обнаружилось много общего: по меньшей мере семь генов задействованы в обоих симбиозах. Эти гены получили название «общих генов симбиоза». По-видимому, при становлении клубенькового симбиоза была использована древняя генетическая программа, сложившаяся изначально для обслуживания внутриклеточного симбиоза с грибами. Для полноты картины хотелось бы уяснить, что же изменилось в генах при становлении тесных отношений с азотфиксаторами.

В 2008 году британские и германские биологи ( Markmann et al., 2008) взяли разные группы цветковых и проанализировали строение белков, кодируемых «общими генами симбиоза». Оказалось, что у всех цветковых большинство этих белков имеют почти одинаковую, «консервативную» структуру. И только один из них оказался вариабельным. Белок этот называется SYMRK (symbiosis receptor kinase). Он различается у клубеньковых растений, двудольных и однодольных.

Строение SYMRK, а точнее строение его доменной части ( домен— функциональная часть или блок белковой молекулы, содержащий узнаваемый аминокислотный «мотив»), говорит кое-что о специализации этого белка в клетке. У него есть, во-первых, трансмембранный домен, который, как видно из названия, располагается в толще клеточной мембраны (для белка клеточная мембрана и вправду толстая и вместительная). Во-вторых, внутриклеточная часть белка содержит домен протеинкиназы, функция которого состоит в переносе фосфата с АТФ на какой-нибудь белок. Этот процесс называется фосфорилированием. Таким способом многие рецепторные белки передают полученный извне сигнал внутрь клетки, поскольку фосфорилирование белков меняет их свойства — например, переводит их в активное состояние из неактивного. И трансмембранный домен, и домен протеинкиназы в белке SYMRK почти одинаковы у всех цветковых. Различия сосредоточены во внеклеточной части белка, которая выполняет рецепторную функцию, т. е. улавливает внешний химический сигнал. Исследователи выявили три варианта этой вариабельной внеклеточной части белка SYMRK:

1) «длинный вариант», характерный для растений, образующих клубеньки, и их близких родственников;

2) «средний вариант», характерный для дальних родственников клубеньковых растений;

3) «короткий вариант», характерный для однодольных.

Грибная арбускулярная микориза встречается у обладателей всех трех вариантов гена. Клубеньки любого типа (содержащие ризобии или актинобактерии) встречаются только у обладателей «длинного» варианта гена SYMRK. Очевидно, желающие приобрести клубеньки позаботились о своевременном распознавании дефицитных симбионтов. Длина нуклеотидной последовательности увеличивается за счет включения в ключевую область двух фрагментов (доменных мотивов) других генов. Оба эти фрагмента были не изобретены заново, а «заимствованы» у генов белков, имеющихся в геноме растений.

Очевидно, приобретение «длинного» варианта SYMRK как раз и было тем ключевым событием, которое создало предпосылки для развития клубеньковых симбиозов — причем «генетическая программа» клубенькового симбиоза представляет собой модификацию «генетической программы» арбускулярной микоризы. Это проверили в серии экспериментов.

В первом экспериментеу растения датиска ( Datisca glomerata), корни которого в норме образуют арбускулярную микоризу и актиноризу, отключили ген SYMRK. В результате растение утратило способность к формированию обоих симбиозов — и с грибом, и с актинобактерией Frankia. Значит, ген SYMRK необходим и для грибного, и для бактериального симбиоза, у них единая генетическая основа.

Второй экспериментпоказал, что ген SYMRK неслужит для распознавания конкретных бактерий-симбионтов. Бобовое растение лядвенец японский ( Lotus japonicus) образует клубеньки с бактерией-ризобией Mesorhizobium loti, а люцерна ( Medicago truncatula) — с бактерией Sinorhizobium melioti. Мутантной люцерне с испорченным геном SYMRK, не способной формировать никакой симбиоз вообще, пересадили ген SYMRKот лядвенца. Эта операция полностью восстановила способность люцерны образовывать симбиоз. При этом трансгенная люцерна стала образовывать клубеньки со «своей» исконной бактерией Sinorhizobium, а вовсе не с Mesorhizobium. Также мутантному лядвенцу пересаживали ген SYMRKот других бобовых и их бесклубеньковых родственников, например настурции, и во всех случаях его пошатнувшиеся отношения со своим Mesorhizobiumвосстанавливались. Таким образом, SYMRKотвечает не за узнавание и выбор симбионта, а только за общую способность формировать внутриклеточный симбиоз с бактериями. Узнавание осуществляется другими белками, какими именно — пока не установлено.

В третьем экспериментеснова использовали мутантную форму лядвенца японского, не образующую ни арбускулярной микоризы, ни клубеньков. Растениям пересаживали «средний» вариант гена, взятый у помидора, и «короткий» вариант, позаимствованный у риса. В обоих случаях у мутантного лядвенца восстановилась способность к формированию арбускулярной микоризы, но не клубеньков. Следовательно, укороченные варианты гена SYMRKдостаточны для грибной микоризы, но не для клубеньковых симбиозов.

Белок SYMRK необходим для формирования особых внутриклеточных структур — симбионтоприемников или «преинфекционных нитей», которые впоследствии заселяются симбиотическими бактериями (и тогда их уже называют «инфекционными нитями»). Похожие структуры образуются в клетках корней и для принятия грибных симбионтов (в случае арбускулярной микоризы). Сходство в строении этих симбионтоприемников отражает единство генетической программы, отвечающей за формирование всех трех типов внутриклеточного симбиоза: арбускулярной микоризы, симбиоза с ризобиями и актиноризы.

Полученные результаты подтверждают гипотезу, согласно которой способность к формированию клубеньковых симбиозов развилась на основе древней генетической программы арбускулярной микоризы. Ключевое эволюционное событие заключалось в том, что клетки корней приобрели способность реагировать формированием «симбионтоприемников» не только на присутствие симбиотических грибов, но и на близость азотфиксирующих бактерий. А если пристальней вглядеться в молекулярные подробности этого события, то увидим, что для этого понадобилось перенастроить рецепторную часть одного мембранного белка (SYMRK). Этот белок пристроил в свое пользование два дополнительных участка из других имеющихся под рукой генов. Можно сказать, что для налаживания симбиоза организмов использовался своеобразный молекулярный, генный симбиоз. Принципы конструирования нового схожи и на уровне молекул, и на уровне органов, организмов и популяций.

Возникновение клубеньковых симбиозов — исключительное по своей полезности приобретение, имеющее к тому же важное биосферное значение. Казалось бы, для такого «революционного» нововведения потребуется масса приспособлений, реорганизация больших областей генома. Но нет, понадобилось всего лишь научиться узнавать во внешней среде новый объект, а для этого — чуть-чуть видоизменить белок-рецептор. Когда речь идет о внешне сложной проблеме, помогает внимательное разглядывание подробностей (как в примере с белоногими хомячками, чья светлая защитная окраска складывается всего лишь из расширения светлой полосы на шерстинках): ключевое изменение зачастую оказывается простым и легкодостижимым.

—————

Между микро- и макроэволюцией нет принципиальной разницы

Из истории азотфиксирующих симбиозов можно извлечь важный урок. Мы увидели, что важное новшество, такое как появление клубеньковых симбиозов — событие без преувеличения глобальной, биосферной значимости! — реализовалось в ходе эволюции по той же схеме, что и приобретение малярийным плазмодием устойчивости к хлорохину. В обоих случаях ключом к приобретению нового признака стало изменение активного центра белка, отвечающего за избирательное связывание тех или иных веществ. Правда, плазмодий обошелся нуклеотидной заменой, а у растений произошла внутригеномная рекомбинация — перетасовка участков генов. Но это, по правде сказать, пустяк. Гены могли перетасоваться и у плазмодия (с примерами таких событий мы встретимся в следующих главах).

Подобные параллели между самыми крупными и самыми ничтожными эволюционными событиями убеждают биологов в том, что между так называемыми микроэволюцией и макроэволюцией [35]нет принципиальной разницы. Это исключительно вопрос масштаба. Посмотрите на эволюцию в лупу — увидите микроизменения. Взгляните издалека — увидите более значительные макроперемены. Но в основе тех и других лежат сходные механизмы.

На единую природу микро- и макроэволюции указывают и другие факты, в том числе фундаментальное сходство, если не сказать тождество, внутри- и межвидовой изменчивости. Если мы начнем сравнивать генетические различия между двумя особями одного вида с различиями, существующими между особями разных видов, то увидим в буквальном смысле одно и то же: замены нуклеотидов («однонуклеотидные полиморфизмы»), вставки и выпадения нуклеотидов («инделы»), транспозиции (перемещения фрагментов ДНК из одного места генома в другое), инверсии (повороты фрагментов ДНК на 180°), вариации по числу копий повторяющихся фрагментов и т. д. Крупные хромосомные перестройки, такие как слияние двух хромосом в одну или, наоборот, разделение, в пределах одного вида встречаются реже, чем при межвидовых сравнениях, но все же встречаются. Такие перестройки чреваты снижением плодовитости гибридного потомства (т. е. потомства от скрещивания родительских особей с разным числом хромосом), но не являются непреодолимым барьером для гибридизации, как показывают многочисленные примеры видов, в пределах которых число хромосом варьирует [36]. Например, среди диких кабанов, проживающих в Испании, встречаются особи с 36, 37 и 38 хромосомами ( Nombela et al., 1990).

Биологи не сразу пришли к пониманию тождества внутри- и межвидовой изменчивости. Довольно долго допускалось существование особых «макроизменений», которые приводят к появлению новых видов и которые принципиально отличаются от внутривидовой изменчивости. Стремительное развитие методов изучения ДНК в последние два десятилетия позволило проверить эти предположения. Проверки они не выдержали. На сегодняшний день о них можно смело забыть.

Важно, что внутри- и межвидовые различия идентичны не только на качественном уровне, но и на уровне количественных соотношений. К примеру, если мы сопоставим генетические различия, имеющиеся между разными людьми, с теми различиями, которые отделяют нас от шимпанзе, то увидим, что эти две группы различий одинаковы по многим статистическим параметрам: по соотношению значимых и незначимых замен в белок-кодирующих генах, по соотношению однонуклеотидных замен и выпадений или вставок нуклеотидов в некодирующих областях и т. д. Между двумя людьми, конечно, различий меньше, чем между человеком и шимпанзе (примерно в 10–20 раз), но различия эти — одной и той же природы.

Например, недавно международная команда генетиков опубликовала результаты сравнения геномов 29 видов плацентарных млекопитающих ( Lindblad-Toh et al., 2011). Ученые выявили 3,6 млн функциональных участков ДНК, находящихся под действием очищающего отбора. Эти участки, мутации в которых не являются нейтральными, составляют примерно 5,5 % генома у плацентарных. Около трети из них соответствуют белок-кодирующим, остальные две трети — регуляторным последовательностям. Выявлено 280 тыс. регуляторных участков, происходящих из фрагментов мобильных генетических элементов; 563 участка, эволюция которых шла ускоренными темпами у предков человека после их отделения от предков шимпанзе. Но для нас сейчас важно другое. Когда авторы сопоставили полученные данные с имеющейся информацией по внутривидовой генетической вариабельности Homo sapiens, оказалось, что эти массивы данных прекрасно согласуются друг с другом. Те участки генома, которые мало отличаются у разных видов плацентарных (т. е. являются консервативными — медленно меняющимися в ходе эволюции), в пределах человеческой популяции тоже имеют низкую вариабельность. И наоборот: те участки, которые у разных людей могут сильно отличаться друг от друга, у других плацентарных тоже изменчивы. Более того, многие сайты (нуклеотидные позиции) с ограниченной эволюционной пластичностью (например, позиции, в которых может стоять нуклеотид Г или Т, но не А и не Ц), варьируют одинаковым образом как внутри человеческой популяции, так и у разных видов плацентарных. Это значит, что очищающий отбор, действовавший на геномы различных плацентарных, продолжал схожим образом действовать и на геномы ближайших предков современного человечества — а потому и изменчивость, накопление которой определяется характером очищающего отбора, оказывается сходной внутри вида и между видами.

Итак, изменчивость, определяющая различия между особями одного вида, — это, по сути, та же самая изменчивость, что определяет различия между видами, родами, семействами и т. д. Дайте ей только время, чтобы накопиться.

Эти факты говорят о единстве микро- и макроэволюции, т. е. внутри- и межвидовых эволюционных изменений. Пользуясь модным ныне словечком, можно сказать, что эволюция фрактальна: большое отражается в малом, малое — в большом. Поэтому изучение мельчайших, только в микроскоп заметных событий (а нам их изучать легче всего, учитывая скоротечность жизни) дает адекватное представление и о событиях гораздо большего масштаба.

—————

Глава 3

Секс

Кроме размножения (в основе которого лежит репликация ДНК), наследственности (основанной на специфическом спаривании нуклеотидов), мутаций (включая перетасовку фрагментов ДНК внутри генома) и естественного отбора (влияния мутаций на эффективность размножения) у земной жизни есть еще одна важная шестеренка, еще один незаменимый механизм создания нового, без которого эволюция едва ли смогла бы даже стартовать, не говоря уж о сотворении китов и зябликов.

Биологи, особенно англоязычные, часто называют явление, о котором идет речь, простым и выразительным словом «секс». В русском языке «секс» имеет иной спектр смысловых оттенков, что чревато путаницей. Поэтому давайте уточним, что именно мы будем иметь в виду под сексом. Мы будем иметь в виду любые способы комбинирования в одном геноме фрагментов разных геномов. Это можно еще назвать «межорганизменной рекомбинацией», но «секс» короче и яснее. Под такое определение подходит и привычное нам половое размножение, характерное для сложных организмов, и горизонтальный перенос генов, характерный для бактерий, и даже обмен участками между двумя вирусными геномами, заразившими одну и ту же клетку.

Как секс встраивается в классическую триаду эволюции: изменчивость — наследственность — отбор? Это, если подумать, нечто отличное и от первого, и от второго, и от третьего. Это отдельный фактор, который устанавливает новые отношения между наследственностью и изменчивостью. Он существенно увеличивает пользу от изменчивости, позволяя эволюции работать не с целыми геномами, а с отдельными генами и не с индивидуальными организмами, а с популяционными генофондами. Это резко повышает эффективность отбора. Именно секс превращает биологическое разнообразие на всех его уровнях в мощную адаптивную силу. Но вместе с тем применение этой силы заставляет организмы вырабатывать множество приспособлений, постоянно учитывать именно этот четвертый фактор. Вот уж где сексуальная революция формирует совершенно новые отношения и выдвигает жесткие и специфические требования к приверженцам этих новых отношений. В этой главе мы покажем, для чего нужен и как работает четвертый эволюционный фактор — секс.

—————

Несколько фактов о сексе, которые должен знать каждый

Эукариоты и прокариоты занимаются сексом совершенно по-разному.

Эукариоты практикуют «половое размножение», или, по-научному, амфимиксис. Что бы ни подумал читатель, но это значит, что у них в жизненном цикле присутствует два особых события. Первое — редукционное(т. е. «уменьшающее») деление, или мейоз, при котором из клетки с удвоенным набором хромосом (диплоидной) получаются клетки с одинарным набором (гаплоидные). Клетки, прошедшие редукционное деление, либо сразу становятся половыми клетками ( гаметами), как у животных, либо предварительно сколько-то раз делятся обычным способом (митозом) и только после этого дают начало гаметам (так обстоит дело у растений). Второе событие — оплодотворение, или сингамия. При оплодотворении две гаметы, обычно происходящие от разных организмов, сливаются в одну клетку с двойным набором хромосом — зиготу. Зигота снова становится диплоидной, из нее вырастает диплоидный организм, который в какой-то момент путем мейоза начинает производить гаплоидные клетки.

При половом размножении смешивание генов двух родительских организмов, во-первых, взаимное(двустороннее), во-вторых — полногеномное. Отец и мать передают каждой гамете целый гаплоидный геном в одном экземпляре, т. е. ровно по одной копии каждого своего гена. Зигота получает два гаплоидных генома, по одному от каждого из родителей. В ходе мейоза эти два генома перемешиваются, причем весьма тщательно, так что в итоге в каждую гамету попадает более или менее случайная смесь аллелей, полученных данным родительским организмом от своих отца и матери. Соответственно, зигота получит примерно в равных пропорциях аллели обоих своих дедушек и обеих бабушек.

У прокариот (бактерий и архей) все по-другому. Участники полового процесса у них называются не родителями, а донором и реципиентом. Донор — тот, кто отдает часть своих генов и ничего не получает, реципиент — воспреемник чужих генов. Реципиент обретает новый генетический набор и сам становится как бы собственным потомком (а также потомком донора). Эта клетка с новыми генами дает начало своей линии потомков, размножающихся делением и время от времени передающих гены другим особям. Так что обмен генами у прокариот, во-первых, односторонний (от донора к реципиенту), во-вторых, не полногеномный, а фрагментарный, так как передается не целый геном, а лишь отдельные, обычно небольшие фрагменты ДНК.

Существует три разновидности прокариотического секса.


1.  Конъюгация, при которой донор активен, а реципиент относительно пассивен. Донор прикрепляется к реципиенту при помощи специального отростка — пилуса (мн. ч. — «пили») и впрыскивает в реципиента немного своей ДНК. Часто этим процессом «руководят» маленькие эгоистичные [37]кольцевые хромосомы — конъюгационные плазмиды. Именно в плазмиде находятся все гены, необходимые для успешной конъюгации, включая гены белков пилуса. Первым делом плазмида перекачивает в реципиента не абы что, а копию самой себя. Часто на этом все и заканчивается. Такие плазмиды ведут себя как настоящие паразиты, используя одних бактерий для того, чтобы попасть в других. Скорее всего, они-то и «изобрели» конъюгацию как средство достижения своих корыстных целей. Однако плазмида может вступить в симбиоз с клеткой-хозяином — ведь, когда он делится, плазмида размножается вместе с ним, поэтому ей выгодно нести в себе гены, полезные для хозяина. Например, часто именно конъюгационные плазмиды распространяют в популяциях бактерий гены устойчивости к антибиотикам. Иногда плазмиды встраиваются в кольцевую хромосому хозяина. В этом случае вместе с плазмидной ДНК реципиент может получить и часть геномной ДНК донора.

2.  Вирусная трансдукция. Переходя из клетки в клетку, вирус может прихватить с собой кусочек ДНК прежнего хозяина и встроить его в геном следующего. При трансдукции и донор, и реципиент пассивны. Активен только вирус.

3.  Трансформация, при которой донор пассивен (по правде сказать, чаще всего он просто мертв), а реципиент активен. Трансформация — это захват микробами молекул ДНК из окружающей среды. Захваченные фрагменты могут принадлежать мертвым, разрушенным клеткам, но не обязательно: некоторые микробы выделяют ДНК во внешнюю среду еще при жизни. Проглоченная молекула ДНК может быть использована просто в качестве пищи, но может и встроиться в геном реципиента.


Чужие гены встраиваются в геном реципиента двумя способами. Первый способ — «незаконная» рекомбинация. Например, новый фрагмент ДНК может вставиться в хромосому вдобавок к уже имеющимся там генам. Именно так микроб может получить полезный новый ген от неродственного микроба. Такие заимствования могут иметь важные эволюционные последствия, их активно изучают и именно их обычно имеют в виду, когда говорят о горизонтальном переносе генов. Второй способ (гораздо более распространенный, хотя и менее известный, потому что его трудно изучать) — гомологичная рекомбинация. Суть его в том, что фрагмент ДНК донора замещает собой похожий фрагмент ДНКв хромосоме реципиента. Говоря упрощенно, реципиент вырезает из своей хромосомы кусочек и заменяет его похожим кусочком чужой ДНК. Как правило, это происходит при обмене ДНК между близкими родственниками, чьи геномы мало отличаются друг от друга. Если участки ДНК различаются сильно, гомологичная рекомбинация между ними технически невозможна (в гомологичной рекомбинации задействован принцип комплементарности, но мы не будем вдаваться в молекулярные подробности) [38].

Механизм гомологичной рекомбинации — очень древний. Он наверняка был у Луки — последнего общего предка всего живого. Он должен был появиться задолго до Луки, еще на заре РНК-мира. Используется он не только для перетасовки похожих фрагментов ДНК, но и для более очевидной и повседневной задачи, а именно для починки (репарации) повреждений ДНК, таких как разрывы двойной спирали. При этом фрагмент ДНК, гомологичный разрушенному, используется в качестве «заплатки» (да простят нас молекулярные биологи за такое вульгарное упрощение сложного процесса!).

—————

О горизонтальном переносе генов (ГПГ) мы говорили в книге «Рождение сложности». Эволюционная роль этого явления огромна: микробы и одноклеточные эукариоты приобрели множество нужных признаков, заимствуя чужие гены. Геном любой бактерии прямо-таки напичкан явно «неродными», но при этом крайне полезными генами. Один из примеров — появление у цианобактерий способности к кислородному фотосинтезу. Событие, перевернувшее мир, превратившее Землю из унылой бескислородой «планеты микробов» в царство разнообразных, удивительных и сложных «высших» форм жизни. Как оно произошло? Исключительно благодаря горизонтальному переносу. Кислородному фотосинтезу предшествовал фотосинтез бескислородный, более простой, требующий участия одного белкового комплекса — «фотосистемы». Предки цианобактерий умудрились скомбинировать в своем геноме сразу две слегка различающиеся фотосистемы. Одна, вероятно, была у них «своя», а вторую они позаимствовали у другого бескислородного фотосинтетика. Комбинация двух фотосистем в одной клетке позволила цианобактериям перейти к кислородному фотосинтезу — процессу более сложному, но зато и более перспективному. Для бескислородного фотосинтеза требуются дефицитные вещества — доноры электрона, например сероводород или двухвалентное железо. При кислородном фотосинтезе донором электрона служит обычная вода — колоссальное облегчение!

Все это хорошо, но есть одна проблема. То, что мы видим в геномах прокариот, — все эти заимствованные у других микробов полезные гены — не результат ГПГ в чистом виде, а результат комбинации ГПГ и отбора. Мы видим только удачные переносы, потому что неудачные отсеяны отбором. Сколько их было? Точную цифру назвать трудно, но наверняка гораздо больше, чем удачных. Хватать без разбора чужие фрагменты ДНК и встраивать их в свой геном — занятие крайне рискованное. Шанс приобрести что-то полезное при этом ничтожно мал по сравнению с шансами повредить свой геном, испортить важный ген ненужной вставкой или заменой, приобрести что-то несовместимое с имеющимися у вас генами, заполучить смертоносный вирус или активный мобильный элемент, который начнет размножаться и прыгать как сумасшедший и превратит ваш геном в бессмысленную лапшу.

Полезный новый ген у неродственного микроба удается заполучить в среднем лишь раз-другой за миллион лет (примерно такие цифры дал анализ геномов бактерий и одноклеточных эукариот). При этом бесполезные и вредные новые гены доступны в неограниченном количестве. Их можно получать десятками ежедневно.

Естественный отбор не обладает даром предвидения. Он не будет «терпеть» вредный признак (склонность заимствовать чужие гены) миллион лет ради того, чтобы после всех перенесенных мучений приобрести наконец что-то полезное.

Из этого следует, что микробы сохраняют способность к заимствованию генов не потому, что надеются «одолжить» у неродственных микробов какое-нибудь замечательное новшество, новый полезный ген или генный комплекс. Отбор не смог бы поддерживать способность к ГПГ ради такого «журавля в небе». Остается одно из двух. Либо эта способность вообще не поддерживается отбором и является неким «неизбежным злом», либо микробы обмениваются генами по какой-то другой причине: более повседневной и насущной, связанной с какими-то сиюминутными выгодами. Первый вариант маловероятный, отбор умеет сводить «зло» к минимуму, а в природе почти все организмы практикуют генетический обмен. Значит, более осмысленным будет обсуждение второго варианта — выгоды здесь и сейчас. Что это за выгоды? Это мы сейчас и попытаемся выяснить.

Секс против вредных мутаций

Допустим, существует популяция микробов, не умеющих меняться генами (такие организмы называют бесполыми). Допустим, у каждого новорожденного микроба происходит одна вредная мутация. В этом случае популяция обречена на вырождение. С каждым поколением груз вредных мутаций будет расти, а приспособленность — падать. Никакой отбор не сможет остановить накопление мутационного груза, потому что все особи поколения N будут иметь по N вредных мутаций: отбирать некого. Единственное, что сможет сделать отбор, — это замедлить снижение приспособленности, отбраковывая более вредные мутации и сохраняя менее вредные.

Эту идею (в приложении не к микробам с их ГПГ, а к эукариотам с половым размножением — амфимиксисом) разработал великий эволюционный генетик Герман Мёллер (1890–1967). Она вошла в науку под названием «храповик Мёллера». Храповик — это устройство, в котором ось может крутиться только в одну сторону. Имеется в виду, что средняя приспособленность бесполой популяции под действием вредных мутаций может меняться только в сторону ухудшения. Например, если случайно погибнет или мутирует «лучшая» особь в популяции, то эта потеря необратима. Храповик повернулся на один щелчок. Ведь без секса невозможно собрать из пары «плохих» геномов геном получше.

Но если микробы умеют заимствовать чужие гены, то в каждом поколении найдутся счастливчики, которые заменят свой испорченный ген на его неиспорченную версию, взятую у другого микроба, у которого вредная мутация произошла в другом гене. Поэтому в каждом поколении, несмотря на мутагенез, какая-то часть особей окажется свободной от вредных мутаций. Их-то и поддержит отбор, они-то и оставят больше всего потомков. При достаточно мощном отборе популяция сумеет избежать вырождения.

Идею можно выразить иначе. Если у бесполого организма возникает вредная мутация, его потомки уже не смогут от нее избавиться. Она будет, как родовое проклятие, передаваться всем его потомкам вечно (если только не произойдет обратная мутация, что крайне маловероятно). У бесполых организмов отбор может отбраковывать только целые геномы, но не отдельные гены. Сойдут с арены те несчастные, которым совсем не повезло, а останутся те, кого мутационная судьба в этот раз пощадила (при этом вместе с вредной мутацией может исчезнуть и редкий полезный признак). Но и они окажутся хуже, чем их родители, просто их мутации не такие зловредные. Поэтому в череде поколений бесполых организмов вредные мутации могут неуклонно накапливаться. Храповик Мёллера — это настоящая трагедия отцов и детей: отцы могут справедливо сетовать на падение нравов.

Но если организмы размножаются половым путем (или хотя бы изредка практикуют ГПГ с гомологичной рекомбинацией), то индивидуальные геномы иногда перемешиваются. Новые геномы при этом собираются из фрагментов, ранее принадлежавших разным организмам. В результате возникает новая сущность, которой нет у бесполых организмов — генофонд популяции. Гены получают возможность размножаться и выбраковываться поодиночке, независимо друг от друга, а не в неразрывной связке с другими генами данного генома. Отбор получает возможность отделять зерна от плевел: ген с неудачной мутацией может быть отсеян отбором, а остальные гены данного родительского организма могут при этом сохраниться в генофонде.

Таким образом, секс помогает отбору очищать генофонд от постоянно возникающих вредных мутаций, тем самым спасая популяцию от вырождения.

Секс в защиту полезных мутаций

С полезными мутациями ситуация очень похожая. Допустим, в популяции бесполых микробов возникло две полезные мутации. У одного микроба произошла полезная мутация в гене А, у другого — в гене Б. Что будет с потомками удачливых мутантов?

Поскольку обе мутации полезны, потомки мутантов будут размножаться быстрее прочих особей (мы не рассматриваем усложненный вариант, когда оба полезных признака отягощены букетом других мутаций разной степени вредности). Каждый мутант даст начало быстро размножающемуся клону. В конце концов все немутанты будут вытеснены и в популяции останутся два успешных клона: один с мутацией в гене А, другой с мутацией в гене Б. Пока все идет не так уж плохо (с точки зрения «пользы» для популяции).

Дальше начинаются неприятности. Поскольку микробы бесполые, объединить обе мутации в одном геноме они не в силах. Вместо этого начнется конкуренция между двумя клонами, или, по-научному, клональная интерференция. Тот клон, чья мутация оказалась более полезной, в итоге победит, а второй клон (тот, чья мутация оказалась менее полезной) будет вытеснен, т. е. попросту исчезнет. Таким образом, из двух полезных мутаций зафиксируется только одна. Вторая будет утрачена, хотя ее очень жаль терять!

Неэффективность налицо. Бесполая популяция — весьма несовершенная «машина для эволюции». А все потому, что она даже и не популяция в полном смысле слова. Это свора изолированных клонов, жестоко конкурирующих друг с другом.

Но если мы предоставим нашим микробам возможность заимствовать чужие гены, то какой-то мутант с улучшенным геном А рано или поздно позаимствует у микроба из другого клона улучшенный ген Б (или наоборот). В результате появится микроб с обеими полезными мутациями вместе. Его-то потомки и унаследуют мир. Польза ГПГ очевидна, не правда ли? Поэтому если смотреть на проблему отцов и детей глазами эволюциониста, то она легко решается с помощью секса.

Секс делает все полезные мутации, возникшие в популяции, «общим достоянием». Поэтому скорость приспособления к меняющимся условиям у организмов, способных к сексу, должна быть выше, чем у бесполых. Эту идею первыми разработали в 1930-х годах уже упоминавшийся Герман Мёллер и другой гениальный генетик-эволюционист Рональд Фишер (1890–1962). Она так и называется — эффект Фишера — Мёллера.

Эффект Фишера — Мёллера тем сильнее, чем выше частота возникновения полезных мутаций. Эта частота, в свою очередь, зависит от условий среды. Чем хуже условия, тем чаще возникают полезные мутации, чем условия благоприятнее, тем это происходит реже. В этом нет никакой мистики, так получается автоматически. Ведь приспособленность организма и благоприятность условий — стороны одной медали. Ухудшение условий идентично снижению приспособленности. Чем ниже приспособленность (т. е. чем дальше находится организм от локального пика на ландшафте приспособленности), тем выше вероятность того, что случайная мутация окажется полезной. Из этого следует, что эффект Фишера — Мёллера должен быть сильнее в переменчивой среде, к которой организмы не успевают как следует приспособиться.

Эволюция. Классические идеи в свете новых открытий

Схема, показывающая, как секс может ускорять распространение полезных мутаций. При половом размножении(верхний рисунок) два новых полезных аллеля (A и B) объединяются в результате скрещивания особей, каждая из которых имеет только один из этих аллелей. При бесполом размножении(нижний рисунок) приходится дожидаться, пока обе мутации случайно возникнут у одного и того же клона.

Рассмотренные модели применимы к любым популяциям, кроме чрезвычайно больших или абстрактных «бесконечно больших» популяций, с которыми любят играть специалисты по эволюционной генетике. Дело в том, что для бесконечно больших популяций удобно выводить красивые формулы. В популяциях с ограниченной численностью секс, по-разному комбинируя полезные и вредные мутации, регулярно создает генотипы с повышенной приспособленностью, появление которых в бесполой популяции маловероятно. Что касается бесконечно больших популяций, то там все не так очевидно: требуется соблюдение ряда дополнительных условий, чтобы секс давал ощутимое преимущество. Специалисты спорят, насколько часто соблюдаются эти условия в природе. Можно поспорить и о том, часто ли в природе встречаются настолько громадные популяции, что их можно считать бесконечными без ущерба для точности моделей. Общий вывод, впрочем, от этого не меняется. Как правило, секс полезен, особенно если за него не приходится слишком дорого платить.

—————

Секс помогает извлечь пользу из численности

Из модели Фишера — Мёллера вытекает интересное следствие: польза от секса в большой популяции может быть больше, чем в маленькой. Выше мы рассмотрели случай, когда в двух популяциях — половой и бесполой — возникло по две полезные мутации. В бесполой популяции зафиксировалась только одна из них, а вторая пала жертвой безжалостной конкуренции между клонами. В популяции организмов, способных к сексу, зафиксировались обе мутации.

Задумаемся теперь, что произойдет, если мы вдвое увеличим численность обеих популяций.

Логично допустить, что в популяции с удвоенной численностью будет возникать вдвое больше редких полезных мутаций в единицу времени. Поэтому давайте предположим, что в каждой популяции возникло уже не по две, а по четыре полезных мутации (в четырех разных генах у четырех разных особей). Какая судьба их ждет? Ответ очевиден. В половой популяции все четыре мутации объединятся в одном геноме (мы предполагаем, что эффект мутаций аддитивен, т. е. их польза складывается и они не мешают друг другу). Положительное влияние численности налицо: вдвое больше численность — вдвое больше полезных мутаций зафиксировалось.

В бесполой популяции начнется конкуренция между четырьмя клонами — потомками удачливых мутантов. Победит тот клон, чья мутация окажется самой полезной. Остальные три полезные мутации будут вытеснены. Таким образом, почти никакой пользы от удвоения численности бесполая популяция не получит. Ну разве что самую минимальную — за счет того что на этот раз зафиксируется лучшая из четырех мутаций, а не из двух [39].

Итак, сексуальная популяция с единым генофондом будет адаптироваться тем эффективнее, чем выше ее численность. Бесполая «свора конкурирующих клонов» не получает такого выигрыша от увеличения численности.

В 2002 году этот теоретически предсказанный эффект удалось подтвердить экспериментально. Ник Коулгрейв из Эдинбургского университета работал с жгутиконосцами — хламидомонадами ( Chlamydomonas reinhardtii). Эти одноклеточные водоросли могут размножаться как бесполым путем (делением), так и половым, образуя гаметы, которые затем сливаются в зиготы. Половое размножение у хламидомонад можно стимулировать искусственно (поместив жгутиконосцев в воду, не содержащую соединений азота), а можно, наоборот, заблокировать — например, поместив в аквариум жгутиконосцев только одного «пола» (вообще-то у них нет самцов и самок, зато есть так называемые типы спаривания, причем скрещивание возможно лишь между представителями разных «типов», которые ничем, кроме половой избирательности, друг от друга не отличаются). Коулгрейв заставил множество больших, средних и маленьких популяций хламидомонад приспосабливаться к неблагоприятным для них условиям. При этом половина популяций размножалась как бесполым, так и половым путем, а другая половина — только бесполым.

Спустя 50 поколений у всех подопытных популяций была измерена приспособленность (скорость размножения по сравнению с исходными, предковыми жгутиконосцами). Оказалось, что все бесполые популяции приспособились к новой среде почти одинаково плохо — большие лишь ненамного лучше маленьких. Популяции, практиковавшие секс, приспособились лучше, чем бесполые. Самое главное, чем выше была численность, тем сильнее проявилось их преимущество. Маленькие популяции (состоявшие примерно из 1000 особей) приспособились к новой среде лишь на 2 % лучше, чем бесполые, средние (100 тыс. особей) — на 7 %, большие (1 млн особей) — на 13 % ( Colegrave, 2002).

Таким образом, проверяемое следствие, вытекающее из модели Фишера — Мёллера, замечательно подтвердилось. Разумеется, то, что справедливо для хламидомонад, не обязательно должно быть верным для всех живых существ. Но никто и не говорит, что в жизни все просто и однозначно.

—————

Переменчивая среда способствует половому размножению

Еще одно подтверждение эффекта Фишера — Мёллера удалось получить в опытах на коловратках ( Becks, Agrawal, 2010). Коловратки класса Monogononta(однояичниковые) способны как к бесполому (партеногенетическому), так и к половому размножению [40]. При низкой плотности популяции в ней, как правило, присутствуют только самки, производящие так называемые амиктические (партеногенетические) диплоидные яйца, из которых без оплодотворения выводится следующее поколение самок. При высокой плотности часть самок начинает производить гаплоидные яйца, из которых выходят маленькие непитающиеся самцы. Они спариваются с самками, в результате чего образуются «покоящиеся» оплодотворенные яйца с плотной оболочкой. Из них снова выводятся только самки. Решение о переходе к половому размножению коловратки принимают на основе так называемого чувства кворума. Это происходит, когда концентрация веществ, выделяемых самками, превышает определенный порог. Поэтому, чтобы спровоцировать самку на половое размножение, достаточно поместить ее в воду, взятую из аквариума, где плотность популяции коловраток высока.

Эволюция. Классические идеи в свете новых открытий

КоловраткаBrachionus calyciflorus поедает колонию нитчатых цианобактерий Anabaena. Коловратка несет на себе два крупных партеногенетических яйца.

У коловраток Brachionusварьирует склонность к тому или другому способу размножения, и эти вариации наследственные. Это значит, что выбранный коловраткой способ размножения зависит не только от среды, но и от генов: встречаются клоны самок, легко и быстро переходящие к половому размножению, тогда как другие клоны делают это менее охотно.

Эти особенности делают коловраток удобным объектом для экспериментального изучения эволюции пола. Выше мы говорили, что эффект Фишера — Мёллера лучше проявляется в переменчивой среде: в этих условиях половое размножение становится более выгодным ( Pylkov et al., 1998; Lenormand, Otto, 2000; Agrawal, 2009). Суть идеи в следующем. Допустим, популяция состоит из двух частей (субпопуляций), живущих в разных условиях, причем между частями существует обмен особями (миграция). В каждой из двух субпопуляций отбор благоприятствует разным комбинациям генов (точнее, генетических вариантов — аллелей). Если особь мигрирует из одной субпопуляции в другую, некоторые ее гены окажутся в новых условиях вредными, снижающими приспособленность. Поэтому всем остальным генам данной особи будет выгодно избавиться от этого груза и найти себе более подходящую «компанию», т. е. объединиться с генами аборигенов, лучше приспособленными к местным условиям. Этого легко добиться при помощи полового размножения, но совершенно невозможно, если вы размножаетесь партеногенезом. Поэтому, если миграции происходят достаточно регулярно, любая мутация, повышающая склонность особей к половому размножению, имеет шанс распространиться в популяции и вытеснить конкурирующий аллель, снижающий частоту полового размножения.

Биологам из Канады и Германии удалось получить экспериментальное подтверждение этой идеи в ходе экспериментов с коловратками Brachionus calyciflorus. Подопытные коловратки были выведены из яиц, собранных в одной природной популяции. Ранее было показано, что в этой популяции есть наследственная изменчивость по склонности к сексу, а раз есть наследственная изменчивость, то возможна и эволюция под действием отбора.

Эволюция. Классические идеи в свете новых открытий

Жизненный цикл коловраток классаMonogononta . ИзBecks, Agrawal, 2010 .

Ученые вывели из собранных яиц 120 лабораторных популяций, изначально одинаковых по своим свойствам и уровню изменчивости. Часть популяций затем выращивали в однородных, часть — в разнородных условиях в течение 14 недель, что соответствует примерно сотне поколений. Численность каждой популяции поддерживалась на уровне около 10 тыс. особей.

Разнородные условия были смоделированы следующим образом. Популяцию делили на две части (субпопуляции). Одну часть помещали в богатую питательную среду, а другую — в бедную. Богатство среды определялось количеством одноклеточных водорослей, которыми питаются коловратки, а количество водорослей — концентрацией азота в воде. Время от времени в каждом аквариуме часть воды заменяли на свежую питательную среду, чтобы количество пищи оставалось примерно постоянным. Миграции между субпопуляциями осуществлялись путем еженедельного пересаживания части коловраток и их яиц из одного аквариума в другой. Использовали два разных уровня миграции: 1 % и 10 % особей за поколение.

В «однородных» экспериментах все делалось точно так же, за исключением того что среда в обоих аквариумах была одинаковая: либо богатая, либо бедная.

Исследователи следили за изменениями частоты полового размножения и «наследственной склонности» к нему в каждой популяции. Реальную частоту определяли по соотношению амиктических (неоплодотворенных) и покоящихся (оплодотворенных) яиц. Изменения «наследственной склонности» (частот аллелей, регулирующих склонность к половому размножению) определяли при помощи индивидуального тестирования клонов коловраток. Из каждой популяции брали по 84 самки и выводили из них небольшие партеногенетические клоны. Затем в воду, где жили эти клоны, добавляли немного воды из аквариума с высокой плотностью самок (как уже говорилось, это стандартный способ сексуальной стимуляции коловраток) и подсчитывали число клонов, перешедших к половому размножению.

В начале эксперимента подопытные популяции продемонстрировали высокую готовность к сексу: более 80 % клонов переходили к половому размножению при стимуляции. Через шесть недель в популяциях, живших в однообразной среде, этот показатель упал до 60 %, еще через шесть недель — до 40 %. Таким образом, в однородной среде коловратки эволюционировали в сторону отказа от секса. Этот процесс шел с одинаковой скоростью как в бедной, так и в богатой среде.

В популяциях, живших в разнообразной среде, через 6 и 12 недель после начала эксперимента наблюдался более высокий уровень полового размножения. Он тоже снизился по сравнению с исходным, но совсем ненамного. По истечении 12 недель 70 % клонов в этих популяциях по-прежнему были готовы перейти к половому размножению в ответ на соответствующий стимул. Уровень миграции (1 % или 10 % мигрантов на поколение) не повлиял на результаты эксперимента.

Почему частота полового размножения все-таки снизилась даже в этих популяциях? Возможно, это объясняется тем, что природная популяция коловраток, из которой были выведены лабораторные, живет в еще более разнородных условиях, чем те, что были созданы в эксперименте.

По прошествии 14 недель авторы объединили все экспериментальные популяции, хорошенько перемешали и снова разделили на 120 изолированных линий. Склонность к сексу в этих линиях изначально была около 45–50 %. Их опять поместили в однородные или разнородные условия. В первом случае частота полового размножения продолжала снижаться, во втором — начала расти. Таким образом, содержание в разнородных условиях может не только замедлять снижение частоты полового размножения, но и приводить к ее росту.

По-видимому, для таких разнородных условий, которые были созданы в эксперименте, устойчивая или равновесная частота полового размножения находится где-то между 55 и 70 %. Если частота оказывается ниже равновесного уровня, «гены полового размножения» получают селективное преимущество над «генами асексуальности», и наоборот. В однородных условиях равновесный уровень составляет не более 25–30 % (до этой отметки упала склонность к сексу у подопытных популяций к концу 20-й недели), а может быть и вовсе равен нулю. Исследователи допускают, что если бы они продолжили эксперимент, то, наверное, смогли бы вывести коловраток, полностью утративших интерес к сексу, подобно тому как это произошло с бделлоидными коловратками.

Полученные результаты согласуются с идеей о том, что половое размножение помогает разбивать комбинации генов, подходящие для одних условий, но невыгодные в других. Это подтверждается, в частности, тем, что коловратки, жившие в течение 15 недель в однородной (бедной или богатой) среде, действительно адаптировались к этим условиям. Адаптированность оценивали по среднему числу потомков, производимых одной самкой в течение жизни. Коловратки, приспособившиеся к богатой среде, производят в ней в среднем около девяти потомков за жизнь, но, если их пересадить в бедную среду, их репродуктивный успех падает до пяти потомков. Самки, адаптировавшиеся к бедной среде, производят около шести потомков, а если их пересадить в богатую среду, их плодовитость падает до 5,5. Следовательно, разные условия действительно способствовали отбору разных аллелей.

По-видимому, разнообразие условий среды является важным фактором, не позволяющим большинству организмов отказаться от секса.

—————

Дрожжи занимаются сексом не от хорошей жизни

Хотя вопрос о том, почему большинство живых существ предпочитают сложный процесс полового размножения простому бесполому, продолжает оставаться любимой головоломкой эволюционистов-теоретиков, в общем виде эта задача была решена, по-видимому, еще Августом Вейсманом в конце XIX века ( Weismann, 1889). Вейсман предположил, что секс увеличивает разнообразие потомства, тем самым предоставляя материал для отбора и повышая его эффективность, что позволяет организмам быстрее адаптироваться.

Сегодня, по прошествии века с четвертью, можно сказать, что гипотеза Вейсмана при всей ее расплывчатости и неконкретности в целом подтвердилась. Правда, попытки ее конкретизировать породили новые проблемы. Появилось несколько конкурирующих теорий, которые по-разному оценивают влияние полового размножения на эффективность разных форм отбора. Одни модели, как мы уже знаем, видят в сексе прежде всего способ ускоренного накопления полезных мутаций (повышение эффективности положительного отбора). Другие подчеркивают роль секса в отбраковке вредных мутаций (отрицательный отбор). Поставить эксперимент, который позволил бы разделить эти два эффекта, трудно, потому что мы не умеем напрямую регулировать соотношение полезных и вредных мутаций у подопытных организмов. Можно, однако, регулировать его косвенно, меняя степень благоприятности среды. «Благоприятность» означает, что организмы хорошо приспособлены именно к такой среде, многие их гены подогнаны к ней оптимальным образом. Поэтому в идеальных условиях вероятность появления полезных мутаций минимальна. В неблагоприятной среде частота полезных мутаций должна быть выше: случайные перемены с большей вероятностью пойдут на пользу организму, если ему живется плохо. Что касается вредных мутаций, то они в обоих случаях должны возникать намного чаще, чем полезные. Однако их средняя «вредность», скорее всего, будет меньше, если условия благоприятны. Дело в том, что живые организмы, как правило, имеют «запас прочности». Например, у дрожжей из бооо генов только 1000 абсолютно необходимы для выживания в идеальных условиях. Все остальные нужны для борьбы с разного рода трудностями, т. е. для жизни в неоптимальной среде ( Hillenmeyer et al., 2008). Ясно, что мутации, нарушающие работу этих «дополнительных» генов, будут в среднем более вредными в стрессовых условиях, чем в оптимальных.

Все эти соображения были учтены Джереми Греем и Мэттью Годдардом из Оклендского университета (Новая Зеландия) при планировании эволюционного эксперимента, в ходе которого они попытались сравнить влияние секса на эффективность положительного и отрицательного (стабилизирующего) отбора ( Gray, Goddard, 2012).

В эксперименте использовались линии дрожжей, различающиеся по скорости мутирования и по способности к сексу. Наряду с обычными, «дикими» дрожжами, у которых средняя частота мутирования составляет 6,9×10 −8мутаций на пару нуклеотидов за поколение (в геноме дрожжей 1,2×10 7пар нуклеотидов), использовались дрожжи с удаленным геном MSH2. Этот ген участвует в исправлении ошибок в ДНК, поэтому его удаление привело к десятикратному ускорению мутагенеза — до 7,3×10 −7мутаций на пару нуклеотидов за поколение.


Эволюция. Классические идеи в свете новых открытий

Жизненный цикл дрожжейSaccharomyces cerevisae .


Кроме того, чтобы лишить часть подопытных линий способности к сексу, авторы удалили у них два гена ( SPO11и SPO13), необходимых для мейоза. В результате получились «бесполые» дрожжи, не отличающиеся от обычных ни по скорости размножения, ни по другим существенным характеристикам. Дрожжи размножаются бесполым путем (почкованием), пока им хватает пищи. Голодание стимулирует мейоз, в результате которого диплоидная клетка превращается в четыре гаплоидные споры. Гаплоидные клетки подразделяются на два пола (a и α). Разнополые клетки сливаются попарно, образуя зиготу, после чего цикл повторяется. Генно-модифицированные бесполые дрожжи при голодании тоже пытаются превратиться в споры, но вместо четырех гаплоидных спор у них получаются две диплоидные, вполне жизнеспособные и не нуждающиеся в слиянии с кем бы то ни было.

Всего, таким образом, авторы получили дрожжевые клетки четырех типов:

1) способные к сексу, с низкой скоростью мутирования;

2) способные к сексу, с высокой скоростью мутирования;

3) бесполые, с низкой скоростью мутирования;

4) бесполые, с высокой скоростью мутирования.

Половину подопытных популяций выращивали в благоприятных условиях (при температуре 30 °C в несоленой среде), остальные поместили в стрессовые условия (37 °C, 1,17 % NaCl). В общей сложности в эксперименте приняли участие 24 подопытные популяции: по три популяции каждого из четырех типов эволюционировали в благоприятных и столько же — в стрессовых условиях. Эксперимент продолжался в течение 300 бесполых поколений, между которыми были равномерно распределены 11 раундов полового размножения. Все популяции одновременно подвергались голоданию, что стимулировало образование гаплоидных спор у обычных дрожжей и диплоидных — у бесполых.

Авторы следили за тем, как меняется приспособленность дрожжей по сравнению с предковым штаммом. Для этого подопытные дрожжи смешивали с предками в пропорции 1:1 и измеряли относительную скорость размножения эволюционировавшей популяции.

В благоприятных условияхни способность к половому размножению, ни скорость мутагенеза не повлияли на ход эволюции. Приспособленность дрожжей всех четырех типов лишь слабо колебалась и спустя 300 поколений осталась на исходном уровне.

Это значит, что полезные мутации, по-видимому, почти не возникали (как и следовало ожидать в благоприятных условиях), и положительному отбору нечего было поддерживать. Результат соответствует общепринятому мнению, что в оптимальных условиях отрицательный отбор преобладает над положительным. Скорость мутирования, даже искусственно повышенная, вероятно, оказалась все же недостаточной, чтобы вызвать генетическое вырождение за 300 поколений.

В неблагоприятных условияхкартина получилась другая. Наблюдался рост приспособленности у дрожжей, способных к сексу, — как у обычных, так и у «мутаторов». У бесполых дрожжей с низкой скоростью мутирования рост приспособленности был выражен намного слабее. Что же касается бесполых линий с повышенной скоростью мутирования, то их приспособленность снижалась: началось генетическое вырождение.

Рост приспособленности свидетельствует о накоплении полезных мутаций. Очевидно, в неблагоприятных условиях случайные мутации действительно оказываются полезными чаще, чем в оптимальных. Эксперимент подтвердил, что половое размножение повышает эффективность положительного отбора, помогая накапливать полезные мутации. Это видно из того, что обычные дрожжи приспособились к стрессовым условиям лучше, чем бесполые.

То, что в неблагоприятных условиях у бесполых дрожжей-мутаторов началось вырождение, говорит о том, что в такой ситуации отрицательный отбор уже не мог справиться с отбраковкой вредных мутаций, и они начали накапливаться. Тем временем точно такие же дрожжи, но только способные к сексу, в таких же условиях быстро повышали свою приспособленность. Из этого следует, что в неблагоприятных условиях важную роль играют обе формы отбора, причем половое размножение повышает эффективность обеих.

—————

Микробам — горизонтальный перенос, высшим организмам — половое размножение

Рассмотренные примеры говорят о пользе скрещивания и перемешивания генов при половом размножении. Но у бактерий и архей вместо настоящего амфимиксиса работает горизонтальный перенос. Будет ли секс и в этом случае выполнять ту же функцию — быстро приспосабливать организмы к изменившимся условиям? Если это так, то ГПГ у микробов должен быть очень широко распространен и практиковаться не только между популяциями, но главным образом между особями одной популяции. Полезный аллель, который легко позаимствовать, скорее всего, окажется у близкого собрата.

Традиционно преобладала точка зрения, что отбор у бактерий все-таки в основном клональный, действующий на уровне целых геномов. Это значит, что ГПГ не играет существенной роли в повседневных «попытках» прокариот приспособиться к изменчивой среде. Эта гипотеза теперь, при нынешнем развитии биотехнологий, легко проверяема. Такой труд взяли на себя биологи из Массачусетского технологического института: они показали, что традиционная точка зрения неверна или верна только отчасти и что в своей повседневной переменчивой жизни микробы то и дело заимствуют гены у своих ближайших родичей — других микробов той же популяции ( Shapiro et al., 2012).

Биологи работали с двумя популяциями морских планктонных бактерий Vibrio cyclitrophicus. Эти популяции, обозначаемые буквами L и S, находятся в процессе адаптации к разным экологическим нишам: часть бактерий приурочена к крупным (L), а другая — к мелким (S) частицам, отфильтрованным из морской воды. Результаты генетического анализа говорят о том, что разошлись они недавно ( Hunt et al., 2008). По-видимому, популяции L и S приспосабливаются к жизни на разных представителях зоо- или фитопланктона [41].

Авторы решили выяснить, какой из двух процессов преобладает на начальных этапах экологической дифференциации — отбор отдельных генов с удачными мутациями, которые распространяются за счет ГПГ, или клональный отбор, работающий с целыми геномами.

Различить эти две ситуации можно, сравнив внутри- и межпопуляционный генетический полиморфизм (вариабельность) изучаемых популяций. Если преобладает отбор на уровне генов, две популяции должны четко отличаться друг от друга по небольшому числу генов — тех, от которых зависят экологические свойства популяций. При этом различающиеся участки генома должны иметь пониженный уровень внутрипопуляционного полиморфизма хотя бы в одной из двух популяций. Ведь на каждый такой участок действовал отбор, который поддерживал какой-то один вариант этого участка, вытесняя из генофонда другие его варианты (см. раздел «Следы естественного отбора» в главе 2). Напротив, те участки генома, которые у двух популяций сходны, должны быть более полиморфными в пределах каждой популяции, причем наборы вариантов (аллелей) могут быть одинаковыми в двух популяциях. Ведь отбор, связанный с приспособлением к новой нише, на них не действовал и они могли сохранить исходный полиморфизм, накопленный предками.

Если же в процессе расхождения популяций преобладал клональный отбор, то и уровень полиморфизма, и генетические различия между популяциями должны быть распределены по геному более равномерно.

Авторы отсеквенировали геномы 13 бактерий из популяции L и семи особей из популяции S. Сравнение геномов подтвердило первую версию: в недавней эволюции двух бактериальных популяций явно преобладал отбор на уровне отдельных генов. Следовательно, имел место интенсивный ГПГ между родственными микробами. Вот некоторые факты, на которых основан этот вывод.

Обнаружено 725 нуклеотидных позиций, в которых у микробов L всегда стоит какой-то один нуклеотид, а у микробов S — другой. Эти 725 позиций назвали «экоснипами» (ecoSNPs [42]), поскольку именно они, скорее всего, отвечают за приспособление к различающимся условиям. Экоснипы не рассеяны по геному хаотически, а сгруппированы в 11 кластеров. Внутри каждого кластера хотя бы у одной из двух популяций наблюдается пониженный уровень полиморфизма, что свидетельствует о недавнем действии положительного отбора.

Все прочие SNP (полиморфные нуклеотидные позиции), в числе 28 744 штук, равномерно рассеяны по геному и варьируют сходным образом и у L-экотипа, и у S-экотипа. Например, в какой-то позиции нуклеотид Ц может стоять у шести, а нуклеотид Г — у семи бактерий L, тогда как в популяции S нуклеотид Ц обнаружен у трех бактерий, а Г — у четырех.

Это соответствует предположению о том, что отбор в сочетании с ГПГ распространял отдельные участки ДНК с удачными мутациями, а не целые геномы. При этом в остальных участках генома сохранялся исходный полиморфизм, имевшийся у предковой популяции.

Другой важный вывод состоит в том, что генетический обмен между популяциями в последнее время происходит редко по сравнению с обменом внутри популяций. В прошлом, когда популяции еще не окончательно разошлись по экологическим нишам, межпопуляционный обмен происходил чаще.

Эволюция. Классические идеи в свете новых открытий

Модель экологической дифференциации двух популяций морской бактерииVibrio cyclitrophicus . Тонкие белые и черные стрелки символизируют внутри- и межпопуляционный ГПГ. Толстые стрелки показывают появление (в результате мутации или ГПГ) адаптивных аллелей, облегчающих жизнь в двух разных местообитаниях. ИзShapiro et al., 2012 .

Стало быть, пора пересмотреть некоторые устоявшиеся представления. Во-первых, выясняется, что на генетическом уровне эволюционные процессы у прокариот с их ГПГ и эукариот, размножающихся половым путем, различаются не так уж сильно. В обоих случаях отбор идет в основном на уровне отдельных фрагментов ДНК, а не целых геномов.

Во-вторых, стало ясно, что генетический обмен между родственными микробами (представителями одной и той же популяции) идет очень активно, фактически выполняя ту же функцию, что и половой процесс у высших организмов. При этом важнейшую роль играет гомологичная рекомбинация, благодаря которой заимствованные гены не добавляются к уже имеющимся, а заменяют собой свои «старые версии».

В-третьих, высокая частота внутрипопуляционного ГПГ по сравнению с межпопуляционным говорит о том, что у бактерий, приспосабливающихся к разным экологическим нишам, формируется частичная репродуктивная изоляция — совсем как у высших организмов в процессе симпатрического видообразования (см. главу 6). Эта изоляция основана не только на том, что микробы с разными адаптациями живут в разных местах и поэтому редко встречаются, но и на том, что по мере накопления нуклеотидных различий снижается вероятность гомологичной рекомбинации. По-видимому, прокариот все-таки нельзя считать «единым сверхполиморфным видом» (как предлагали некоторые теоретики, исходившие из предположения, что микробы обмениваются генами с кем попало независимо от степени родства). У прокариот, как и у высших организмов, могут существовать частично изолированные популяционные генофонды.

Что же касается случаев ГПГ между неродственными микробами, то они, по-видимому, представляют собой лишь вершину айсберга — легко обнаруживаемый и имеющий важные эволюционные последствия, но все-таки сравнительно редкий побочный эффект способности микробов заимствовать гены у своей ближайшей родни.

Получены и другие данные, указывающие на неожиданно высокие темпы внутривидового ГПГ и гомологичной рекомбинации у бактерий ( Fell et al., 2000; Takuno et al., 2012; Yahara et al., 2012) и архей ( Papke et al., 2004). Конечно, интенсивность генетического обмена у них все равно гораздо ниже той, что характерна для эукариот, практикующих амфимиксис. Главный вывод из этих работ состоит в том, что секс у прокариот играет, по-видимому, ту же роль, что и у эукариот. Он повышает адаптационные возможности организмов путем разрушения связей между полезными и вредными мутациями и позволяет отбору работать с отдельными генами, а не с целыми геномами. Более того, благодаря положительной корреляции между сходством последовательностей ДНК и вероятностью гомологичной рекомбинации (напомним, что это исходный, предковый механизм выбора брачного партнера) ( Majewski et al., 2000; Dubnau, 1999; Thomas, Nielsen, 2005) у микробов формируются хорошо перемешанные видовые генофонды, к которым приложимы классические популяционно-генетические подходы ( Jeltsch, 2003).

Даже родственные микробы, живущие в одних и тех же местообитаниях, могут подразделяться на популяции с полуизолированными генофондами, подобные «биологическим видам» эукариот. Это показано не только для морских бактерий Vibrio, но и для других микробов — например, для совместно встречающихся разновидностей архебактерий Ferroplasma [43]( Eppley et al., 2007).

От горизонтального переноса генов к половому размножению

Горизонтальный перенос генов был всегда. Как ни парадоксально, он мог появиться даже раньше самой жизни! На это указывают результаты исследований, проводимых в рамках теории РНК-мира (о ней рассказано в «Рождении сложности»).

Моментом зарождения жизни логично считать момент появления первого репликатора — сообщества молекул РНК, помогавших друг другу размножаться. Чем больше мы узнаем о свойствах рибозимов(молекул РНК, способных выполнять активную «работу» подобно белковым ферментам), тем яснее становится, что рибозимы — великие мастера по части разрезания, перекомбинирования и сшивания фрагментов РНК, т. е. по части рекомбинации. Репликация, или матричный синтез, — сборка комплементарных молекул РНК из отдельных нуклеотидов — дается им с гораздо большим трудом. Скорее всего, размножение первых репликаторов было основано не столько на матричном синтезе — репликации РНК, сколько на рекомбинации — сборке молекул, комплементарных матрице, из подходящих фрагментов — олигонуклеотидов ( Vaidya et al., 2012).

Без постоянного обмена участками между рибозимами эволюция жизни, наверное, даже не смогла бы стартовать. Поэтому мы и сказали, что секс, возможно, появился раньше жизни! Но об этих увлекательных предметах можно написать еще одну книгу, поэтому сейчас мы только попробуем разобраться с происхождением «настоящего» полового размножения — эукариотического амфимиксиса.

Хотя параллели между ГПГ и амфимиксисом очевидны, эти явления обычно считают аналогичными, но не гомологичными. То есть сходными, но имеющими разное происхождение.

Однако есть основания предполагать, что половое размножение могло напрямую произойтиот прокариотического ГПГ. Возможно, амфимиксис является закономерным итогом эволюции механизмов ГПГ. Попробуем обосновать эту гипотезу.

Прежде всего нужно выяснить, когдапоявился амфимиксис. Традиционно считалось, что первые эукариоты были бесполыми (апомиктическими) и размножались простым делением. Иными словами, постулировалось существование предковых апомиктических эукариот, которые затем постепенно приобрели амфимиксис, пройдя через те или иные промежуточные этапы ( Margulis, Sagan, 1986; Kondrashov, 1994).

Среди современных одноклеточных эукариот есть группы (воротничковые жгутиконосцы — предки животных, обыкновенные амебы и другие), представители которых никогда не размножаются половым путем — только простым делением. Думали, что по крайней мере часть этих бесполых групп являются первично-бесполыми, т. е. не утратившими половое размножение, а никогда его не имевшими. Однако в геномах всех этих групп нашлись «генетические рудименты» — следы наличия амфимиксиса в прошлом ( Schurko et al., 2009). Похоже, все современные эукариоты происходят от предков, практиковавших амфимиксис. Это позволяет предположить, что появление амфимиксиса предшествовало появлению эукариот или, может быть, оба события произошли одновременно.

Напомним, что «колыбелью» эукариотической клетки были древние микробные сообщества (бактериальные маты), а большой красной кнопкой, запустившей конвейер формирования эукариот, стал, вероятно, переход цианобактерий к кислородному фотосинтезу ( Марков, 2010). Для тогдашних живых существ кислород был ядом. Примерно 2,4–2,2 млрд лет назад произошла «великая кислородная революция», изменившая облик планеты. Атмосфера и гидросфера насытились кислородом, химические элементы перешли из восстановленных форм в окисленные. Многие микробы тогда вымерли, другие сохранились только в анаэробных (бескислородных) убежищах, а остальные приспособились к новому яду, причем разные прокариоты сделали это по-разному. Фотосинтезирующие бактерии выработали систему обезвреживания кислорода на основе молекулярных систем фотосинтеза (электроннотранспортных цепей) — так появилось кислородное дыхание. Другие бактерии приобрели другие защитные средства. Что касается предков эукариот, то они, по-видимому, поначалу спасались благодаря активному заимствованию чужих генов. В их эволюции был период необычайно интенсивного ГПГ. Они не только позаимствовали у соседей по микробному сообществу набор ферментов, позволяющих жить в присутствии кислорода, но и приобрели способность комфортно обустраивать в своих клетках симбионтов. В конце концов предки эукариот вступили в симбиоз с аэробной (дышащей кислородом) бактерией, которая дала начало митохондриям.

Таким образом, предки эукариот заимствовали много генов у неродственных микробов. Мы знаем, что у современных микробов в ходе ГПГ «незаконная рекомбинация» происходит реже, чем гомологичная, а у неродственных микроорганизмов гены заимствуются реже, чем у близких форм. Отсюда вывод: если предки эукариот активно заимствовали гены у неродственников, то со «своими» они, скорее всего, менялись генами еще чаще.

Мы предполагаем, что амфимиксис развился параллельно со становлением эукариотической клетки — как естественный итог развития механизмов ГПГ в условиях, когда отбор способствовал росту интенсивности генетического обмена. Чтобы пояснить эту мысль, нужно ответить на два ключевых вопроса. Начнем по порядку.


1. ПОЧЕМУ ОТБОР, ДЕЙСТВОВАВШИЙ НА ПРЕДКОВ ЭУКАРИОТ, ДОЛЖЕН БЫЛ СПОСОБСТВОВАТЬ ИНТЕНСИФИКАЦИИ ГЕНЕТИЧЕСКОГО ОБМЕНА МЕЖДУ РОДСТВЕННИКАМИ?

Мы уже знаем, что секс полезен, потому что помогает отбору избавляться от вредных мутаций и накапливать полезные. К этому нужно добавить, что полезные эффекты проявляются тем сильнее, чем больший процент генов подвергается «перетасовке» и обмену в каждом поколении. Если вы обмениваете 50 % своих генов (как эукариоты при половом размножении), это надежнее защитит вас от вырождения, чем при обмене 1 % или 10 % генов (а прокариоты едва ли способны на большее).

Что касается протоэукариот, то они подвергались особенно сильному риску генетического вырождения. Во-первых, на ранних этапах «кислородной революции» кислород в микробных сообществах уже появился, а озонового слоя в атмосфере еще не было. Следовательно, поверхность планеты и те мелководья, где жили цианобактериальные маты — колыбель эукариот, подвергались интенсивному ультрафиолетовому облучению. В присутствии кислорода под действием ультрафиолета образуются АФК (активные формы кислорода) — сильнейшие мутагены. Скорость мутирования должна была решительно вырасти, что повышало риск вырождения (ведь вредных мутаций всегда возникает намного больше, чем полезных).

Во-вторых, у протоэукариот по сравнению с их предками археями резко увеличился геном — точнее, его «полезная» часть, мутации в которой влияют на приспособленность. Он сложился из архейного генома и геномов прижившихся симбионтов. Между тем известно, что угроза генетического вырождения быстро растет по мере увеличения генома. Чем больше геном, тем больше в нем возникает вредных мутаций в каждом поколении (при неизменной скорости мутирования в расчете на нуклеотид).

Таким образом, угроза генетического вырождения должна была встать перед древними эукариотами в полный рост. Поскольку секс прекрасно защищает от этой угрозы, отбор должен был содействовать адептам сексуальной революции, делая генетический обмен все более интенсивным.


2. ПОЧЕМУ ОТБОР НА ИНТЕНСИФИКАЦИЮ ГПГ СПРОВОЦИРОВАЛ ПЕРЕХОД К АМФИМИКСИСУ?

Прокариотический секс не может достичь оптимальной (т. е. высокой) интенсивности по нескольким причинам. Среди них и риск приобретения неподходящих фрагментов ДНК, и засилье эгоистических элементов, контролирующих ГПГ, — таких как конъюгационные плазмиды, «заботящиеся» больше о собственном распространении, чем об интересах хозяина. Но самая удивительная (и возможно, важнейшая) причина в другом. Она связана с конфликтом интересов [44]между генами, участвующими в гомологичной рекомбинации. Когда бактерия заглатывает кусок ДНК и заменяет им гомологичный фрагмент собственной хромосомы, то это выгодно заимствованному фрагменту (он получает шанс размножиться), но в высшей степени невыгодно заменяемому фрагменту собственной хромосомы бактерии. Ведь он обречен на гибель, он будет разобран на нуклеотиды и не перейдет в следующее поколение.

Способность к активному заимствованию чужих генов (трансформации), как и другие признаки, находится под генетическим контролем. Иными словами, мутации могут влиять на частоту трансформации. Допустим, у бактерии есть ген (назовем его tr), от состояния которого зависит эта частота. Такие гены называют модификаторами. Ген trмодификатор трансформации. У него есть два аллельных варианта: tr+и tr−. Бактерии с аллелем tr+заимствуют чужие гомологичные гены и заменяют ими свои собственные. Бактерии с аллелем tr−этого не делают. Трансформация полезна — она дает все преимущества, о которых мы говорили выше. Какой же из двух аллелей победит в конкуренции? Какой из них зафиксируется, а какой элиминируется?

Моделирование показывает, что если бы ген tr сам не участвовал в трансформации, то непременно зафиксировался бы аллель tr+. Что и неудивительно, ведь он полезен.

К несчастью (для микробов), защитить его от трансформации практически нереально. Если уж бактерия меняет свои гены, то и ген — модификатор трансформации trтоже будет подлежать обмену. А теперь — внимание! — самое интересное. Аллель tr+в результате трансформации будет систематически заменяться аллелем tr−. А вот в обратную сторону генетический обмен работать не будет: ведь бактерии с аллелем tr−не трансформируются.

Получается, что аллель tr+— это ген-самоубийца. Он будет то и дело замещать себя своим конкурентом — аллелем tr−. «Хитрым» аллелем, который и другим генам не дает трансформироваться, но и себя никем не замещает.

Аллель tr−яркий пример эгоистичного гена. Его частота в генофонде популяции будет расти вопреки тому, что он вреден. Он вреден ровно в той мере, в какой при данных условиях полезен секс. Аллель tr−снижает приспособленность и особей, и популяции в целом, но все равно наращивает свою численность в генофонде — просто потому, что не практикует гибельное самозамещение, как его конкурент tr+, полезный всем, кроме самого себя.

В результате частота самой интересной и перспективной разновидности прокариотического секса (трансформации с гомологичной рекомбинацией) вынуждена оставаться низкой — гораздо ниже того уровня, который обеспечивает наилучшую защиту от вырождения. «Суицидальный эффект» генов — модификаторов трансформации не позволяет горизонтальному переносу генов достичь оптимального уровня интенсивности.

Та же логика работает и в отношении другого способа прокариотического секса — конъюгации. Мы не будем утомлять читателей детальной аргументацией этого тезиса: просто примите на веру или проверьте сами при помощи компьютерного моделирования или по литературным данным (обратите при этом внимание на хитрые адаптации, выработанные конъюгационными плазмидами для предотвращения попадания в зараженную клетку других плазмид — эти адпатации аналогичны нашему аллелю tr−).

Итак, налицо классический эволюционный тупик. Микробам с разросшимися геномами, подвергающимся к тому же воздействию сильных мутагенов, было бы выгодно перейти к более интенсивному генетическому обмену. Но они не могут этого сделать из-за конфликта интересов между теми генами, которые подлежат замене и уничтожению в ходе гомологичной рекомбинации, и геномом в целом. Интересы последнего совпадают с интересами особи и популяции, но все тщетно: отбор на уровне генов берет верх и над индивидуальным, и над групповым отбором.

Можно ли устранить конфликт интересов? Очевидно, для этого нужно сделать так, чтобы заменяемые гены не шли «на выброс», не погибали, а сохраняли в полной мере свой шанс перейти к потомкам. Тогда отбор уже не будет поддерживать возникающие в них мутации, препятствующие сексу. Но как этого добиться?

Вдумчивые читатели, наверное, уже догадались, что переход к амфимиксису — полногеномному взаимному генетическому обмену — как раз и является спасительным выходом из тупика.

В прокариотическом ГПГ участвуют один целый геном и обрывок другого. После обмена гомологичными участками остается опять-таки один целый (обновленный) геном и ненужные обрывки, которые некуда пристроить, которые годны только на запчасти-нуклеотиды. Для них все кончено, они уже не перейдут к потомкам. Любая мутация, защищающая ген от такой безысходной судьбы, получает шанс распространиться.

В полногеномном взаимном обмене участвуют два целых генома. После обмена гомологичными участками остается по-прежнему два целых генома. Это совсем другое дело! Теперь клетка, в которой находятся эти геномы, может просто поделиться, отправив в каждую из дочерних клеток по одному геному [45]. Еще и на репликации сэкономит, а главное — никто не обижен, никто не идет на выброс. Следовательно, нет и оснований для распространения мутаций, защищающих гены от рекомбинации.

Только переход к полногеномному взаимному генетическому обмену мог сделать интенсивную межорганизменную рекомбинацию эволюционно стабильной, т. е. защищенной от эгоистичных аллелей, подобных tr−. Именно это, как мы думаем, и произошло у древних эукариот.

Промежуточным звеном на пути от ГПГ к амфимиксису могла стать взаимная конъюгацияс образованием цитоплазматических мостиков и рекомбинацией геномной ДНК двух клеток ( Gross, Bhattacharya, 2010). Нечто похожее на такое промежуточное звено, а именно конъюгация с образованием цитоплазматических мостиков, передачей геномной ДНК и с возможностью каждой клетки быть как донором, так и реципиентом, обнаружено у галофильных (солелюбивых) архей Haloferax (Halobacterium) volcanii( Rosenshine et al., 1989; Ortenberg et al., 1998).

Итак, половое размножение эукариот, возможно, является не просто аналогом, а прямым наследником прокариотического секса.

Плата за секс, или Двойная цена самцов

Мы выяснили, что секс для жизни исключительно полезен. Он залог стабильности в нашем нестабильном мире. Но, как известно, бесплатный сыр бывает только в мышеловке. Чем же живые существа платят за возможность быстро приспосабливаться?

Микробы, изредка меняющие несколько своих генов на заимствованные у соседей копии, возможно, платят за секс немного. Особенно если учесть, что механизм гомологичной рекомбинации, основанный на комплементарности, снижает риск попадания в геном чего-то совсем уж неподходящего, а возможность использовать чужую ДНК просто в качестве пищи служит дополнительным бонусом. Цена невысока, но и выигрыш от такого секса невелик. Он выше у амфиктических, раздельнополых организмов. Но и платят они за секс гораздо больше. Платить приходится за самцов, и цена получается удвоенная.

Суть в том, что при прочих равных бесполое клональное размножение (или самооплодотворение) ровно в два раза эффективнее, чем перекрестное оплодотворение с участием самцов (см. рисунок). Эту проблему рассмотрел выдающийся эволюционист Джон Мэйнард Смит (1920–2004) в книге The Evolution of Sex(1978).

Эволюция. Классические идеи в свете новых открытий

Схема, иллюстрирующая «двойную цену самцов». У раздельнополых организмов половину потомства каждой самки составляют самцы, которые сами никакого потомства произвести не могут. При бесполом размножении все потомство состоит из самок (при самооплодотворении — из самостоятельно размножающихся гермафродитов). Поэтому при прочих равных размножение без участия самцов вдвое эффективнее, чем с самцами. На рисунке показана ситуация, когда каждая самка производит ровно двух потомков.

Получается, что самцы обходятся популяции непомерно дорого. Отказ от них дает значительный выигрыш в скорости размножения. Мы уже знаем, что переход от раздельнополости и перекрестного оплодотворения к бесполому размножению или самооплодотворению технически вполне возможен. Тому есть масса примеров как у растений, так и у животных. Однако бесполые расы и популяции самооплодотворяющихся гермафродитов почему-то до сих пор так и не вытеснили тех, кто размножается «обычным» образом, с участием самцов.

Из этого следует, что секс вообще (и раздельнополый секс в частности) должен давать настолько важные преимущества, что они перекрывают даже двойной проигрыш в эффективности размножения. Причем эти преимущества должны проявляться быстро, а не когда-нибудь через миллион лет. Повторим, что естественному отбору нет дела до отдаленных перспектив.

Еще о пользе секса, или Лучше меньше, да лучше

Рассмотрим пример, который показывает, что выигрыш от секса у раздельнополых организмов все равно перевешивает двойные потери в числе потомков. Такой пример нужно подбирать особенно тщательно, потому что нужен хороший контроль. В данном случае нужны две группы организмов (две популяции), одинаковые во всем, кроме одного — способности к сексу. И такие популяции биологам удалось создать.

Биологи из Орегонского университета ( Morran et al., 2009) работали с уже знакомым нам червем C. elegans. Эти прекрасные животные словно нарочно созданы для проверки гипотез о пользе секса. Как мы помним, у них нет самок. Популяции состоят из самцов и гермафродитов, причем последних больше. Гермафродиты производят сперматозоиды и яйцеклетки и могут размножаться без посторонней помощи путем самооплодотворения. Самцы производят только сперматозоиды и могут оплодотворять гермафродитов. В результате самооплодотворения на свет появляются только гермафродиты. При перекрестном оплодотворении половина потомства оказывается гермафродитами, половина — самцами. Частота перекрестного оплодотворения в популяциях C. elegansобычно не превышает нескольких процентов. Чтобы определить эту частоту, не нужно следить за интимной жизнью червей — достаточно знать процент самцов в популяции.

Эволюция. Классические идеи в свете новых открытий

У круглых червейCaenorhabditis elegans нет самок, а есть только самцы(вверху) и гермафродиты(внизу) . Гермафродитов можно отличить по тоненькому длинному хвостику.

Следует пояснить, что самооплодотворение — не совсем то же самое, что бесполое (клональное) размножение, однако различия между ними быстро сходят на нет в череде самооплодотворяющихся поколений. После этого потомство перестает отличаться от родителей генетически, точно так же, как и при клональном размножении.

У C. elegansизвестны мутации, влияющие на частоту перекрестного оплодотворения. Одна из них, xol-1, смертельна для самцов и фактически приводит к тому, что в популяции остаются только гермафродиты. Другая, fog-2, лишает гермафродитов способности производить сперму и фактически превращает их в самок. Популяция, в которой все особи несут эту мутацию, становится обычной раздельнополой популяцией, как у большинства животных.

Эволюция. Классические идеи в свете новых открытий

Схема экспериментальной установки. Молодых червей каждого нового поколения помещают в левую половину чашки(белый кружок) . Чтобы добраться до еды(серый овал) , они должны преодолеть барьер. Слабые особи, перегруженные вредными мутациями, не справляются с этой задачей. ИзMorran et al., 2009 .

Авторы при помощи классических методов (путем скрещиваний, а не генной инженерии) вывели две породы червей с почти одинаковыми геномами, различающимися только наличием мутаций xol-1и fog-2. У первой породы была мутация xol-1, и нематоды размножались только самооплодотворением. У второй имелась мутация fog-2, так что эти черви размножались только путем перекрестного оплодотворения. К каждой породе прилагалась третья, лишенная обеих мутаций (дикий тип, ДТ). У ДТ частота перекрестного оплодотворения около 5 %. С этими тройками были проведены следующие две серии экспериментов.

В первой сериипроверялась гипотеза о том, что перекрестное оплодотворение помогает избавляться от вредных мутаций. Эксперимент продолжался 50 поколений (червей, разумеется, а не экспериментаторов). Каждое поколение червей подвергалось действию химического мутагена — этилметансульфоната. Это увеличило частоту мутирования в четыре раза. Молодых животных помещали в чашку Петри, разделенную пополам барьером из крохотных кирпичиков (см. рисунок), причем червей сажали в одну половину чашки, а их пища (бактерии E. coli) находилась в другой половине. Таким образом, чтобы добраться до еды, а значит получить шанс выжить и оставить потомство, черви должны были преодолеть барьер. Тем самым экспериментаторы повысили эффективность очищающего отбора, который отсеивает вредные мутации. В обычных лабораторных условиях эффективность отбора низка, потому что черви окружены пищей со всех сторон. Это позволяет выжить даже очень слабым животным, перегруженным вредными мутациями. В новой экспериментальной установке этой уравниловке был положен конец. Чтобы преодолеть стенку, червь должен быть здоров и крепок.

Ученые сравнивали приспособленность червей до и после эксперимента, т. е. у особей первого и пятидесятого поколения. Червей C. elegansможно хранить в замороженном виде. Это очень удобно. Пока длился эксперимент, выборка червей первого поколения спокойно лежала в морозильнике. Приспособленность измеряли так: червей смешивали в равной пропорции с контрольными червями дикого типа, в геном которых был вставлен ген светящегося белка, и сажали в экспериментальную установку. Животным давали время, чтобы преодолеть барьер и размножиться, а затем определяли процент несветящихся особей в потомстве. Если этот процент увеличился в пятидесятом поколении по сравнению с первым — значит, в ходе эксперимента приспособленность выросла, если уменьшился — значит, имело место вырождение. В результате получилось, что искусственно повышенная скорость мутирования привела к вырождению (снижению приспособленности) всех пород червей, кроме «облигатных перекрестников». Эксперимент показал, что перекрестное оплодотворение — мощное средство борьбы с «генетическим грузом».

Даже тем линиям, у которых мутагенез не был искусственно ускорен, высокая частота перекрестного оплодотворения дала преимущество. В обычных лабораторных условиях это преимущество не проявляется, потому что червям не нужно перелезать через стенки, чтобы добраться до корма. Однако в условиях эксперимента у «облигатных самооплодотворителей» даже без повышения скорости мутирования произошло вырождение.

Кроме того, частота перекрестного оплодотворения у «диких» пород в ходе эксперимента выросла по сравнению с исходными на 5 %. Это, пожалуй, самый важный результат. Он означает, что в жестких условиях преимущество получают особи, размножающиеся путем перекрестного оплодотворения. Их потомство оказывается более жизнеспособным, и поэтому в ходе эксперимента автоматически идет отбор на склонность к перекрестному оплодотворению.

Таким образом, этот эксперимент подтвердил гипотезу о том, что секс выгоден популяции, несмотря на «двойную цену самцов». Он помогает популяции избавляться от вредных мутаций и эффективно приспосабливаться к жизненным неурядицам.

Во второй серииэкспериментов проверялось, помогает ли перекрестное оплодотворение вырабатывать адаптации путем накопления полезных мутаций. На этот раз червям, чтобы добраться до пищи, нужно было преодолеть зону, заселенную бактериями Serratia. Эти бактерии, попадая в пищеварительный тракт C. elegans, вызывают у червя смертельное заболевание.

Чтобы выжить, черви должны были либо научиться не глотать вредных бактерий, либо выработать устойчивость к ним. Какой из вариантов они выбрали — неизвестно, но за 40 поколений черви, практикующие секс, отлично приспособились к новым условиям, черви дикого типа приспособились хуже, а облигатные гермафродиты не приспособились совсем: их выживаемость в среде с вредными бактериями осталась на исходном низком уровне. И снова в ходе эксперимента у диких червей увеличилась частота перекрестного оплодотворения.

Таким образом, перекрестное оплодотворение действительно помогает популяции приспосабливаться к меняющимся условиям, в данном случае — к появлению болезнетворного микроба. Тот факт, что в ходе эксперимента у дикого типа увеличилась частота перекрестного оплодотворения, означает, что спаривание с самцами (в противовес самооплодотворению) дает гермафродитам преимущество, перевешивающее «двойную цену», которую им приходится платить, производя на свет самцов.

Как видим, выводы совпадают с результатами экспериментов на дрожжах, в которых тоже было показано, что секс способствует и отбраковке вредных мутаций, и накоплению полезных. Скорее всего, эти два эффекта взаимосвязаны и их не следует противопоставлять друг другу. Секс перетасовывает гены, позволяя отбору «отделять зерна от плевел» — распространять гены с полезными мутациями, одновременно избавляясь от генов с мутациями вредными. Это две стороны одной медали, и какая из них окажется более важной в данном месте и в данное время, зависит от многих факторов, включая темп мутагенеза и благоприятность условий.

Читатель может возразить, что искусственные мутантные популяции и выдуманные для них трудности далеки от реальных природных условий. Но и природа, как показывают натурные исследования, против отказа от самцов, она велит относиться к ним бережно. Это доказывают печально известные факты из истории видов, на которые велась активная охота. Один из таких видов — азиатский сайгак. До середины ХХ века охотники в равной степени выбивали самцов и самок. После снижения численности охоту на этот вид резко ограничили, но браконьеры все равно продолжали отстреливать самцов сайгаков — за их рога отлично платили изготовители эзотерических восточных снадобий. Но отстреливали только лучших самцов с красивыми и большими рогами. Другие, те, что поплоше, оставались, и именно им выпала честь оставлять свои гены потомству. В этом случае проигрыша в числе потомков нет, так как ни самок, ни детенышей не отстреливают. Есть только на первый взгляд эфемерный и не поддающийся количественной оценке ущерб от снижения качества генов, привносимых самцами. Ясно, что в генофонд популяции поступала не самая качественная часть, качественной распоряжались браконьеры. В результате там, где браконьеры хозяйничали особенно активно, стало явным вырождение животных и катастрофическое снижение их численности. Там, где велась регулируемая законная охота, признаков вырождения нет и численность популяций хоть и снизилась в 1970-е годы, но остается относительно стабильной ( Мельников, Сидоров, 2009).

Секс против паразитов

Как мы уже знаем, секс особенно полезен в нестабильных условиях. Одним из мощных факторов нестабильности является эволюционная гонка вооружений с паразитами. Эволюционируя, паразиты меняют «условия среды» для своих жертв. Вырабатывая новые адаптации, паразит как бы спихивает жертву вниз с завоеванных ею высот на ландшафте приспособленности. При этом приспособленность жертвы падает, но вероятность появления новых полезных мутаций (защищающих от паразита) повышается. Поэтому многие считают, что именно паразиты не позволяют большинству живых существ отказаться от секса. Нужно помнить, что паразиты вездесущи и вероятность умереть от паразитарных инфекций для многих организмов существенно выше, чем от хищника или несчастного случая.

Паразиты беспрестанно «изобретают» новые способы повышения своей вирулентности, поэтому хозяевам приходится бесконечно совершенствовать способы защиты. К этой ситуации приложима гипотеза Черной Королевы [46], выдвинутая американским палеонтологом Ли ван Валеном в 1970-х годах. Хищники и жертвы, хозяева и паразиты находятся в постоянном соревновании — кто быстрее изобретет новые средства нападения и защиты, у кого они окажутся эффективнее. Стоит одной стороне замедлить свое эволюционное движение, как преимущество получает вторая сторона, а первая проигрывает: популяция теряет численность и вымирает. Половое размножение служит надежным подспорьем в этой гонке вооружений, в коэволюционном процессе.

Гипотеза о том, что именно паразиты «заставляют» организмы неизменно обращаться к сексу, получает все больше подтверждений. Эффективность полового размножения для поддержания устойчивости к инфекциям сначала была показана с помощью моделирования ( Hamilton et al., 1990). Но все же факты убедительнее, чем модели.

Первые прямые подтверждения «паразитарной» гипотезы были получены на рыбках пецилиопсисах. Они страдают от паразитических червей — трематод, вызывающих появление на коже белых пятен. Так что степень зараженности легко увидеть и проконтролировать.

В разных прудах обитали пецилиопсисы, размножающиеся как бесполым путем (партеногенетически), так и половым. Самыми зараженными были именно бесполые популяции, а те, кто размножался половым путем, вместе с одним малочисленным бесполым клоном, оказались менее подвержены инфекции. Очевидно, что для противодействия паразитам нужно постоянно разнообразить и обновлять способы защиты, а такую возможность имеют те, кто размножается половым путем. Слабоинфицированный редкий клон также оказался вне «интересов» паразита. Паразиту выгоднее выработать высокую вирулентность к массовому хозяину, чем к экзотическим единицам. Поэтому отбор поддерживал у паразитов такие наследственные изменения, которые позволяли им эффективно заражать массового хозяина, не имеющего возможности быстро приспособиться и противостоять постоянно обновляемым способам заражения.

Природа сама поставила эксперимент, подтвердивший необходимость секса и создаваемого им генетического разнообразия. В 1976 году случилась засуха, пруды — естественные местообитания пецилиопсисов — пересохли. В одном из прудов выжило лишь несколько рыбок. Их потомство впоследствии составило все население пруда. Получилась популяция с очень низким уровнем генетического разнообразия. Рыбки размножались половым путем — но что толку, если гены у всех одинаковые? Пецилиопсисы в этом пруду были сильно заражены трематодами. Но стоило ученым подсадить в пруд нескольких чужеродных и склонных к сексу самок, как ситуация кардинально улучшилась. Генетическое разнообразие рыб повысилось, и рыбы перестали болеть ( Lively et al., 1990).

Недавно Курт Лайвли из Университета Индианы и его коллеги представили еще более убедительное доказательство преимуществ секса перед лицом инфекционной опасности. Мало того, ученым удалось показать, что присутствие паразитов делает секс необходимым условием выживания вида ( Morran et al., 2011).

Опыты проводились все на том же универсальном объекте — черве C. elegans. В качестве стартовой точки были взяты естественные популяции с уровнем перекрестного оплодотворения около 20 %. Их подвергли воздействию паразита, смертельного для нематоды. Причем воздействие было двух типов. В первом случае популяцию в течение ряда поколений заражали одним и тем же штаммом бактерии, а во втором — отбирали все более вирулентных паразитов. Метод отбора бактерий на вирулентность изящен и прост — паразитов брали с трупов нематод, погибших в течение первых суток. Иными словами, тех, против которых не сработали имеющиеся системы защиты. Первый случай получил в статье условное наименование «эволюция», а второй — «коэволюция». Осталось измерить, как менялась в ряду поколений доля нематод, размножающихся путем перекрестного и самооплодотворения.

Эволюция. Классические идеи в свете новых открытий

Так меняется доля скрещивающихся особей в ряду поколений нематод. Контроль показывает природную популяцию, которую не подвергали действию паразитов; эволюция — природную популяцию поместили в условия стабильной инфекции; коэволюция — нематод подвергли действию паразита, постоянно увеличивающего свою вирулентность. ИзMorran et al., 2011 .

Результат оказался в высшей степени предсказуемым. Контрольная популяция поддерживала постоянный, исходный уровень сексуальности. В популяции, в которой вирулентность паразитов оставалась постоянной, в течение первых десяти поколений доля скрещивающихся особей резко увеличилась (до 80 %), а затем вернулась на прежний 20-процентный уровень. Наконец, в популяции, где паразиты эволюционировали, доля скрещивающихся особей за десять поколений тоже достигла отметки 80 %, но после не снизилась, а продолжала увеличиваться. Через 20 поколений она достигла 90 %.

Если популяцию, состоящую только из гермафродитов, лишенных способности к перекрестному оплодотворению и обмену генами, поставить в условия коэволюции, через 20 поколений все черви погибнут. Наоборот, в популяции червей, практикующих только перекрестное оплодотворение, смертность от паразита через 30 поколений оказывается самой низкой.

Таким образом, интенсивный обмен генами, обеспечиваемый половым размножением, определяет способность популяции сопротивляться инфекциям. В условиях постоянного присутствия эволюционирующих паразитов отказ от секса ведет к вымиранию. В данном контексте паразитов можно заменить и хищниками, и конкурентами, и даже изменчивыми абиотическими факторами.

У бесполых организмов убыль выше прибыли

До сих пор мы вели разговор о преимуществах полового и бесполого размножений для особей одного и того же вида. Но в природе сравниваются по приспособленности не только особи одного вида между собой, но и особи разных видов, занимающие более или менее сходные условия. Здесь особенно важно успеть вперед конкурента — занять часть ареала, заполнить как можно большее пространство. В этой ситуации тот вид, который дает большее число потомков, должен бы получить территориальное преимущество и вытеснить медленного соперника. А как мы уже уяснили, быстрее размножаются бесполые и самооплодотворяющиеся организмы. Пусть они в итоге окажутся хуже приспособленными, но зато их раздельнополым конкурентам просто негде и некогда будет развернуться. Почему тогда бесполые организмы не вытеснили полностью раздельнополых? На этот вопрос помогают ответить примеры с растениями.

Семейство пасленовых — на редкость удобный объект для изучения эволюционных преимуществ полового и бесполого размножения, именно с ним и работали американские и британские биологи ( Goldberg et al., 2010). Во-первых, пасленовые — очень разнообразная группа и к тому же прекрасно изученная. Во-вторых, у пасленовых имеется очень подходящий признак — самонесовместимость. Самонесовместимость, или отторжение родственной пыльцы, — свойство, предохраняющее растения от самооплодотворения, заставляющее их смешивать свои гены с генами других особей. Самонесовместимость интересна тем, что распространена среди пасленовых довольно хаотично. Во многих родах пасленовых одни виды имеют систему самонесовместимости, тогда как другие виды того же рода ее не имеют. При этом наличие или отсутствие самонесовместимости не коррелирует с другими признаками этих растений. Ученые задались вопросом, существует ли корреляция между самонесовместимостью и темпами диверсификации.

Эволюция. Классические идеи в свете новых открытий

Схема механизма самонесовместимости у растений. Если аллельное состояние гена S («локуса несовместимости») совпадает у пыльцевого зерна и пестика, на чье рыльце оно попало, прорастание пыльцы блокируется, и оплодотворение не происходит. Геном пыльцы гаплоидный, взрослого растения — диплоидный, поэтому у каждого пыльцевого зерна обозначен один аллель S-локуса, а у пестика — два.

В семействе пасленовых около 2700 видов, из которых 41 % имеет систему самонесовместимости, 57 % ее не имеют, а 2 % видов — двудомные, т. е. имеющие отдельные мужские и женские растения, так что для них проблема самооплодотворения неактуальна. Авторы построили эволюционное дерево для 356 видов пасленовых, по которым есть молекулярные данные (дерево строилось по последовательностям двух ядерных генов и четырех пластидных) и для которых установлено наличие или отсутствие самонесовместимости.

Анализ получившегося дерева показал, что самонесовместимость унаследована пасленовыми от общего предка и с тех пор многократно утрачивалась в разных эволюционных линиях. Утратить эту систему легко, а восстановить — трудно, потому что это сложный молекулярный комплекс, состоящий из множества специализированных белков. В эволюции пасленовых, по-видимому, не было случаев восстановления самонесовместимости после ее утраты.

Понятно, почему самонесовместимость часто утрачивается. Переход к самооплодотворению дает немедленное преимущество в эффективности распространения своих генов. К тому же самооплодотворение выгодно, когда с доставкой пыльцы от других особей возникают трудности — например, из-за большой разреженности популяции. Непонятно другое: если этот признак часто утрачивается и почти никогда не восстанавливается, почему до сих пор сохранилось так много видов, обладающих системой самонесовместимости?

Расчеты по построенному филогенетическому дереву показали, что темп видообразования у видов, практикующих самоопыление, значительно выше, чем у самонесовместимых. Понятно, что высокая скорость видообразования у самоопыляющихся растений связана с тем, что у них возникшие полезные комбинации аллелей не «размываются». В итоге одно-единственное растение с подходящей комбинацией аллелей, попавшее в необычные условия, способно дать начало новому виду.

Однако темп вымирания у них еще выше. Почему они чаще вымирают, тоже понятно: ведь у них из-за самоопыления должны быстрее накапливаться вредные мутации и реже фиксироваться мутации полезные. Так что итоговое число самоопыляющихся видов не повышается. Несмотря на то что совокупность самонесовместимых видов убывает за счет превращения их в самоопыляющиеся, число самонесовместимых видов не снижается. Этому препятствует то обстоятельство, что самонесовместимые виды реже вымирают, передавая видам-потомкам самонесовместимость по наследству. Темп вымирания у них не превышает темп появления новых видов. В результате такого соотношения вымирания и появления и даже с учетом перехода некоторых в группу бесполых штрейкбрехеров число самонесовместимых видов остается на постоянном уровне (порядка 30–40 %).

Исследование показало, что естественный отбор может действовать не только на уровне генов и особей, но и на уровне целых видов. Такой отбор способен длительно сохранять сложный признак, который в каждой отдельно взятой эволюционной линии имеет тенденцию исчезать и почти никогда не появляется вновь. Но нужно помнить, что медлительный и малоэффективный межвидовой отбор может лишь поддерживатьтакой признак, но не может его создать. Подобным творческим потенциалом обладает только отбор на более низких уровнях: генов, особей или, в некоторых особых случаях, групп особей [47].

Почему самцов и самок почти всегда поровну?

Завершая главу о сексе, нельзя не упомянуть еще об одной эволюционной загадке, с ним связанной.

У большинства раздельнополых животных поддерживается соотношение полов, близкое к 1:1. Это рационально для моногамных видов, образующих устойчивые брачные пары. Но моногамия — редкое явление в животном мире. Гораздо больше существует видов, у которых о потомстве заботятся только самки, а роль самца ограничивается спариванием. Например, самцы павлинов тратят кучу энергии на отращивание своих прекрасных хвостов, едят пищу, которая пригодилась бы самкам, — короче говоря, только зря топчут землю и занимают жизненное пространство. Животноводам известно, что на большое стадо коров достаточно одного быка, остальных самцов можно смело пускать на мясо. Если тщательно отнестись к выбору производителя, то никакого вырождения породы от этого не происходит. Природа, как кажется, производит самцов с большим избытком. У стадных копытных самцы могут быть полезны для коллективной обороны стада от хищников, но чаще самцы не делают и этого. Даже если рассмотреть виды, у которых от самцов есть какая-то польза, кроме производства спермы, все равно нет оснований полагать, что при любом климате, образе жизни, способе питания и вражеском окружении соотношение полов 1:1 является оптимальным для любого вида животных. Если бы это соотношение определялось интересами вида, мы бы наверняка наблюдали разноесоотношение полов у разных видов. Однако мы за редчайшими исключениями везде наблюдаем одно и то же соотношение 1:1 — у моногамных и полигамных видов, у заботящихся о потомстве и у тех, кто бросает детей на произвол судьбы, у хищников и их жертв, у тех, кто организует коллективную оборону от хищников, и тех, кто этого не делает.

Красивое решение загадки предложил Рональд Фишер (а дальнейшие изыскания подтвердили, что решение было правильное). Дело в том, что равное соотношение полов в большинстве случаев является единственной эволюционно стабильной стратегией. Это значит, что только при таком соотношении полов никакая мутация, меняющая эта соотношение, не окажется выгодной для ее носителя. Рассмотрим воображаемую ситуацию, когда у некоего вида самки рожают сыновей и дочерей не поровну, а в пропорции 1:4. Соответственно, в популяции на каждого самца будет приходиться четыре самки. Допустим, что это соотношение является оптимальным с точки зрения «интересов вида». Но такая ситуация эволюционно нестабильна, и вот почему. В нашей популяции хоть самцов и меньше, чем самок, каждый детеныш все равно имеет только одну мать и одного отца. Допустим, популяция состоит из 1000 особей, из них 200 самцов и 800 самок, и каждый год в популяции рождается 1000 детенышей. Тогда получается, что каждая самка оставит в среднем 1000/800 = 1,25 детеныша, а самец — 1000/200 = 5. Получается, что самцы размножаются в четыре раза эффективнее! Иными словами, в такой популяции быть самцом в четыре раза выгоднее, чем самкой.

Теперь посмотрим, что произойдет, если в популяции появится мутантный аллель, носительницы которого рожают больше детенышей мужского пола — например, не по одному сыну на каждые четыре дочери, а по одному сыну на две дочери. Очевидно, что самка, несущая этот аллель, оставит больше внуков, чем прочие самки. Следовательно, мутантный аллель начнет распространяться в популяции. Вскоре он неизбежно вытеснит конкурирующий (старый, немутантный) аллель, заставляющий самок рожать детей в соотношении 1:4. В итоге соотношение полов в популяции изменится: теперь самцов будет не вчетверо, а только вдвое меньше, чем самок. Нетрудно увидеть, что подобные мутации будут до тех пор менять соотношение полов, пока оно не станет равным 1:1. Только при таком соотношении никакая новая мутация, меняющая число рождаемых мальчиков и девочек, уже не станет полезной для самки и не будет поддержана отбором.

Итак, в популяции установится соотношение полов 1:1, и никого не волнует, что вид в целом от этого только проиграет. Вид может в конце концов даже вымереть — что ж, тем хуже для него. Соотношение полов 1:1 — это не адаптация, полезная для вида, а почти неизбежный побочный эффект раздельнополости. Это следствие конкуренции между эгоистичными репликаторами, не имеющее отношения к благу вида или биосферы.

Из этого правила есть ряд исключений, которые, как водится, только подверждают его. Например, у некоторых насекомых (бабочек, мух, жуков) доля самцов в популяции может быть снижена из-за деятельности паразитической бактерии вольбахии. Вольбахия живет внутри клеток насекомого-хозяина и не может передаваться горизонтально, т. е. заражать других насекомых. Вместо этого она передается вертикально, т. е. наследуется, причем только по материнской линии. Она проникает из материнского организма в яйцеклетки и таким образом передается потомству зараженной самки. В сперматозоид бактерия проникнуть не может — он слишком мал, и поэтому бактерии, живущие в самце, обречены погибнуть вместе с ним. С точки зрения бактерии хозяева-самцы — это тупик, западня. Поэтому отбор поддерживает у вольбахии такие мутации, которые способствуют уменьшению числа самцов в зараженной популяции. Некоторые штаммы вольбахии «научились» достигать этой цели, избирательно убивая эмбрионов мужского пола. В результате в зараженных популяциях насекомых на сотню самок может приходиться всего 1–2 самца. Как ни странно, такие популяции чувствуют себя отлично и не собираются вымирать. Некоторые эксперты предполагают, что насекомые на самом деле выигрывают от того, что вольбахия помогает им поддерживать оптимальное соотношение полов. Сами насекомые не могут этого добиться из-за конфликта интересов своих «эгоистичных генов», но бактерия приходит на помощь.

—————

Исключения, подтверждающие правило

«Принцип Фишера», объясняющий, почему у раздельнополых животных рождается равное количество сыновей и дочерей, работает только при соблюдении ряда условий (что было отмечено самим Фишером).

Во-первых, энергетические затраты родителей на потомков обоего пола должны быть равными. Если сыновья обходятся дороже, чем дочери, эволюционно стабильное соотношение полов будет смещено в сторону преобладания самок, и наоборот. Это, кстати, жестоко подтверждается и человеческой историей. В некоторых странах были такие исторические периоды, когда беднякам было выгодно иметь сыновей, но не дочерей. Сын мог поддержать немощных родителей в старости, поэтому растить его было выгодно. А дочь, вырастив, приходилось отдавать в чужой дом замуж — или, еще хуже, собирать ей дорогостоящее приданое. Поэтому крестьяне попросту не заботились о дочерях или вообще убивали их, «случайно» оставляя на скотном дворе с некормлеными свиньями. В результате соотношение мальчиков и девочек резко смещалось в сторону мальчиков. Когда выгода от выращивания мальчиков и девочек выравнивалась и устанавливались другие социальные и экономические условия, соотношение возвращалось к исходному 1:1.

Во-вторых, при отдаленной гибридизации нередко наблюдается повышенная смертность одного из полов. Как правило, это гетерогаметныйпол — тот, у которого половые хромосомы разные. У млекопитающих и мух это самцы, у птиц и бабочек — самки. В этом случае самке, скрестившейся с «чужаком», выгодно сместить соотношение полов у своего потомства в сторону преобладания более жизнеспособного ( гомогаметного) пола. Такая ситуация описана у австралийских птиц Erythrura gouldiae(амадин Гульда), которые делятся на две разновидности: красноголовую и черноголовую. Амадины предпочитают «одноцветные» браки, потому что дочери от смешанных браков обладают пониженной жизнеспособностью. Оказалось, что самки амадины Гульда, вынужденные взять в мужья самца с «неправильным» цветом головы, производят на свет вчетверо больше сыновей, чем дочерей. Это позволяет им сгладить последствия неудачного замужества. Самок можно обмануть, перекрасив голову красноголового самца в черный цвет. Красноголовая самка, спарившаяся с таким перекрашенным самцом, производит на свет преимущественно сыновей. Это значит, что соотношение полов у потомства зависит не от совместимости генотипов родителей, а исключительно от мнения самки о том, насколько удачен ее брак. Каким образом самке удается регулировать соотношение полов у своих птенцов — пока неизвестно ( Pryke, Griffith, 2009).

Наконец, как показал великий эволюционист Уильям Гамильтон (1936–2000), острая конкуренция за самок между близкородственными самцами должна смещать стабильное соотношение полов в сторону преобладания дочерей. Высокая соревновательность наблюдается, когда спаривание происходит в пределах небольших групп родственных особей. Рассмотрим предельный случай — когда спариваются друг с другом сыновья и дочери одной самки. У некоторых членистоногих это в порядке вещей. Один самец может оплодотворить много самок, и чем больше у него будет партнерш, тем выше его репродуктивный успех. У самки нет столь веских причин гнаться за количеством партнеров: вполне хватит и одного, чтобы оплодотворить все ее яйцеклетки. Поэтому братья будут конкурировать за самок, а между сестрами такой конкуренции не будет. В итоге все сестры будут оплодотворены и оставят потомство, а многие из братьев останутся бездетными. В такой ситуации самке выгодно производить на свет побольше дочерей и поменьше сыновей. Ее репродуктивный успех (который удобно измерять количеством внуков) напрямую зависит от количества дочерей и почти не зависит от количества сыновей. Даже если сыновей будет мало, их все равно хватит, чтобы оплодотворить всех сестер. Если родить побольше сыновей, от этого ничего не изменится (внуков не прибавится). Поэтому при высокой родственной конкуренции соотношение полов под действием отбора должно смещаться в пользу самок.

Теория Гамильтона подтверждается тем, что у видов с высоким уровнем конкуренции между родственными самцами в потомстве действительно преобладают самки, тогда как виды с низкой родственной конкуренцией имеют соотношение полов, близкое к 1:1. Но это все-таки косвенное подтверждение, которое при большом желании можно истолковать как-то иначе. Надо сказать, что биологи уже много лет с неослабевающим энтузиазмом ломают копья по поводу теорий Гамильтона. Он был великим теоретиком и придумал столько красивых теорий, что их еще надолго хватит.

Недавно французским и португальским биологам удалось показать работоспособность идеи Гамильтона в эволюционном эксперименте на паутинных клещах Tetranychus urticae ( Macke et al., 2011). Паутинные клещи удобны для таких исследований по двум причинам. Во-первых, у них часто наблюдается острая конкуренция за самок между родственными самцами. Клещи не жалуют далекие путешествия. Они обычно спариваются неподалеку от того места, где вылупились из яйца, а расселительную функцию берут на себя оплодотворенные самки. Уровень конкуренции определяется тем, сколько самок отложат яйца на данном микроучастке (например, на данном листе растения). Если мать-основательница всего одна, ее сыновья будут отчаянно конкурировать друг с другом за право спариться с сестрами. Чем больше родительниц, тем ниже братская конкуренция.

Во-вторых, для паутинных клещей характерно гаплодиплоидное определение пола (как у перепончатокрылых насекомых). Самки клещей диплоидные и развиваются из оплодотворенных яиц, а самцы — гаплоидные и развиваются из неоплодотворенных яиц. Самка сохраняет полученную от партнера сперму и пользуется ей по собственному усмотрению, либо оплодотворяя откладываемые яйца — и тогда из них выведутся дочери, либо оставляя их неоплодотворенными — тогда получатся сыновья. Склонность самки производить на свет дочерей и сыновей в том или ином соотношении определяется отчасти средой, отчасти генами. Влияние среды состоит в том, что самка откладывает больше «мужских» (т. е. неоплодотворенных) яиц, если поблизости откладывают яйца другие самки, а значит, ее сыновьям придется конкурировать не столько друг с другом, сколько с неродственными самцами. Самка клеща, таким образом, модифицирует свою репродуктивную стратегию в зависимости от ожидаемого уровня конкуренции между братьями. Это яркий пример модификационной изменчивости.

В популяциях паутинных клещей существует также и наследственная (генетически обусловленная) изменчивость по данному признаку, т. е. одни самки от рождения склонны откладывать больше «мужских» (неоплодотворенных) яиц, чем другие. Именно это обстоятельство и позволило использовать клещей для проверки идеи Гамильтона о влиянии родственной конкуренции на эволюцию соотношения полов. У многих других животных наследственной изменчивости по соотношению полов нет или она очень мала: соотношение 1:1 у них слишком жестко «вписано» в саму систему хромосомного определения пола. Например, попытки вывести породу коров, рожающих больше телочек, чем бычков, пока остаются безуспешными — скорее всего, именно по этой причине. За миллион лет необходимые мутации, наверное, накопились бы и у коров, но для эволюционного эксперимента это многовато.

На основе одной и той же природной популяции паутинных клещей авторы создали девять лабораторных популяций. Первые три популяции в течение 54 поколений выращивали в условиях максимальной конкуренции между братьями: спаривания происходили только между потомками одной и той же самки. Во второй тройке популяций группы спаривания состояли из потомства десяти самок, в третьей — включали потомков 100 самок.

По завершении эволюционного эксперимента клещи в течение одного поколения жили в стандартных условиях двух типов: откладывая яйца в одиночестве и в группах по 40 самок. Стандартизация необходима, чтобы выявить наследственные (генетические) изменения, возникшие в ходе эксперимента, исключив влияние модификационной изменчивости.

Затем авторы подсчитали соотношение полов в потомстве самок из разных линий. Были выявлены достоверные различия между тремя линиями по соотношению откладываемых мужских и женских яиц. В популяциях, приспособившихся к острой конкуренции между братьями, самки произвели на свет 23 % сыновей и 77 % дочерей.

В популяциях из второй тройки сыновей оказалось 45 %, третьей — 50 %. Эти цифры удивительно точно совпадают с теоретическими ожиданиями. По Гамильтону, эволюционно стабильное соотношение полов должно соответствовать формуле (N−1)(2N−1)/N(4N−1), где N — количество самок, чье потомство составляет одну «группу спаривания». Для второй тройки популяций (N = 10) эта формула предсказывает 44 % самцов, для третьей (N = 100) — 49 %. Для первой тройки (N = 1) формула вообще-то предсказывает 0 % самцов, но понимать это следует как «минимальное число самцов, необходимое для оплодотворения всех сестер». Таким образом, эксперимент блестяще подтвердил идею Гамильтона о влиянии конкуренции между братьями на эволюционно стабильное соотношение полов, а заодно и теорию Фишера о том, что при свободном скрещивании соотношение должно стремиться к 1:1.

—————

Глава 4

Эволюция на наших глазах

Часто для того, чтобы принять факт, нам нужно его увидеть. Факт эволюции некоторым людям принять непросто именно потому, что увидеть эволюцию воочию очень трудно. Ведь по меркам человеческой жизни эволюция — чудовищно медленный процесс. Как правило, для того, чтобы эволюционные изменения стали заметны, нужно ждать сотни тысяч, а то и миллионы лет. Две изолированные популяции должны оставаться изолированными примерно 3 млн лет, чтобы полностью утратить репродуктивную совместимость (способность производить плодовитое гибридное потомство). Но это в среднем. К счастью для нас (биологов, изучающих эволюцию), ее темпы крайне неравномерны. Некоторые виды — так называемые живые ископаемые — могут оставаться почти неизменными десятки и даже сотни миллионов лет, зато другие демонстрируют настолько быстрые изменения, что их вполне можно заметить даже на протяжении одной-единственной человеческой жизни. В лаборатории, подобрав подходящие условия, можно заставить некоторые организмы эволюционировать еще быстрее, так что даже появляется шанс получить интересные результаты всего за несколько лет работы. Поэтому эволюционные эксперименты в лаборатории важны и с точки зрения понимания эволюционных механизмов, и с точки зрения восприятия самого факта эволюции.

Для таких экспериментов нужно тщательно выбирать подходящие лабораторные объекты и знать, куда смотреть. Последнее зависит от того, какие именно эволюционные события мы надеемся увидеть. Конечно, не превращение мухи в слона [48]. Обычно экспериментаторы надеются увидеть любую наследуемую адаптацию к окружающим условиям, дающую выигрыш в эффективности размножения. Если на наших глазах объект сумел адаптироваться к предложенным условиям и передал новые свойства потомкам, значит, мы увидели самую настоящую эволюцию. Осталось разобраться, как именно он это сделал, какие получил мутации.

Никто, конечно, не проводит эволюционные эксперименты на баобабах и слонах. Любому исследователю хочется дожить до результатов своего опыта. А ведь нужно еще ежегодно отчитываться перед работодателями, иначе вас выгонят с работы или не продлят финансирование по гранту. «Баобабы на нашей плантации подросли еще на полметра, лет через 50 надеемся получить первые семена» — за такой годовой отчет вас по головке не погладят. Но вот, например, бактерии, у которых смена поколений происходит несколько раз в сутки, — превосходный объект для эволюционных экспериментов. Годятся дрожжи Saccharomyces cerevisiae, круглые черви C. elegans, насекомые, растения с коротким жизненным циклом, аквариумные рыбки, шпорцевые лягушки и другие быстро плодящиеся существа. Но с бактериями работать проще всего, и не только из-за рекордной скорости смены поколений. Немаловажно и то, что многомиллионная популяция запросто помещается в одной колбе.

В этой главе мы разберем, какие эволюционные процессы можно наблюдать своими глазами в лаборатории или в природе. Такие наблюдения подобны процессу препарирования: разрезая лягушку, примерно знаешь, что там будет внутри, но детали строения всегда неожиданны и информативны.

Приспособленность меняется постепенно

Начнем с самого масштабного и самого известного эволюционного эксперимента. В 1988 году группа биологов из Университета штата Мичиган под руководством Ричарда Ленски начала — и продолжает по сей день — уникальный эксперимент на бактериях, который позволил с небывалой доселе детальностью проследить ход эволюции как на уровне генома (накопление мутаций), так и на уровне целого организма (развитие адаптаций).

Эксперимент проводится параллельно с 12 популяциями кишечной палочки Escherichia coli. Эта бактерия — обычный обитатель кишечника теплокровных животных, включая человека. Все 12 подопытных популяций живут в аэробных условиях [49]в жидкой прозрачной среде, где единственной пищей является глюкоза. Именно количество глюкозы является лимитирующим фактором, ограничивающим размножение микробов. С интервалом в сутки из каждой популяции берут небольшую часть (0,1 мл содержимого колбы) и пересаживают в новую колбу с 9,9 мл свежей питательной среды. Там бактерии быстро размножаются, пока не исчерпают запасы глюкозы. Таким образом, в течение каждого суточного цикла начальный период изобилия, когда численность популяции быстро растет, сменяется периодом голода, когда бактерии перестают размножаться и их численность стабилизируется. Численность бактерий оценивают по мутности среды — обычный и весьма надежный метод при наличии соответствующего оборудования.

Периодически часть каждой популяции замораживают при −80 °C (что ничуть не вредит здоровью микробов) и сохраняют для последующего изучения. Это мудро, потому что аналитические методики — в том числе методики секвенирования («прочтения») геномов — сейчас стремительно развиваются и столь же стремительно дешевеют.

Регулярно проводится и оценка приспособленности. Для этого сравнивают скорость размножения подопытных и контрольных бактерий, причем в роли вторых выступают размороженные предки первых — исходный штамм, из которого были взяты родоначальники всех 12 экспериментальных популяций.

Кишечные палочки выгодно отличаются от баобабов тем, что позволяют Ленски и его коллегам ежегодно получать интересные результаты и публиковать статьи в ведущих журналах. Так, в 2009 году они опубликовали в Natureотчет об эволюции одной из 12 популяций ( Barrick et al., 2009). К этому времени длительность эксперимента уже была достаточной для того, чтобы каждая из возможных точечных мутаций (нуклеотидных замен) успела произойти в популяции более одного раза [50].

Авторы следили за темпом закрепления мутаций и изменением приспособленности. Напомним, что возникновение мутации и ее закрепление — не одно и то же. Далеко не всякая возникшая мутация закрепляется (фиксируется) в популяции. Каждая мутация изначально возникает только у одного микроба. Чтобы мутация зафиксировалась, т. е. достигла 100-процентной частоты, потомки этого микроба должны вытеснить всех остальных микробов в своей колбе. Вредная мутация, скорее всего, будет отсеяна отбором. Полезная мутация под действием отбора может закрепиться, но может и случайно потеряться, пока ее носители еще не успели как следует размножиться. Наконец, нейтральные мутации должны фиксироваться с постоянной скоростью, равной скорости мутирования (обо всем этом мы говорили в главе 1).

За первые 20 тыс. поколений в подопытной популяции зафиксировалось 45 мутаций, в том числе 29 однонуклеотидных замен и 16 иных мутаций (вставок, выпадений, инверсий, встраиваний мобильных элементов). Самое интересное, что скорость накопления мутаций на этом этапе была постоянной. Приспособленность вела себя иначе: сначала она быстро росла, а затем ее рост замедлился (см. рисунок).

Постоянная скорость фиксации, согласно теории, характерна для нейтральных мутаций. Однако все 45 мутаций не могли быть нейтральными. Ясно, что по крайней мере некоторые из них были полезными — об этом свидетельствует рост приспособленности. Полученные результаты трудно увязать и с гипотезой о том, что все 45 мутаций были полезными. Ведь в этом случае обе величины — приспособленность и число накопленных мутаций, — скорее всего, должны были бы меняться сходным образом, т. е. или расти с постоянной скоростью, или параллельно замедляться.

Простейшее объяснение состоит в том, что среди 45 зафиксировавшихся мутаций большинство были нейтральными, а некоторые — полезными. Основная масса полезных мутаций зафиксировалась вскоре после начала эксперимента, т. е. после попадания микробов в новые для них условия, к которым они были плохо приспособлены. Но возможности для «полезного мутирования» быстро исчерпались, и в дальнейшем фиксировались в основном нейтральные мутации.

Есть, однако, четыре аргумента против такого объяснения.


1. В случае преобладания нейтральных мутаций должно быть повышено число синонимичных нуклеотидных замен. Вопреки этим ожиданиям все без исключения зафиксировавшиеся мутации в кодирующих областях генов оказались значимыми (несинонимичными). Резкое преобладание значимых замен над синонимичными — это характернейшая «подпись», оставляемая в геноме положительным отбором.

2. В случае преобладания нейтральных мутаций следует ожидать, что во всех 12 экспериментальных популяциях за 20 тыс. поколений мутации зафиксировались в разныхгенах. Напротив, мутации в одних и тех же генах, закрепившиеся независимо в разных популяциях, будут доводом в пользу того, что мутации фиксировались под действием положительного отбора, а не генетического дрейфа (т. е. мутации были полезными). Чтобы проверить это, авторы отсеквенировали у бактерий поколения № 20 000 из остальных одиннадцати экспериментальных популяций 14 генов, в которых у первой популяции закрепились мутации. Оказалось, что в большинстве случаев в других популяциях эти гены тоже изменились.

3. Если бы большинство мутаций были нейтральными, наблюдалась бы значительная внутрипопуляционная изменчивость по этим локусам (потому что полезные мутации под действием отбора фиксируются быстро, а нейтральные сначала должны долго «случайно блуждать» между нулевой и 100-процентной частотой). Это предположение не подтвердилось.

4. При помощи генной инженерии авторы смогли напрямую определить степень полезности девяти мутаций из рассматриваемых 45. Эти мутации искусственно внедряли в геном предкового штамма. В восьми случаях из девяти приспособленность бактерий резко повысилась [51]. Что касается девятой мутации, то авторы думают, что она тоже полезна, но не сама по себе, а в сочетании с другими мутациями, потому что точно такая же мутация закрепилась у других подопытных популяций.


Эволюция. Классические идеи в свете новых открытий

Накопление мутаций(черные линии и кружки) и рост приспособленности(серые линии и квадраты) в экспериментальной популяции. По горизонтальной оси — номер поколения. Видно, что число зафиксировавшихся мутаций росло линейно (тонкие ломаные линии очерчивают 95-процентные доверительные интервалы линейной модели). Приспособленность сначала росла очень быстро, а потом ее рост замедлился. «Прыжки» серых квадратов вверх и вниз относительно серой линии не выходят за пределы статистической погрешности, т. е. не требуют специальных объяснений. На маленьком графике в правом нижнем углу показано резкое ускорение накопления мутаций начиная примерно с поколения № 26 000, когда в популяции зафиксировалась мутация, повышающая темп мутагенеза. ИзBarrick et al., 2009 .

Таким образом, в течение первых 20 тыс. поколений в популяции фиксировались преимущественно полезные мутации, причем их фиксация шла с постоянной скоростью. Замедление роста приспособленности, очевидно, было связано с тем, что средняя степень полезности мутаций постепенно снижалась. Наиболее радикальные адаптивные изменения произошли в течение первых 2 тыс. поколений, а затем происходила более тонкая настройка.

До сих пор речь шла только о первой половине эксперимента. Во второй его половине эволюционная динамика популяции резко изменилась. Дело в том, что после 26 тыс. поколений зафиксировалась мутация в гене mutT. Этот ген кодирует белок, участвующий в репарации (починке) ДНК. В результате частота мутирования выросла примерно в 70 раз (от 1,6×10 −10до 1,1×10 −8на нуклеотид за поколение). Как следствие, более чем на порядок выросла и частота фиксации мутаций. В течение второй половины эксперимента зафиксировалось 609 мутаций — в 13,5 раза больше, чем за первые 20 тыс. поколений.

Аналогичные мутации, увеличившие темп мутагенеза, закрепились и в нескольких других экспериментальных популяциях. Из этого следует, что рост темпов мутагенеза дал бактериям адаптивное преимущество. Это, между прочим, противоречит распространенной идее о том, что в стабильных условиях организмам было бы выгодно [52]снизить темп мутирования до нуля — и этого не происходит только из-за технической невозможности обеспечить абсолютную точность копирования ДНК.

—————

Мутаторы

Мутации, повышающие скорость мутирования, закрепляются во многих эволюционных экспериментах на бактериях. Гены (точнее, генетические варианты — аллели), несущие такие мутации, называют аллелями-мутаторами или просто мутаторами. Аллелем-мутатором может стать любой ген, нормальная работа которого важна для точной репликации или репарации, если его слегка «подпортит» случайная мутация.

Нужно иметь в виду, что «полезность» мутаторов не прямая, а косвенная. Сама по себе повышенная скорость мутагенеза снижает приспособленность организмов, потому что большинство мутаций, как известно, вредны. Все очень просто: чем интенсивнее мутагенез, тем больше мутаций у потомков и, следовательно, тем ниже их средняяприспособленность. Это и значит, что мутатор не приносит прямой пользы — наоборот, он приносит прямой вред. Косвенная же польза заключается в том, что нет-нет да и возникнет у какого-нибудь носителя аллеля-мутатора редкая, маловероятная полезная мутация. Причем настолько полезная, что ее польза перевесит вред, приносимый мутатором напрямую. Поскольку полезная мутация маловероятна, она скорее возникнет у носителя аллеля-мутатора, чем у организма с низкой скоростью мутирования. В результате адаптивное преимущество получит организм, несущий редкую полезную мутацию, а заодно и аллель-мутатор — в качестве неприятной, но неизбежной «нагрузки». Этот организм и его потомки будут размножаться быстрее других, постепенно вытесняя из популяции конкурентов и распространяя в генофонде обе свои генетические особенности — полезную мутацию и аллель-мутатор. Генетики называют такой способ распространения аллелей hitchhiking— езда автостопом. Имеется в виду, что мутатор «едет автостопом» на полезной мутации, распространяясь в генофонде вопреки тому, что сам по себе он вообще-то вреден.

«Автостоп» прекрасно работает в бесполых популяциях, где связку «полезная мутация — аллель-мутатор» невозможно разорвать. Обычно именно с такими бактериями — бесполыми, нарочно лишенными способности к горизонтальному переносу генов — и работают экспериментаторы. В эксперименте Ленски тоже используются бесполые кишечные палочки. Если бы бактерии могли меняться генами, эволюционные судьбы двух аллелей не были бы столь неразрывными. Обязательно появились бы бактерии, несущие полезную мутацию, но не имеющие мутатора. Эти бактерии стали бы вытеснять тех, у кого два аллеля остались «в связке».

При действующем горизонтальном переносе генов мутатору куда труднее зафиксироваться. Он может даже быть полностью вытеснен из генофонда — конечно, если не успеет до этого момента сгенерировать у кого-то из своих носителей еще одну полезную мутацию.

—————

Мутация, повысившая темп мутагенеза, увеличила вероятность возникновения новых полезных мутаций, когда простые (высоковероятные) пути для этого уже были пройдены. И в этом состояло единственное благо от ускорения мутагенеза. Но при этом в качестве побочного эффекта должно было вырасти число вредных и нейтральных мутаций.

Поэтому следовало ожидать, что теперь большинство фиксирующихсямутаций будут не полезными, а нейтральными. Как мы помним, скорость фиксации нейтральных мутаций в популяции равна скорости мутагенеза. Действительно, в первые 20 тыс. поколений фиксировалось очень мало нейтральных мутаций, а большая часть из 609 «поздних» мутаций оказались нейтральными.

Результаты эксперимента оказались во многом неожиданными. Например, мало кто ожидал, что постоянный темп накопления полезных мутаций может сопровождаться замедляющимся ростом приспособленности или что соотношение темпов фиксации нейтральных и полезных мутаций может так резко меняться. Очевидно, количественные соотношения между разными аспектами эволюционного процесса (нейтральностью и адаптивностью, дрейфом и отбором, темпами изменений на уровне генотипа и фенотипа) могут быть более сложными, неоднозначными и переменчивыми, чем предполагалось.

Как работает эпистаз

Еще об одном интересном результате Ленски и его коллеги сообщили в 2011 году ( Waads et al., 2011). Ученые проследили, как организмам удается иногда выходить из «ловушек локального оптимума». Трудно придумать гипотетическую схему, в которой популяция начнет спускаться вниз по ландшафту приспособленности, потому что впереди замаячит более перспективная вершина: ведь спустившиеся особи должны вытесняться менее прозорливыми и ушлыми конкурентами. Но жизнь настойчиво твердит, что ловушки локального оптимума преодолимы, а эксперименты показывают, как это происходит. В итоге победа в эволюционном соревновании достается не тем, кто лучше приспособился здесь и сейчас, а тем, кто, поначалу проигрывая, сохранил лучшие возможности для дальнейшей эволюции. И здесь помогает эпистаз.

Как мы помним, одно из достоинств эксперимента Ленски в том, что часть бактерий периодически замораживают и сохраняют в таком виде для дальнейших исследований. В любой момент их можно оживить и использовать в опытах. Это открывает потрясающие возможности. Например, можно напрямую сравнивать приспособленность ныне живущих бактерий, которые уже более 50 тыс. поколений эволюционировали в своих колбах под присмотром ученых, с их далекими предками. Кроме того, любое эволюционное событие, зарегистрированное в ходе эксперимента, можно многократно «проигрывать заново», размораживая предков и наблюдая, произойдет ли у них это событие снова. Это позволяет отделять случайные и маловероятные события от закономерных и высоковероятных.

Ленски и его коллеги «проиграли заново» эволюцию нескольких подопытных бактерий, замороженных по прошествии 500 поколений основного эксперимента. Все бактерии происходили из одной экспериментальной популяции. К 500-му поколению в этой популяции уже появилось несколько полезных мутаций, которые впоследствии достигли 100-процентной частоты. Кроме того, на этом этапе эксперимента, как и на любом другом, в популяции присутствовали обладатели менее удачных мутаций, которые впоследствии были вытеснены.

Напомним также, что бактерии были лишены генов, разрешающих горизонтальный перенос, так что обмениваться генами, комбинируя удачные варианты, они не могли. Это позволило генетикам выделить среди замороженных микробов поколения № 500 «будущих победителей» — бактерий, обладающих мутациями, которые впоследствии достигли 100-процентной частоты в популяции (будем называть их прапобедителями), и «будущих проигравших» — тех, чьи потомки впоследствии исчезли из популяции (или пралузеров). Выращивали по два штамма каждого типа, т. е. всего четыре линии, выведенные из двух прапобедителей и двух пралузеров.

Размороженные прапобедители имели полезные мутации в генах topAи rbs. Первый ген кодирует фермент топоизомеразу, который помогает расплетать и снова сплетать двойную спираль ДНК в ходе транскрипции (считывания генетической информации). От свойств топоизомеразы зависит активность многих генов. Второй ген, rbs, — это даже не ген, а целый оперон [53], отвечающий за усвоение рибозы.

Мутация topA, характерная для прапобедителей, сама по себе дает 13-процентный выигрыш в приспособленности по сравнению с исходным штаммом бактерий. Это было установлено при помощи генно-инженерных манипуляций: предку «пересадили» эту мутацию, не меняя остального генома, и устроили соревнование. Модифицированный штамм переиграл исходный.

Все мутации в опероне rbsпредставляют собой делеции (выпадения участков ДНК), дающие выигрыш в 1–2 %. В ходе эксперимента бактерий кормили чистой глюкозой, а не рибозой, поэтому потеря части рибозного оперона могла быть выгодна: она снижала расходы клетки на синтез лишних белков.

У обоих штаммов «проигравших» тоже была мутация в гене topA, но она отличалась от той, что была у прапобедителей. Авторы обозначили ее topA1. Она тоже полезна сама по себе, но повышает приспособленность не на 13, а только на 5 %. У одного из двух штаммов пралузеров была мутация в опероне rbs, и снова не такая, как у прапобедителей. Другие мутации ученым не открылись.

Для начала авторы сравнили приспособленность (скорость роста) штаммов прапобедителей и пралузеров. Казалось бы, у первых приспособленность должна быть выше. Как ни странно, результат оказался противоположным. Выяснилось, что пралузеры превосходят по приспособленности предковый штамм на 20–23 %, тогда как прапобедители опережают предка лишь на 13–15 %. Таким образом, на промежуточном зачете после 500 поколений пралузеры вырвались вперед, сильно обогнав «будущих победителей». Это, конечно же, означает, что у «будущих проигравших» имелись какие-то полезные мутации, которые ученым пока не удалось обнаружить, причем польза от них перекрывает известный выигрыш от мутаций topAи rbs.

Авторы рассчитали, что если бы репродуктивное преимущество пралузеров над прапобедителями, наблюдавшееся после 500-го поколения, сохранялось и впредь, то пралузеры полностью вытеснили бы прапобедителей примерно за 350 поколений, т. е. к 850-му поколению. Как мы знаем, этого не случилось. Все произошло наоборот. Очевидно, потомкам прапобедителей удалось менее чем за 350 поколений приобрести новые полезные мутации, которые позволили им обогнать потомков пралузеров в эволюционном соревновании. Естественно, возникает вопрос: почему потомки пралузеров сами не приобрели аналогичных мутаций, ведь у них было на это ровно столько же времени и хорошая фора?

Авторы предположили, что разгадка может скрываться в различном влиянии мутаций, имеющихся у прапобедителей и пралузеров, на дальнейшие эволюционные перспективы. Эффекты действия генов, в том числе и мутантных, накладываются друг на друга; напомним, что это явление называют эпистазом. Степень полезности той или иной мутации не абсолютна: она зависит от генетического контекста. Скажем, мутация А может быть полезной при наличии мутации Б, но вредной при ее отсутствии (или наоборот). Можно предположить, что полезные мутации, изначально обеспечившие быстрый рост приспособленности у пралузеров, снизили способность бактерий к дальнейшей адаптации. Например, они могли сглаживать или даже сводить на нет эффекты каких-то других, еще не возникших мутаций, полезных в других генетических контекстах. При этом мутации прапобедителей сами по себе были менее полезны, но зато они не закрыли дорогу для будущих приобретений.

Можно ли проверить эту гипотезу? Да! Генетики провели несколько остроумных экспериментов, в которых весьма наглядно показали счастливую мутационную судьбу прапобедителей и злополучную — пралузеров. Мутационное счастье заключалось в повышенной выгоде от новоприобретений, а злосчастье — в пониженной.

Для начала геномы бактерий каждого из четырех штаммов пометили точечными мутациями, не влияющими на приспособленность, но позволяющими различать штаммы по окраске [54]. Затем меченых (белых и красных) бактерий из одного и того же исходного штамма (либо прапобедителей, либо пралузеров) смешивали в соотношении 50:50 и позволяли эволюционировать в тех же условиях, что и в основном эксперименте. В каждом поколении регистрировалось соотношение белых и красных бактерий. До тех пор пока в эволюционирующей популяции не возникало новых полезных мутаций, это соотношение испытывало лишь небольшие случайные колебания под действием генетического дрейфа. Но, как только возникала первая полезная мутация, ситуация резко менялась. Фокус тут в том, что любая полезная мутация изначально возникает у какой-то одной бактерии. «Повезет» либо красной, либо белой бактерии. Потомки бактерии с полезной мутацией начинают быстро размножаться, и, соответственно, в популяции начинает расти доля либо белых, либо красных микробов (точнее, микробов, образующих белые или красные колонии на соответствующей среде). При этом ученые получают сразу две уникальные возможности: 1) с большой точностью поймать момент возникновения первой полезной мутации; 2) оценить степень ее полезностипо скорости, с которой соотношение красных и белых будет отклоняться от исходного 50:50.

Нужно подчеркнуть, что речь здесь идет только о первойполезной мутации. Пока полезная мутация всего одна, соотношение белых и красных уходит от исходного состояния по экспоненте и всю ситуацию можно анализировать при помощи достаточно простой математики. Как только появляется вторая полезная мутация, картина становится слишком сложной.

При помощи этой великолепной методики авторы показали, что скорость появления полезных мутаций в линиях прапобедителей и пралузеров одинакова, однако средняя полезностьпервой полезной мутации, возникающей в штаммах прапобедителей, заметно выше, чем у пралузеров. Иными словами, экспоненциальный рост или снижение соотношения белых и красных у прапобедителей в среднем шли быстрее, чем у пралузеров, вплоть до появления второй полезной мутации, которая «смазывала» картину. У победителей первая полезная мутация повышала приспособленность в среднем на 6 %, а у лузеров — только на 4 %. В прямых конкурентных экспериментах между прапобедителями и пралузерами выяснилось, что первые теперь в среднем на 2,1 % более приспособлены, чем вторые. Это значит, что их победа была не случайностью, а закономерным следствием более высокого «эволюционного потенциала». Это подтверждает предположение о том, что «генетический контекст» у прапобедителей более благоприятен для последующей адаптивной эволюции. Разумеется, полезные возникавшие мутации были разными и далеко не во всех случаях авторам удалось их идентифицировать.

Исследователям удалось расшифровать один конкретный пример взаимного влияния мутаций (эпистаза) из числа тех, что обеспечили итоговый выигрыш прапобедителей. Оказалось, что у них в шести из 20 линий потомков за 883 поколения закрепились полезные мутации в гене spoT— многофункциональном регуляторе активности генов. Мутация в этом гене закрепилась также и в основном долгосрочном эксперименте. Однако ни в одной из 20 линий потомков пралузеров мутации в гене spoTне зафиксировались. При помощи генно-инженерных экспериментов удалось показать, что мутация spoTоказывается полезной в сочетании с мутацией topA, характерной для штаммов прапобедителей, но не приносит пользы в сочетании с мутацией topA1, характерной для пралузеров.

Получается, что тот эволюционный путь, по которому пошли пралузеры, хотя и обеспечил им преимущество на ранних этапах эксперимента, оказался менее перспективным, в частности потому, что лишил бактерий возможности повысить свою приспособленность за счет приобретения мутаций в гене spoT.

Таким образом, в долгосрочной перспективе вероятность закрепления той или иной мутации зависит не только от ее непосредственного влияния на приспособленность «здесь и сейчас», но и от ее воздействия на эволюционные перспективы, т. е. на вероятность того, что другие мутации, которые могут возникнуть в будущем, окажутся полезными. В результате линии, поначалу вырвавшиеся вперед в эволюционной гонке, в конечном счете могут оказаться в проигрыше. Разумеется, для этого необходимо, чтобы отстающие, но перспективные линии успели приобрести дополнительные полезные мутации раньше, чем их полностью вытеснят более успешные конкуренты.

Эти удивительные результаты перекликаются с палеонтологическими фактами, которые подметил еще в XIX веке русский зоолог В. О. Ковалевский (1842–1883), изучавший эволюцию копытных. Палеонтологическая летопись демонстрирует немало примеров того, как из двух конкурирующих групп, возникших примерно в одно и то же время, сначала добивается успеха одна, но затем ее вытесняет другая. При этом адаптивная эволюция в обеих группах идет в одном направлении (у копытных речь шла о преобразованиях стопы и кисти). В первой успешной группе ключевые приспособления развиваются быстрее, но являются более поверхностными, несбалансированными. Во второй группе, которая поначалу занимает подчиненное положение, аналогичные адаптации развиваются медленнее, но в итоге оказываются более комплексными, слаженными и глубокими ( Расницын, 1986). Эту закономерность традиционно объясняли на основе общих представлений о «компромиссном» характере эволюции. Любая адаптация покупается ценой ограничения возможностей для развития других адаптаций. Быстро приобретенные «косметические» адаптации могут перекрыть пути дальнейшего совершенствования, так что весь путь в итоге оказывается тупиковым. Теперь мы видим, как эта закономерность работает на молекулярно-генетическом уровне.

Новое устройство враз не прилаживается

По прошествии 31 тыс. поколений в одной из 12 подопытных популяций (ее условное обозначение — Ara-3) произошло что-то странное. Напомним, что бактерий ежедневно пересаживают в колбы с новой питательной средой. Сначала бактерии быстро размножаются, но потом глюкоза в колбе заканчивается, и рост бактерий прекращается — до следующей пересадки. Так было во всех подопытных популяциях, включая Ara-3. Но в один прекрасный день ученые заметили, что численность бактерий этой популяции продолжает расти и после того, как вся глюкоза в колбе уже съедена. К концу суточного цикла численность Ara-3 оказывалась намного выше, чем у остальных популяций. Очевидно, микробы научились использовать в пищу какое-то вещество, входящее в состав среды, но несъедобное для обычных кишечных палочек.

Вскоре Ленски и его коллеги выяснили, что бактерии из популяции Ara-3 приобрели способность питаться цитратом (лимонной кислотой). Цитрат добавляется в среду в качестве вспомогательного вещества. Нормальные бактерии E. coliспособны усваивать цитрат только в анаэробных (бескислородных) условиях. Неспособность питаться цитратом в присутствии кислорода — один из определительных признаков данного вида бактерий. Таким образом, на глазах изумленных ученых в популяции Ara-3 появилось настоящее эволюционное новшество— новый полезный признак. Этот признак (авторы обозначили его Cit +) изменил взаимоотношения организма со средой и позволил бактериям-мутантам увеличить свою численность.

Ученые отсеквенировали геномы 29 бактерий из популяции Ara-3, замороженных в разное время. По этим данным было построено их эволюционное дерево (оно показано на рисунке). Оказалось, что популяция оставалась генетически разнообразной на протяжении почти всей своей истории. В ней из одного предкового клона получилось несколько генетически различающихся линий (клад), но они не спешили вытеснять друг друга. Скорее всего, это значит, что большинство различий между кладами были нейтральными, т. е. не влияли на приспособленность.

Удалось выявить конкретное генетическое изменение, которое дало бактериям возможность питаться цитратом. Микробы Cit превратились в Cit +благодаря дупликации (удвоению) фрагмента хромосомы, содержащего ген citT. Этот ген кодирует белок, транспортирующий цитрат из внешней среды в цитоплазму бактериальной клетки. В норме у E. coliген citTактивен только в анаэробных условиях. Однако в результате дупликации одна из двух копий citTпопала под управление промотора (регуляторного участка) другого, соседнего гена ( rnk). При помощи генно-инженерных экспериментов авторы показали, что промотор гена rnkобеспечивает работу контролируемого им гена в аэробных условиях.

Разобравшись с природой ключевой мутации, ученые задались следующим вопросом: было ли появление фенотипа Cit +в кладе 3 полностью случайным? Могло ли это событие с тем же успехом произойти в другой кладе или в другой популяции, или оно было подготовлено предшествующей эволюцией именно этой клады? В поисках ответа Ленски и его коллеги провели повторные эксперименты с размороженными представителями клад 1, 2 и 3, а также с исходным (предковым) штаммом.

Выяснилось, что у предкового штамма вероятность появления фенотипа Cit +пренебрежимо мала. Представители клады 1 выработали этот фенотип в двух повторных экспериментах из 55. Это уже лучше! Микробы из клады 2 научились питаться цитратом в двух случаях из 97. Наконец, бактерии из клады 3 приобрели эту способность в восьми случаях из 37 повторных опытов. Еще лучше! Похоже на то, что вероятность приобретения нового полезного свойства росла постепенно. Дополнительные эксперименты подтвердили этот вывод.

Эволюция. Классические идеи в свете новых открытий

Эволюционная история популяции Ara-3, в которой бактерии научились питаться цитратом.Числа слева — поколения.Кружками на дереве обозначены 29 клонов, чьи геномы были отсеквенированы. На дереве выделяются пять основных клад (эволюционных линий):UC (unsuccessful clade, быстро вымершая ранняя линия),клада 1, клада 2, клада 3 («потенцированные» клады с повышенной вероятностью появления фенотипа Cit +, т. е. способности питаться цитратом),новая клада Cit + — клада, способная питаться цитратом, произошедшая от клады 3 после 31 тыс. поколений(Появление Cit +) . После 33 тыс. поколений у бактерий Cit +появилась мутация, резко повышающая темп мутагенеза(Появление мутатора) . В верхней части рисунка показаны результаты повторных эволюционных экспериментов с замороженными представителями клад 1, 2 и 3. Представители клады 1 выработали фенотип Cit +в двух случаях из 55 попыток, клады 2 — в двух случаях из 97, клады 3 — в восьми случаях из 37. Представители исходного предкового штамма имеют пренебрежимо малую вероятность появления фенотипа Cit +. График справа внизу показывает темп накопления мутаций, резко увеличившийся у бактерий Cit +(светло-серые кружки) после появления аллеля-мутатора. ИзBlount et al., 2012 .

Приобретение фенотипа Cit +во всех случаях было связано с тем, что ген citTначинал экспрессироваться в аэробных условиях. Но достигался этот результат разными путями. В некоторых повторных опытах, как и в основном долгосрочном эксперименте, произошли тандемные дупликации [55], благодаря которым citTоказался под управлением аэробного промотора. Но границы дуплицированных участков в разных случаях были разными, а промотор, взявший на себя управление геном citT, не всегда был промотором гена rnk: в одном случае это был промотор другого гена ( rna). В нескольких повторных опытах тот же эффект был достигнут без дупликации — благодаря встраиванию мобильного генетического элемента IS3в кодирующую часть гена, расположенного по соседству с citT. В этом мобильном элементе как раз имеется подходящий промотор, взявший на себя управление геном citT.

Повторные эксперименты подтвердили, что вероятность приобретения признака Cit +росла в ряду «предковый штамм — клады 1 и 2 — клада 3». Стало быть, появление этого признака именно в кладе 3 не было простой случайностью. Микробы были заранее подготовлены к этому — «потенцированы». Иными словами, у них в ходе предшествующей эволюции зафиксировались какие-то мутации, которые сами по себе не давали возможности питаться цитратом, но повысили вероятность развития этой способности в будущем. Разумеется, «потенцирующие» мутации зафиксировались не потому, что микробы планируют свою эволюцию наперед. Эти мутации либо были нейтральными и зафиксировались случайно, либо были полезны для чего-то другого. Подготовка к цитратному питанию была побочным эффектом, которого естественный отбор не мог предусмотреть.

Эволюция. Классические идеи в свете новых открытий

Дупликация, которая привела к появлению способности питаться цитратом у бактерий из популяции Ara-3. а— участок хромосомы предкового штамма, б— тот же участок после дупликации. Стрелками ипетельками обозначены промоторы геновrna иrnk , обеспечивающие работу этих генов в аэробных условиях. В результате дупликации генcitT , кодирующий транспортер цитрата, оказался под управлением промотора генаrnk и стал экспрессироваться в присутствии кислорода. ИзBlount et al., 2012 .

Следующими экспериментами удалось доказать, что какие-тогенетические особенности клады 3 действительно способствуют эффективному питанию цитратом. Чтобы убедиться в этом, исследователи вставили в геномы представителей предкового штамма и клад 1–3 по несколько копий гена citTпод управлением аэробного промотора. Иными словами, они придавали микробам способность поглощать цитрат — и смотрели, насколько микробы расположены к новой диете.

Представители всех генно-модифицированных штаммов в результате научились использовать цитрат в пищу, но в очень разной степени. Микробы из клады 3 делали это лучше всех: они быстро переключались с глюкозы на цитрат и хорошо росли на чистом цитрате. Микробы из клад 2 и 1 справлялись хуже: им требовалось больше времени на переключение, и росли на цитрате они медленнее. Предковый штамм использовал цитрат еще менее эффективно. Для того чтобы после исчерпания запасов глюкозы переключиться на питание цитратом, ему требовалось около двух суток. Между прочим, это означает, что в условиях долгосрочного эксперимента он не получил бы никакого преимущества от мутации, которая создала фенотип Cit +в кладе 3: никто не дал бы ему двух суток на раздумья, ведь бактерий пересаживают в новую среду с глюкозой каждые сутки.

Эти результаты, как и повторные эволюционные эксперименты, показывают, что «потенцирование» проходило как минимум в два этапа. Вероятность формирования фенотипа Cit +выросла при переходе от предкового штамма к кладам 1 и 2 и снова увеличилась при формировании клады 3.

Интересно, что первые бактерии, у которых после поколения № 31 000 был зарегистрирован фенотип Cit +, использовали цитрат еще очень неэффективно, хотя у них уже были и «потенцирующие» мутации, и тандемная дупликация. Новая функция поначалу была несовершенна и давала лишь едва заметное преимущество. В ходе дальнейшей эволюции эффективность использования цитрата микробами Cit +быстро росла. Исследователям удалось расшифровать один из механизмов усовершенствования: фрагмент ДНК с активированным геном citTпросто-напросто подвергся еще нескольким дупликациям. Это, по-видимому, ускорило поглощение цитрата из внешней среды.

Таким образом, формирование эволюционного новшества происходило в три этапа. На первом этапе ( потенцирование) закрепились мутации, повысившие вероятность появления признака в будущем. На втором этапе ( актуализация) появилась и была поддержана отбором ключевая мутация, превратившая микробов Cit в Cit +. Правда, поначалу новый признак был слабо выражен и почти не приносил пользы. На заключительном, третьем этапе ( усовершенствование) признак постепенно оптимизировался. В результате его полезность многократно выросла.

Усовершенствование — процесс, который может продолжаться долго. Однако события, происходившие в популяции Ara-3 после поколения № 35 000, трудно анализировать. В это время среди микробов Cit +(как и во многих других подопытных линиях) распространилась мутация, повышающая скорость мутагенеза в 20 раз, — уже знакомый нам аллель-мутатор. Найти среди сотен новых мутаций те, что связаны с усовершенствованием цитратного питания, — задача пока слишком трудная. Впрочем, замороженные бактерии никуда не спешат и будут спокойно ждать появления новых методов и приборов ( Blount et al., 2012).

Разные пути, ведущие к одной цели

Долгосрочный эксперимент Ленски и его коллег — далеко не единственное исследование такого рода. В последние годы многие микробиологи заинтересовались изучением «эволюции в пробирке». Задачи при этом решаются самые разные. Вот, например, такая: сколько разных путей ведет к одной и той же эволюционной «цели»? Если взять много одинаковых популяций и заставить их приспосабливаться к одинаковым условиям, приспособятся ли они за счет одних и тех же мутаций или разных? Какое-то представление об этом дает и эксперимент Ленски, но там параллельно эволюционируют только 12 популяций — маловато для надежной статистики.

Сотрудники факультета экологии и эволюционной биологии Калифорнийского университета в Ирвайне (США) заставили приспосабливаться к высокой температуре сразу 115 линий кишечной палочки ( Tenaillon et al., 2012). Все подопытные популяции были выведены из одного клона, т. е. изначально имели одинаковый геном. Предки подопытных бактерий в течение 2 тыс. поколений жили в стандартной среде при оптимальной для них температуре 37 °C.

В ходе эксперимента микробам пришлось приспосабливаться к температуре 42,2 °C. Это максимум, при котором исходная популяция не погибает полностью. 115 подопытных линий жили при такой температуре в течение 2 тыс. поколений, после чего ученые взяли из каждой линии по одному микробу и отсеквенировали его геном.

Все линии неплохо приспособились к перегреву: скорость их размножения при высокой температуре к концу эксперимента была в среднем в 1,94 раза выше, чем у предкового штамма. Лучше всех приспособилась линия, в которой произошло угадайте что. Правильно, зафиксировался аллель-мутатор: вышел из строя ген mutL, участвующий в исправлении ошибок в ДНК. В этой линии закрепилось 73 мутации — гораздо больше, чем у всех остальных линий, поэтому ее пришлось исключить из сравнительного анализа.

В остальных 114 линиях произошло в среднем по 11 генетических изменений, в том числе 6,9 однонуклеотидной замены, 2,3 короткой вставки и делеции (выпадений нуклеотидов), 1,0 крупной делеции, 0,6 вставки мобильных генетических элементов и 0,2 крупной дупликации (удвоения участков ДНК).

Как мы помним, о доле полезных мутаций, поддержанных отбором, можно судить по соотношению значимых и синонимичных замен. У теплолюбивых кишечных палочек это соотношение сдвинулось в пользу значимых замен. Авторы рассчитали, что примерно 80 % значимых замен были полезными.

Но полезные приобретения оказалась весьма разнообразными у 114 линий. Каждая линия приобрела свой уникальный набор мутаций. Так, из 634 значимых однонуклеотидных замен лишь 157 (25 %) обнаружились более чем в одной линии подопытных бактерий. Большинство замен оказались уникальными, т. е. закрепились лишь у одной из 114 линий. При этом несколько замен явно пользовались повышенной «популярностью». Например, значимая мутация в кодоне 966 гена rpoBобнаружилась у 18 линий, мутация в кодоне 15 гена rho— у 17 линий. Белки, кодируемые обоими генами, играют ключевую роль в транскрипции.

Повторяемость коротких вставок и делеций, дупликаций и вставок мобильных элементов оказалась выше, чем у точечных мутаций. Наибольшая повторяемость характерна для крупных делеций: 82 из 119 таких делеций (69 %) зарегистрированы более чем в одной линии. Но это следствие организации геномов [56].

Тот факт, что наборы мутаций у 114 линий оказались разными, говорит о множественности путей адаптации к высокой температуре. Путей много — но они похожи друг на друга. Это видно из того, что сходство между линиями по набору генов, затронутых мутациями, оказалось намного выше, чем по самим мутациям. Если взять наугад любые две из 114 линий, то одинаковых мутаций у них окажется в среднем лишь 2,6 %, а одинаковых генов, в которых закрепились мутации, — 20,2 %. Если объединить гены в функциональные блоки (например, рассматривать все гены, отвечающие за транскрипцию), то сходство линий окажется еще выше: 31,5 %.

Таким образом, повторяемость (воспроизводимость) путей адаптации бактерий к перегреву оказалась низкой на уровне конкретных мутаций, но довольно высокой на уровне генов и функциональных блоков. Невозможно предсказать, какие именно мутации обеспечат адаптацию в каждом конкретном случае, однако набор генов, которые будут затронуты этими мутациями, более ограничен. Исследование показало, что одна и та же эволюционная «цель» — в данном случае приспособление к высокой температуре — может быть достигнута многими способами. На уровне конкретных мутаций эволюция оказалась малопредсказуемой. На уровне генов и генных комплексов предсказуемость и повторяемость эволюции оказались выше.

—————

Репертуар эволюционных «решений» ограничен

Когда Н. И. Вавилов обнародовал «закон гомологических рядов в наследственной изменчивости», утверждающий, что у близких видов наблюдаются сходные ряды изменчивости, то немедленно был обвинен в антидарвиновских настроениях. Действительно, если мутации случайны, то и эволюционные траектории, казалось бы, тоже должны быть случайными. Их направление должно бы зависеть только от внешних условий, к которым вид обязан как следует приспособиться. Сходные адаптивные (полезные) признаки можно объяснить сходной направленностью отбора, тогда как у нейтральных признаков — тех, что не влияют на приспособленность, — появление сходства маловероятно. Параллельные признаки, которыми оперировал Вавилов (а он работал с признаками зерновых культурных растений), нейтральны, и в этом случае сходству репертуара изменчивости вроде бы неоткуда взяться. Тем не менее гомологические ряды существуют (Н. И. Вавилов был строг с фактами), так что довольно долго о законе гомологических рядов предпочитали не рассуждать.

Но постепенно стало ясно, что фактов параллельной эволюции как на микро-, так и на макроуровне такое колоссальное изобилие, что ими нужно и должно заниматься всерьез. Генетики взялись за расшифровку путей формирования параллелизмов.

Наиболее значимые выводы о генетических механизмах параллельной эволюции основаны на анализе отдельных признаков, как адаптивных, так и нейтральных. К первым относится, например, развитие устойчивости к антибиотикам у бактерий или цветового зрения у цихлид (см. главу б). Ко вторым, нейтральным признакам можно отнести независимое появление темных пятнышек на крыльях у разных видов дрозофил — чем не гомологические ряды Н. И. Вавилова (см. главу 5)!

Вот важнейшие выводы, которые генетики сделали на основе детально изученных примеров:


• эволюция отчасти предсказуема, хотя в ее основе лежат случайные мутации;

• число возможных эволюционных траектории ограниченно, так как ограниченно число жизнеспособных комбинации мутационных изменении (из-за эпистаза, см. главу 1);

• сходные приспособления могут появляться в результате параллельного образования одинаковых мутаций в том или ином гене;

• сходные приспособления могут появляться в результате разных наборов мутаций в одном и том же комплексе генов;

• параллельные приспособления появляются чаще в результате изменений в регуляторных, а не белок-кодирующих участках генов.


Рассмотрим один из недавно «расшифрованных» случаев параллельной эволюции. Этот пример показывает, как легко появляются сходные признаки у разных видов ( McGrath et al., 2011). Генетики из университетов Юты, Флориды и Рокфеллеровского университета работали с уже знакомыми нам объектами — нематодой Caenorhabditis elegansи с ее родственницей C. briggsae. В их распоряжении были разные линии C. elegans, которые хотя и произошли от одной исходной гермафродитной особи, но велись изолированно в последние 50 лет. Этот материал позволил проследить образование параллельных мутаций как у особей со сходным геномом, так и у разных видов.

Ученых интересовал конкретный признак — формирование так называемой дауэровской, или «спящей», личинки. Спящая личинка у ценорабдитис образуется при стрессовых температурах, недостатке пищи или перенаселении. В таком состоянии нематода благополучно переживает худшие времена, а при улучшении условий начинает развитие с прерванной точки, т. е. с третьей линьки. В природе перенаселение грозит популяции голодом и потому воспринимается как сигнал к формированию спящей личинки. В лабораторных условиях при перенаселении (а как же иначе может быть в культурах?) дауэровская личинка все равно формируется, хотя пища всегда в изобилии. При этом подавляющая часть популяции перестает размножаться — «в строю» остаются лишь те особи, которые почему-либо не среагировали на сигнал перенаселения. Ясно, что именно они и получат преимущество в изобильной лабораторной среде. Именно поэтому в лабораторных культурах нематоды довольно быстро перестают реагировать на сигнал перенаселения и формировать спящую личинку. Авторы изучили три лабораторные популяции, параллельно утратившие спящую стадию: две популяции C. elegansи одну C. briggsae. Естественно, ученые хотели выяснить, за счет каких мутаций в трех разных линиях появилось это адаптивное новшество.

Дауэровская личинка начинает формироваться при повышении концентрации особого феромона (чем больше животных в культуре, тем выше его концентрация). Этот феромон вызывает формирование спящей личинки у исходной лабораторной линии C. elegans, зато не действует на две эволюционировавшие линии нематоды.

Из сравнения геномных последовательностей исходной популяции и двух других выяснилось, что феромон перестал работать из-за выпадения (делеции) генов двух рецепторов. Ясно, что если исчезают рецепторы к определенному веществу, то исчезает и реакция на это вещество, в данном случае — не формируется дауэровская личинка. В двух лабораторных линиях делеция прошлась по разным нуклеотидам, но в обоих случаях захватила оба гена. Таким образом, в двух популяциях независимо вышли из строя одни и те же гены, играющие роль посредников между феромоном и формированием дауэровской личинки.

У C. briggsaeнашелся ген, родственный двум найденным посредникам. И, как легко догадаться, в лабораторной популяции, отказавшейся от спящей личинки, именно этот ген оказался вырезан делецией. Сколько ни добавляли феромона (того самого, с которым работали на C. elegans), все личинки C. briggsaeразвивались своим чередом, не впадая в спячку. Зато на исходную (дикую) популяцию C. briggsaeферомон действовал отлично.

Таким образом, в условиях, когда спящая личинка оказывается лишней или даже вредной, популяция быстро от нее избавляется. При этом отбор поддерживает мутации в сходных генах, приводящие эти гены в нерабочее состояние. Скорее всего, существует не так уж много мутаций, которые способны предотвратить формирование спящей стадии и одновременно не слишком вредны для животного. Для данного признака доступное решение, по-видимому, оказалось единственным.


Эволюция. Классические идеи в свете новых открытий

Спящая личинкаCaenorhabditis elegans (белая стрелка) в много клеточном плодовом теле почвенной амебыDictyostelium .


Конечно, безопаснее изменить один рецептор, чем подстраивать друг под друга целую сеть регуляторов развития. Сенсорные рецепторы — световые, вкусовые, обонятельные — эволюционируют очень быстро, оперативно подлаживая организм к окружающей обстановке. Этот простой и быстрый путь не приводит немедленно к глубоким изменениям развития. Но он может открыть перед организмами новые эволюционные возможности. Например, изменения генов, кодирующих светочувствительные белки опсины, могут изменить цветовое восприятие, что в свою очередь скажется на эволюции внешнего вида животных под действием полового отбора (подробнее об этом мы поговорим в главе 5).

—————

Как происходит гонка вооружений

Эволюционная «гонка вооружений» — один из самых мощных двигателей эволюции. Если бы среда обитания оставалась строго постоянной, отбор, скорее всего, привел бы строение и физиологию организма к локальному оптимуму, после чего эволюционные изменения должны были бы замедлиться или прекратиться. Но среда не может быть абсолютно неизменной хотя бы потому, что для большинства живых существ важнейшие параметры среды зависят от других живых существ. Изменения одних организмов меняют среду для других и вынуждают их приспосабливаться к этим изменениям, что, в свою очередь, опять меняет среду, заставляя приспосабливаться первых, и так до бесконечности. Гонка вооружений может идти как между разными видами (например, когда газели и гепарды «соревнуются» друг с другом в скорости бега), так и внутри вида (той же газели, чтобы выжить, важно обогнать не гепарда, а хотя бы одну другую газель) или, например, между самцами и самками.

Эти соображения легли в основу «гипотезы Черной Королевы», о которой мы рассказали в главе 3. Согласно этой гипотезе, организмам приходится постоянно эволюционировать, чтобы сохранить свою приспособленность на прежнем уровне («бежать со всех ног, чтобы остаться на месте»).

Гипотеза подтверждается многочисленными косвенными фактами, но есть и прямые эксперименты. В одном из таких британские зоологи рассмотрели сопряженную антагонистическую эволюцию паразитов и их хозяев и показали, как гонка вооружений повышает генетическое разнообразие и ускоряет эволюционные изменения ( Paterson et al., 2010). В качестве модельной системы «паразит — хозяин» использовали бактерию Pseudomonas fluorescensи вирус-бактериофаг Φ2. В этой системе действительно происходит эволюционная гонка вооружений: вирусы вырабатывают новые адаптации для заражения бактерий, а бактерии — новые средства защиты ( Brockhurst et al., 2007). С этой системой удобно работать, потому что вирусы и зараженные ими бактерии можно в любой момент разделить: бактерии можно «вылечить» от вирусов при помощи специальных препаратов, не вредящих здоровью бактерии, а вирусные частицы в чистом виде могут быть выделены из культуры путем центрифугирования.

Итак, гонка начинается. Ее участники — 12 популяций одинаковых бактерий (потомков одной клетки) и исходно одинаковые вирусы. Каждая популяция содержала 10 млн бактерий и 10 тыс. вирусных частиц. Популяции разделили на две группы (по шесть популяций в каждой), получившие условные названия «эволюция» (Э) и «коэволюция» (К).

В популяциях группы Э было позволено эволюционировать только вирусам, а бактерии при каждом переносе культуры в свежую питательную среду (это делалось раз в двое суток) заменяли исходными, «наивными» микробами. В группе К позволялось эволюционировать как вирусам, так и их жертвам. Эксперимент продолжался 24 дня. После этого были отсеквенированы геномы вирусов в каждой из 12 популяций. Их затем сравнивали с геномом исходного вируса и между собой. Геномы бактерий не секвенировали (они примерно в 100 раз больше, чем у фагов).

Оказалось, что у вирусов К в ходе эксперимента зафиксировалось вдвое больше мутаций (в среднем по 23 мутации), чем у их коллег из группы Э (в среднем 11 мутаций). Таким образом, антагонистическая коэволюция действительно ускоряет эволюционные изменения.

Популяции из группы К не только накопили больше отличий от исходного вируса, они и друг от друга стали отличаться сильнее, чем популяции Э. Вирусы К ближе подошли к превращению в шесть разных вирусов. Это значит, что антагонистическая коэволюция, по-видимому, способствует генетической дивергенции (расхождению) и видообразованию.

Эволюция. Классические идеи в свете новых открытий

Длины ветвей на этой дендрограмме отражают величину генетических различий между исходным вирусным геномом и популяциями из групп К и Э. Видно, что популяции К сильнее отличаются и от исходного вируса, и друг от друга, чем популяции Э. Параллельное независимое закрепление ряда мутаций в разных популяциях привело к тому, что на этой схеме 12 ветвей, соответствующих 12 экспериментальным популяциям, не расходятся в виде звездочки от своего общего предка, что в точности отражало бы их эволюционную историю, а образуют древовидную фигуру. Это, между прочим, лишний раз подчеркивает низкую достоверность эволюционных реконструкций, основанных на небольшом числе адаптивных признаков. По рисунку изPaterson et al., 2010 .

Соответствует ли генетическое расхождение фагов расхождению по фенотипу, т. е. по способности заражать те или иные бактерии? В поисках ответа биологи вносили разных подопытных вирусов в каждую из шести популяций бактерий, коэволюционировавших с вирусами, и подсчитывали число «удачных» заражений. Оказалось, что вирусные популяции К различаются по способности заражать бактерий из разных линий, т. е. имеют разные «спектры инфекционности». Чем выше генетическое сходство вирусов, тем более сходны и их спектры инфекционности. Характерно, что ни один из вирусов Э не смог заразить ни одну из шести популяций бактерий из группы К. Получилось, что за 24 дня эксперимента бактерии сильно продвинулись в выработке средств защиты от фагов, и те паразиты, которые не эволюционировали вместе с ними, безнадежно отстали в гонке. Кстати, для бактериофагов неспособность заразить один и тот же штамм бактерий означает репродуктивную изоляцию, т. е. невозможность обмена генетическим материалом. Вирусный «секс» может происходить между двумя вирусами, только если они совместно инфицируют одну и ту же клетку. Таким образом, изменение спектров инфекционности у подопытных вирусов — это настоящее «видообразование в пробирке».

Авторы также заметили, что все вирусные гены, в которых вирусы К накопили больше мутаций, чем вирусы Э (таких генов было выявлено четыре), участвуют в прикреплении фага к бактериальной клетке. От успешности этой процедуры зависит, сумеет ли фаг заразить бактерию. По-видимому, именно эти гены являются для вирусов теми «вооружениями», от которых зависит успех в «гонке».

Рояль в кустах, или Скрытая изменчивость

Одно из фундаментальных свойств живых существ — помехоустойчивость. Многие случайные помехи (как внутренние — мутации, так и внешние — колебания условий среды) тем или иным способом компенсируются и не приводят к изменению фенотипа или снижению приспособленности. Отбор поддерживает развитие адаптаций, повышающих устойчивость фенотипа к помехам, в том числе к мутациям. Примером такой адаптации могут служить белки-шапероны, помогающие принять правильную трехмерную конфигурацию другим белкам, в том числе тем, которые не могут сделать это самостоятельно из-за мутаций или неподходящих условий. О шаперонах мы рассказывали в книге «Рождение сложности».

Помехоустойчивость ведет к тому, что в популяции свободно накапливаются мутации, которые до поры до времени не влияют на приспособленность или даже вовсе не проявляются в фенотипе. Эти мутации остаются нейтральными, пока все стабилизирующие системы организма работают нормально. Но если какой-то из механизмов, обеспечивающих помехоустойчивость, выйдет из строя (из-за сильного внешнего воздействия или мутации в одном из генов, необходимых для работы этого механизма), вся эта скрытая изменчивость может внезапно проявиться, и тогда в популяции произойдет всплеск видимой (явной) изменчивости.

Например, отключение шаперона Hsp90 у дрозофил приводит к массовому появлению разнообразных уродств. Если какая-то из проявившихся аномалий окажется полезной в новых условиях (или если экспериментаторы начнут искусственный отбор по одному из «уродств»), то со временем аномалия может стать нормой. Такой отбор будет способствовать закреплению мутаций, стабилизирующих фенотипическое проявление нового признака. В итоге бывшая «аномалия» может начать проявляться в фенотипе уже без всяких стрессовых воздействий, при нормально работающем Hsp90 ( Rutherford, Lindquist, 1998).

Скрытая изменчивость может играть важную роль в эволюции, помогая организмам приспосабливаться. Некоторые мутации, бывшие нейтральными в прежних условиях, могут оказаться полезными при изменении среды. Чем больше таких мутаций накопилось в генофонде, тем больше шансов, что хоть какие-то из них пригодятся в новых условиях.

Идея о положительном влиянии скрытой изменчивости на приспособляемость выглядит правдоподобной и даже очевидной. У нее есть немало косвенных подтверждений, но напрямую в эволюционном эксперименте ее удалось проверить лишь недавно ( Hayden et al., 2011). Швейцарские биохимики выбрали в качестве подопытного объекта не организмы, а «квазиживую» систему — популяцию размножающихся рибозимов.

Использовался рибозим Azo, изготовленный из самовырезающегося интрона бактерии Azoarcus. В геноме бактерии этот интрон-рибозим находится в гене транспортной РНК. Его функция в бактериальной клетке состоит в том, чтобы самостоятельно вырезать самого себя из молекулы тРНК, т. е. осуществить самосплайсинг. In vitro, т. е. в пробирке, этот рибозим умеет осуществлять «обратный сплайсинг», т. е. разрезать в определенном месте субстрат — молекулу РНК с определенной последовательностью нуклеотидов, причем «обрезки» остаются прикрепленными к рибозиму. По этим прикрепленным обрезкам можно отличить рибозим, успешно выполнивший свою функцию, от рибозима-неудачника. Это позволяет отбирать рибозимы, благополучно разрезавшие молекулу субстрата.

Исследователи размножили исходный рибозим и создали две одинаковые подопытные популяции (A и B). Эти популяции жили и размножались в течение десяти поколений. В каждом поколении проводился отбор на способность разрезать субстрат (короткую молекулу РНК). Те рибозимы, которым это удалось, отбирались и размножались при помощи мутагенных (склонных к ошибкам) полимераз. Скорость мутирования составляла в среднем одну мутацию на «особь» за поколение [57]. Чтобы следить за ходом эволюции, секвенировали по 2–3 тыс. «особей» (молекул рибозима) из каждого поколения.

Ученые ожидали, что за десять поколений такой жизни накопится значительный запас скрытой изменчивости. Рибозимы будут мутировать, вредные мутации отсеются отбором, а нейтральные будут копиться. Исходный рибозим Azoсправляется со своей функцией в широком спектре условий (например, он выдерживает нагревание до 80 °C). Это говорит о высокой «помехоустойчивости» рибозима и позволяет надеяться, что к мутациям он окажется так же толерантен, как и к скачкам температуры [58].

Надежды оправдались: обе популяции за десять поколений накопили изрядное количество мутаций. Исходных, немутантных молекул «дикого типа» почти не осталось. Большинство особей отличались от исходного рибозима 3–6 мутациями.

Приспособленность популяций A и B (т. е. их усредненная каталитическая активность) за десять поколений не изменилась. Они не стали справляться со своей функцией лучше, чем исходный рибозим Azo. По-видимому, Azoуже был максимально оптимизирован для выполнения этой функции, и за десять поколений эволюционирующим популяциям так и не удалось «найти» такую мутацию, которая бы сделала разрезание субстрата еще более эффективным. Ни одна из возникших мутаций не оказалась полезной и не была поддержана положительным отбором. Таким образом, в течение десяти поколений действовал только очищающий отбор, который отбраковывал вредные мутации, а нейтральные игнорировал, пассивно позволяя им накапливаться.

Теперь можно было проверить главное: поможет ли скрытая изменчивость приспособиться к новым условиям. «Новые условия» состояли в том, что исследователи заменили субстрат. Вместо стандартного олигонуклеотида они предложили рибозимам его производное, в котором один из атомов кислорода в остатке фосфорной кислоты (расположенном как раз в том месте, где рибозим должен разрезать цепочку РНК) был заменен на атом серы. «Дикий» рибозим Azoсправляется с таким субстратом, но с большим трудом (с низкой эффективностью).

После смены субстрата эксперимент продолжался еще восемь поколений, но теперь в нем участвовали уже не две, а три популяции. К линиям A и B добавилась третья, контрольная линия, состоящая из рибозимов «дикого типа» (WT) и не имеющая запаса скрытой изменчивости.

Все три популяции за восемь поколений в той или иной степени приспособились к новому субстрату, т. е. стали разрезать его эффективнее, чем вначале. Однако популяции A и B приспосабливались быстрее и достигли в итоге большей эффективности, чем линия WT (см. рисунок).

Секвенируя рибозимы последнего поколения, авторы обнаружили, что в популяции A наибольшей численности достиг рибозим-мутант с семью мутациями, получивший название AzoΔ. В популяции B победителем эволюционного соревнования оказался другой мутант — Azo*, у которого обнаружилось четыре мутации. Все мутации у двух «чемпионов» оказались разными.

Рибозим Azo*, как показали дальнейшие эксперименты, действительно разрезает новый субстрат с высокой эффективностью. Что же касается рибозима AzoΔ, то в чистом виде он, к удивлению ученых, вообще не смог справиться с новым субстратом. Он оказался своеобразным рибозимом-«прихлебателем»: он прекрасно режет новый субстрат только в присутствии других рибозимов (например, исходного или Azo*). Вероятно, другие рибозимы помогают ему свернуться в правильную трехмерную конфигурацию. Подобные ситуации ранее уже были замечены в экспериментах с рибозимами [59].

Что касается линии WT, то в ней за восемь поколений так и не появились эффективные мутанты, сравнимые с Azo*или AzoΔ.

Эволюция. Классические идеи в свете новых открытий

Приспособление популяций A(серые кружки) , B(светло-серые) и WT(черные) к новому субстрату. По горизонтальной оси — поколения, по вертикальной — приспособленность, измеряемая долей рибозимов, которым удалось разрезать субстрат. По рисунку изHayden et al., 2011 .

Авторы выяснили, каким образом скрытая изменчивость помогла популяции B произвести удачливого мутанта Azo*. Оказалось, что после десяти поколений очищающего отбора в популяции уже были рибозимы с одной, двумя и даже тремя мутациями из четырех, составляющих генотип Azo*. Эти мутации по отдельности не дают преимущества ни в старых, ни в новых условиях. Для эффективного разрезания нового субстрата нужны все четыре мутации вместе. Понятно, что наличие у некоторых рибозимов в популяции B отдельных мутаций из этого комплекса резко повысило вероятность возникновения удачного генотипа Azo*. Пользуясь терминологией Ленски, можно сказать, что на стадии накопления нейтральных мутаций произошло «потенцирование» рибозимов популяции B, повысившее вероятность последующей «актуализации», т. е. закрепления ключевой мутации, создавшей новый признак.

Исследование показало полезность скрытой изменчивости для адаптации к новым условиям. Но, чтобы скрытая изменчивость могла накопиться, организмы должны быть помехоустойчивыми. Если бы исходный рибозим не обладал этим свойством, почти все мутации были бы для него в нормальных условиях вредными. Очищающий отбор безжалостно бы их отсеивал, и при смене условий в популяции не оказалось бы особей, преадаптированныхк новому субстрату.

Удивительная диалектика: пытаясь сделать организмы более устойчивыми (стабильными, неизменными), отбор в итоге повышает их эволюционную пластичность, облегчая последующие эволюционные изменения.

Эволюция в монокультуре не похожа на эволюцию в сообществе

Мы рассмотрели лишь малую часть эволюционных экспериментов, проведенных биологами в последние годы. Экспериментальное изучение эволюции сегодня продвигается семимильными шагами. В этой молодой области то, что уже сделано, — сущий пустяк по сравнению с тем, что еще предстоит сделать.

В большинстве экспериментов изучалась эволюция либо искусственных молекулярных систем, либо изолированных видов (таких опытов поставлено больше всего), либо пары взаимосвязанных видов (например, паразита и хозяина). Между тем прекрасно известно, что межвидовые взаимоотношения, коэволюция, приспособление видов друг к другу играют в развитии живейшую роль. Трудно придумать пример «чисто абиотического» фактора, на который не влияли бы (прямо или косвенно) живые организмы [60].

Присутствие других видов может повлиять на судьбу эволюционирующей популяции множеством способов. Например, из-за наличия конкурентов популяции может достаться меньше ресурсов, в результате ее численность будет ниже, поэтому придется дольше ждать появления редких полезных мутаций, усилится генетический дрейф и в целом адаптация будет идти медленнее. Или на первый план может выйти не индивидуальный, а межвидовой отбор: виды, лучше адаптированные к среде, просто-напросто вытеснят конкурентов, причем серьезные изменения в генофондах могут даже не успеть произойти. Или популяции будут искать компромисс между приспособлением к абиотическим факторам и друг к другу: в этом случае монокультуры, которым не нужно идти на такие компромиссы, должны лучше приспособиться к неживой среде, чем члены сообщества. Наконец, популяции могут научиться извлекать пользу из присутствия других видов и даже наладить с ними взаимовыгодное сотрудничество, что должно пойти на пользу сообществу как целому.

В 2012 году биологи из Имперского колледжа Лондона предприняли одну из первых попыток сравнить эволюцию микробов в монокультурах и смешанном сообществе ( Lawrence et al., 2012). Авторы работали с пятью видами бактерий, совместно встречающихся в лужах у корней буков и в дуплах. Эти бактерии на искусственной среде образуют колонии разного цвета и формы. Судя по нуклеотидным последовательностям гена 16S-рРНК (этот ген чаще всего используют для классификации бактерий), подопытные микробы относятся к пяти разным семействам, хотя их видовую принадлежность авторы не установили и просто обозначили буквами: A, B, C, D и E [61]. Все пять видов — аэробные гетеротрофы, т. е. потребители готовой органики, разлагающие ее с использованием кислорода.

Бактерий из природных местообитаний выращивали в лаборатории либо по отдельности, в монокультурах, либо вместе, в смешанной культуре. Кормили микробов «буковым чаем» — экстрактом буковых листьев. Понятно, что склянки с буковым чаем в лаборатории и естественные лужи в корнях буков — не одно и то же. Изменение условий при перемещении из естественной среды в искусственную должно было подстегнуть эволюцию подопытных бактерий. Бактерии эволюционировали в буковом чае в течение восьми недель, что соответствует 70 поколениям.

Эволюция в монокультурах привела к следующим результатам. Один из видов (E) не смог приспособиться к жизни в буковом чае, его численность стала быстро снижаться, поэтому его исключили из анализа. Вид A размножался в чае в начале и конце эксперимента с одинаковой скоростью, т. е. его приспособленность не изменилась. Виды B, C и D успешно адаптировались к искусственной среде и к концу эксперимента стали размножаться в чае быстрее, чем в начале.

Судьба микробов, эволюционировавших в смешанной культуре, оказалась иной. Виды A, B и C разучились жить в одиночку: к концу эксперимента они почти не могли размножаться без других бактерий. Их приспособленность к одинокой жизни в искусственной среде резко снизилась по сравнению с дикими предками. Этот результат соответствует предположению о «компромиссе» между адаптацией к биотической и абиотической среде. Впрочем, вид D, эволюционируя в смешанной культуре, приспособился не только к совместному, но и к одиночному существованию — даже лучше, чем тот же вид, эволюционировавший в монокультуре.

Чтобы расшифровать экологические связи между подопытными штаммами, авторы использовали такой прием: они выращивали в чае один штамм, затем фильтровали и стерилизовали чай, после чего пытались вырастить в нем других бактерий. Если второй штамм рос в неиспользованном чае лучше, чем в использованном, из этого делался вывод, что первый штамм изменил среду неблагоприятным для второго образом (например, использовал часть ресурсов, необходимых второму штамму). Если же второй штамм в использованном чае рос лучше, чем в свежем, это был сигнал адаптации второго штамма к первому (возможно, второй штамм научился использовать продукты жизнедеятельности первого).

Оказалось, что взаимоотношения между предковыми (дикими) штаммами в основном антагонистические — они конкурируют друг с другом за ресурсы (см. рисунок ниже: на левой верхней диаграмме преобладают черные стрелки, соответствующие негативному влиянию бактерий друг на друга). Один лишь вид D не страдает от присутствия других бактерий, хотя сам он угнетает их рост. Возможно, это значит, что вид D использует более широкий спектр ресурсов, чем остальные виды.

Эволюция в монокультурах усилила взаимную нетерпимость бактерий (правая верхняя диаграмма на рисунке). Теперь уже и вид D стал расти хуже в использованном чае, чем в свежем. Это значит, что в монокультурах бактерии эволюционировали конвергентно, их экологические предпочтения сблизились, т. е. они стали в большей мере использовать одни и те же ресурсы.

Эволюция в смешанной культуре привела к противоположному результату: в отношениях бактерий стало меньше антагонизма и больше кооперации. В большинстве случаев отрицательное влияние сменилось на положительное (нижняя диаграмма на рисунке: многие стрелочки из черных стали серыми). Более того, виды B и C стали быстрее размножаться в использованном чае, чем в свежем. Это значит, что микробы адаптировались к совместной жизни, научившись использовать продукты жизнедеятельности друг друга.

Анализ химического состава среды подтвердил, что эволюция в монокультурах привела к сближению спектров потребляемых ресурсов у подопытных бактерий, тогда как эволюция в смешанной культуре, напротив, способствовала расхождению этих спектров, т. е. развела виды по разным нишам, что привело к ослаблению конкуренции.

Эволюция. Классические идеи в свете новых открытий

Взаимовлияние четырех видов бактерий(A, B, C, D) . Черные стрелки — отрицательное влияние (вид, на который указывает стрелка, лучше растет в неиспользованной среде, чем в той, где раньше жил другой вид), серые — положительное (вид, на который указывает стрелка, быстрее размножается в среде, где есть продукты жизнедеятельности другого вида). Чем толще стрелка, тем сильнее эффект. Предки — предковые штаммы, взятые из природных местообитаний;монокультура — штаммы, эволюционировавшие в монокультуре;поликультура — штаммы, эволюционировавшие в смешанной культуре. ИзLawrence et al., 2012 .

В смешанной культуре произошло в целом больше эволюционных изменений, чем в монокультурах. В частности, бактерии A в смешанной культуре к концу эксперимента стали производить вдвое больше ацетата и выделять формиат вместо того, чтобы поглощать его, как делал предковый штамм данного вида. Вид B стал использовать вдвое больше холина, формиата и лактата, а также начал потреблять сукцинат вместо того, чтобы выделять его. Вид C, в диком состоянии выделявший ацетат, начал его поглощать. Вид D, исходно потреблявший лактат и выделявший ацетат, стал, наоборот, первое вещество выделять, а второе — поглощать. Эти изменения согласуются с гипотезой о том, что бактерии в смешанных культурах научились использовать продукты жизнедеятельности друг друга: то, что одни виды стали усиленно производить, другие стали усиленно потреблять.

Напоследок авторы измерили продуктивность (ее определяли по скорости производства CO 2) смешанных сообществ, составленных из четырех видов бактерий, эволюционировавших по отдельности или вместе. Во втором случае продуктивность сообщества оказалась выше. Таким образом, приспособление бактерий друг к другу пошло на пользу сообществу как целому: сообща микробы стали эффективнее разлагать органику, присутствующую в буковом настое (в главе 6 мы вернемся к вопросу о влиянии дивергенции видов на свойства экосистем).

Итак, межвидовые взаимодействия сильно влияют на эволюцию. Одно и то же изменение среды приводит один и тот же исходный вид к разным эволюционным результатам в зависимости от того, есть ли поблизости другие виды. Никто в этом, собственно, и не сомневался! Но столь наглядно продемонстрировать этот эффект в эксперименте удалось впервые.

Кроме того, исследование показало, что межвидовые взаимодействия могут ускорять эволюцию: в смешанных культурах подопытные виды изменились сильнее, чем в монокультурах. В соответствии с теоретическими ожиданиями жизнь в сообществе способствует «разделению труда», т. е. разводит виды по разным нишам: отбор поддерживает мутации, помогающие ослабить конкуренцию за ресурсы. Кроме того, виды начинают использовать вещества, выделяемые другими видами. Это соответствует представлениям о том, что эволюционирующие виды могут создавать новые ниши друг для друга (см. главу 6). Напротив, эволюция в условиях изоляции создает предпосылки для сближения экологических предпочтений: в отсутствие видов-конкурентов эволюционирующие микробы попытаются занять одни и те же удобные места в «экологическом пространстве». Как тут не вспомнить многочисленные примеры параллельной эволюции на островах (некоторые из них мы рассмотрели в книге «Рождение сложности»).

Разумеется, бактериальное сообщество, использованное в исследовании, намного проще природных сообществ. В одном древесном дупле, скорее всего, живут тысячи видов микробов, и происходящие там эволюционные процессы могут быть гораздо сложнее воспроизведенных в эксперименте. И все же по сравнению с классическими опытами на отдельных видах данная работа представляет собой важный шаг вперед.

Эволюция под управлением компьютера

Наш рассказ об эволюционных экспериментах был бы неполон, если бы мы забыли упомянуть опыты с искусственными репликаторами— опыты, имеющие, между прочим, немалое практическое значение. Дарвиновская эволюция на наших глазах превращается в основу «высоких технологий» будущего.

Метод искусственной эволюции позволяет получать молекулы белков и РНК с заданными свойствами путем имитации естественных процессов: мутагенеза, размножения и отбора. Метод весьма эффективен, но пока трудоемок и дорог. Сначала нужно синтезировать исходную «библиотеку» разнообразных молекул, затем каким-то образом отобрать молекулы, обладающие нужным свойством хотя бы в минимальной степени. Отобранные молекулы размножают, внося в них небольшие случайные изменения (мутации), затем снова производится отбор — и так до тех пор, пока цель не будет достигнута. Большинство операций производится вручную, причем для каждого этапа приходится специально подбирать оптимальные условия «среды».

Конечно, специалисты мечтают автоматизировать процесс. Это позволило бы ускорить и удешевить получение нужных молекул, а заодно и сделать всю процедуру более похожей на то, что происходит в природе. Ведь живые организмы эволюционируют сами, без сознательного контроля извне.

Необходимым условием такой автоматизации является способность эволюционирующих молекул к размножению — производству собственных копий. Кроме того, если мы хотим, чтобы в популяции размножающихся молекул сам собой шел естественный отбор, необходимо добиться, чтобы скорость их размножения зависела от того свойства, которое мы хотим развить в ходе эксперимента. Те молекулы, у которых данное свойство выражено сильнее, должны оставлять больше потомков. Иными словами, необходимо превратить подопытные объекты в полноценные репликаторы, да еще и направить их эволюцию в нужную нам сторону.

Эти условия легко соблюсти, когда речь идет о целых организмах, но очень непросто, когда дело касается отдельных молекул. Однако среди известных на сегодняшний день рибозимов есть подходящие. Один из них и использовали биологи из Скриппсовского института (Ла-Холья, Калифорния) при разработке компьютеризованного устройства для искусственной эволюции ( Paegel, Joyce, 2008).

Этот рибозим — РНК-лигаза класса I — был искусственно получен в 1993 году. Его функция состоит в том, что он катализирует присоединение ( лигирование) другой молекулы РНК к самому себе. Субстратом (присоединяемой молекулой) может служить не всякая цепочка нуклеотидов: она должна содержать участок, комплементарный одному из участков рибозима. Комплементарные участки рибозима и субстрата соединяются водородными связями, образуя «уотсон-криковские» пары. При этом свободные концы субстрата и рибозима оказываются рядом. Концы «сшиваются» — происходит лигирование.

В качестве субстрата использовался олигонуклеотид смешанной природы: короткая молекула РНК, присоединенная к более длинной молекуле ДНК. Главная хитрость в том, что ДНК-овая часть субстрата содержит промотор, т. е. участок, к которому может прикрепиться фермент ДНК-зависимая РНК-полимераза. Этот фермент осуществляет транскрипцию, т. е. синтез РНК на матрице ДНК. Без промотора молекула ДНК не может быть транскрибирована.

Благодаря наличию промотора в молекуле субстрата рибозим РНК-лигаза приобретает требуемое свойство — способность размножаться, но только при условии успешного выполнения рибозимом своей функции.

Для того чтобы рибозим начал размножаться, нужно добавить в среду два фермента: ДНК-зависимую РНК-полимеразу и обратную транскриптазу — фермент, осуществляющий синтез ДНК на матрице РНК (обратную транскрипцию). Вдвоем эти ферменты успешно осуществляют синтез копий рибозима, но только в том случае, если рибозим предварительно присоединил к себе субстрат с промотором. При размножении копируется не вся молекула (рибозим вместе с присоединенным субстратом), а только сам рибозим.

Таким образом, рибозимы с высокой каталитической активностью — те, которые быстро находят, распознают и присоединяют к себе субстрат, — будут размножаться быстро, а медлительные рибозимы — медленно. Следовательно, будут сами собой отбираться, выигрывая конкуренцию за субстрат, самые эффективные рибозимы.

Компьютеризированная установка для искусственной эволюции, изготовленная учеными, устроена следующим образом. Ее главная часть представляет собой тонкую стеклянную трубочку, замкнутую в кольцо диаметром 1 см. В кольцевой резервуар помещается исходный рибозим. К кольцу присоединены дополнительные трубочки, по которым в систему подаются ферменты, субстрат и нуклеотиды, необходимые для синтеза РНК и ДНК. В кольце имеются клапаны, открытие и закрытие которых позволяет контролировать подачу веществ, перемешивание и обновление реакционной смеси. Работой клапанов управляет компьютер.

В кольцевом резервуаре рибозимы, сумевшие присоединить к себе молекулу субстрата, размножаются при помощи ферментов. В раствор добавлен флюоресцирующий краситель, присоединяющийся к молекулам рибозима. По силе флюоресценции можно следить за концентрацией рибозима. Как только эта концентрация увеличивается в десять раз по сравнению с исходной, компьютер запускает программу «разбавления». 90 % реакционной смеси удаляются из кольцевого резервуара (вместе с соответствующей частью молекул рибозима) и заменяются свежим раствором реагентов (субстрата и ферментов). Затем включается программа перемешивания (оставшиеся в резервуаре молекулы рибозима перемешиваются с новой порцией реагентов). Цикл повторяется раз за разом под управлением компьютера без всякого вмешательства человека.

За ходом эволюции можно следить по сокращению времени, затрачиваемого на прохождение системой одного цикла. Длительность цикла зависит от того, насколько быстро удесятерится концентрация рибозима, а это напрямую зависит от его (рибозима) эффективности. По мере того как в ходе эволюции рибозимы становятся все более эффективными, время прохождения циклов сокращается.

В ходе эволюции в кольцевом резервуаре точность копирования молекул рибозима весьма высока, мутации возникают редко. Поэтому для ускорения эволюции исследователи несколько раз прерывали автоматизированный процесс, извлекали реакционную смесь и подвергали молекулы рибозима интенсивному случайному мутированию. Это делалось при помощи «неточных», склонных к ошибкам ферментов-полимераз. Затем смесь рибозимов-мутантов возвращали в установку, и эволюция продолжалась под управлением компьютера. Исследователи использовали эти перерывы еще и для того, чтобы постепенно сокращать концентрацию субстрата в реакционной смеси — таким образом они «приучали» эволюционирующие молекулы обходиться все меньшими количествами субстрата. Рибозимам приходилось приспосабливаться к жизни во все менее благоприятных условиях.

После 70 часов искусственной эволюции с пятью «перерывами на мутирование» каталитическая активность рибозима увеличилась в 90 раз. Для этого потребовалось всего 500 циклов инкубации и разбавления. Концентрация субстрата была снижена к концу эксперимента в 20 раз по сравнению с исходной.

Поскольку часть реакционной смеси изымалась из установки в конце каждого цикла, исследователи имели возможность в деталях проследить эволюцию подопытной популяции рибозимов. Выяснилось, что 90-кратный рост эффективности фермента произошел благодаря последовательному закреплению 11 мутаций. Авторы изучили влияние каждой из них по отдельности. Оказалось, что 11 мутаций подразделяются на четыре функциональные группы, каждая из которых имеет свои особенности. Три из четырех групп повышают эффективность рибозима сами по себе, независимо от наличия или отсутствия других мутаций. Четвертая группа сама по себе не увеличивает, а в два раза уменьшает эффективность рибозима, однако в сочетании с другими мутациями она оказывает положительный эффект. Это яркий пример эпистаза.

Авторы исследования оптимистично заключают, что в недалеком будущем получить новый рибозим методом искусственной эволюции будет не труднее, чем запустить компьютерную программу.

Происхождение многоклеточных

Появление многоклеточных — типичный пример крупного эволюционного преобразования путем объединения множества простых репликаторов (в данном случае — клеток) в один комплексный.

В истории земной жизни многоклеточность возникала много раз. Помимо «настоящих» многоклеточных организмов (которых мы считаем настоящими исключительно задним числом, в ретроспективе, потому что из них «вышел толк») эволюция породила разнообразные ассоциации взаимосвязанных клеток, сформированные на базе бактерий и одноклеточных эукариот. Последние могут быть колониальными в течение всего жизненного цикла, как, например, шарик вольвокса, а могут превращаться в многоклеточный организм только по необходимости, как это происходит у амеб Dyctiostelium [62]при недостатке пищи.

По-видимому, «настоящая» (эволюционно перспективная) многоклеточность может получиться только на базе эукариот и только из клеток, обладающих единообразным геномом. Предположим, что эукариотическая клетка уже существует. Каким образом она превращается в многоклеточный организм? Что делает из законченного эгоиста, каковым является одноклеточный организм, совершенного коллективиста — представителя слаженного ансамбля клеток многоклеточного, в котором возможность размножаться оставлена только избранным? Для этого необычайного превращения клеткам сначала нужно перестать расходиться после деления. Затем следует дифференциация функций и структуры.

Почему клетки перестают расходиться? Одним из факторов отбора «на многоклеточность» могут быть хищники. Например, одноклеточная зеленая водоросль хлорелла формирует восьмиклеточные конгломераты, если хлореллу активно выедают жгутиконосцы. Увеличивая свой размер, водоросли защищаются от истребления.

Американским микробиологам из Миннесотского университета удалось проследить в ходе эволюционного эксперимента процесс превращения отдельных клеток дрожжей в многоклеточные ассоциации ( Ratcliff et al., 2012).

Культуру дрожжей рассадили в десять пробирок. В каждой из десяти линий вели отбор на многоклеточность, ежедневно пересаживая самую нижнюю фракцию культуры. Рецепт такой: сначала взболтать, потом дать постоять 45 мин, все слить, оставив для пересаживания нижние 10 мл с клетками. Клеточные агрегаты тяжелее одиночных клеток, поэтому они осаждаются быстрее. Постепенно в нижней части взвеси доля клеточных агрегатов становилась все выше. В результате отбора во всех пробирках через два месяца вырастали преимущественно клеточные агрегаты. Ученые назвали получившийся фенотип «снежинками». Действительно, клеточные агрегаты хоть и не могли похвастаться изяществом настоящих снежинок, но демонстрировали центральную симметрию и имели разветвленные выросты, так что вполне соответствовали новому имени. Новообразование оказалось стабильным: когда отбор на многоклеточность прекратили (теперь клетки пересаживали в новую среду из хорошо перемешанного раствора), дрожжи все равно формировали фенотип снежинок.

Снежинки сформировались за счет того, что клетки перестали расходиться после деления. Самое интересное, что у многоклеточных дрожжей появился даже собственный способ бесполого размножения. Достигая определенного размера, кластер отделяет многоклеточного потомка. Дочерний кластер по диаметру меньше родительского в 3–5 раз. Клеточные агрегаты начали размножаться как целостные объекты, а ведь это один из главных признаков, отличающих многоклеточный организм от сообщества одноклеточных.

Правила игры в дочки-матери эволюционировали вместе с размером кластеров. Чем больше кластер, тем хуже питаются центральные клетки и, следовательно, тем медленнее кластер растет. Значит, число его потомков станет уменьшаться по мере увеличения кластеров. Вместе с тем увеличение числа потомков есть наинасущнейшая задача любого организма. Значит, новому многоклеточному организму нужно изобрести способ одновременно быстро расти и оставлять много потомков. В ходе отбора этот способ был найден: увеличить число клеток, подвергающихся апоптозу, т. е. клеточному самоубийству. Отмершие клетки становятся слабым звеном в системе клеточных связей, облегчая отделение дочерних кластеров. Апоптоз — явление, обычное для дрожжей, но здесь оно приобрело новое значение. В результате у многоклеточных дрожжей появилось своеобразное разделение функций: часть клеток размножается, а часть жертвует возможностью оставить собственных потомков и отмирает во благо остальных.

Естественный отбор в природе и в лаборатории

Действие отбора изучают не только в лабораторных экспериментах, но и в ходе многолетних наблюдений в природе. Первый подход позволяет контролировать условия среды, выделяя из бесчисленного множества реальных жизненных обстоятельств отдельные направляющие факторы. Но условия в эксперименте всегда упрощены и идеализированы. Из-за этого возникает опасность упустить что-то важное.

Например, в лабораторных экспериментах на рыбках гуппи было показано, что при усилении пресса хищников отбор ведет к замедлению старения у жертв. Наблюдения за теми же рыбками в природе выявили противоположную картину: там, где много хищников, гуппи стареют быстрее. По-видимому, несоответствие возникло из-за того, что в лаборатории рыбки меньше страдали от болезней и паразитов, чем в природе. В результате суммарный баланс векторов отбора оказался другим [63].

Еще один пример: в лабораторных экспериментах по выработке устойчивости к инсектицидам у насекомых обычно возникает полигенная (зависящая от множества генов) устойчивость, тогда как в природе аналогичный эффект бывает связан с изменениями в одном или немногих генах. В данном случае, скорее всего, сказываются различия в численности популяций. Природные популяции заведомо больше лабораторных, и поэтому в них чаще появляются очень маловероятные удачные мутации с сильным эффектом. Ну а маленьким лабораторным популяциям приходится эволюционировать за счет накопления множества мутаций со слабым эффектом ( Reznick, Ghalambor, 2005).

Второй подход, основанный на длительных наблюдениях за популяциями в природе, может дать потрясающие результаты, но он трудоемок и требует терпения и мужества. Яркий пример научного героизма — 30-летнее изучение эволюции галапагосских вьюрков, проведенное Питером и Розмари Грант ( Grant, Grant, 2002). Супруги Грант в деталях проследили, как вслед за изменениями климата и растительности меняется характер отбора, действующего на два вида вьюрков, и как это отражается на форме клюва и размере тела птиц. Полученные Грантами результаты сразу попали в разряд классических. Но далеко не каждый биолог способен даже ради такого выдающегося достижения полжизни просидеть на Богом забытом тропическом островке вдали от благ цивилизации.

Впрочем, дело можно ускорить, если есть возможность прямо в природе манипулировать факторами отбора, а не ждать, пока среда изменится сама. По этому пути пошли Райан Колсбик и Роберт Кокс из Дартмутского колледжа (США), изучающие эволюцию ящериц анолисов ( Calsbeek, Cox, 2010). Род Anolisпретерпевает в наши дни бурную адаптивную радиацию [64]и сегодня включает почти 400 видов, распространенных в Северной и Южной Америке и на островах Карибского бассейна. На разных островах эти ящерицы эволюционируют параллельно, давая сходные спектры видов (мы подробнее поговорим о таких явлениях в главе 6). Эволюцию анолисов изучают уже много лет, что позволило выявить ряд закономерностей. Например, известно, что длина конечностей у анолисов влияет на скорость лазания по растениям с разной толщиной стеблей, а крупные размеры тела характерны для тех видов, которым приходится драться за ресурсы и территорию.

Считается, что на эволюцию анолисов, обитающих на материке, решающее влияние оказывают хищники, тогда как островные популяции эволюционируют в основном под действием внутривидовой конкуренции. Об этом свидетельствуют такие черты материковых популяций, как низкая плотность, изобилие пищевых ресурсов, раннее половое созревание, слабый половой диморфизм и высокая смертность взрослых ящериц. Все это — типичные признаки популяций, находящихся под сильным прессом хищников.

Колсбик и Кокс сумели напрямую сравнить влияние хищников и конкуренции на направленность отбора у ящериц Anolis sagrei, обитающих на островах Багамского архипелага. В качестве «рабочих полигонов» использовались пять крошечных уединенных островков площадью от 800 до 2300 м 2, на которых ящерицы не живут, хотя там есть подходящая для них растительность и пищевые ресурсы. Работа проводилась в течение двух сезонов (в 2008 и 2009 годах). Два из пяти островков использовались дважды, поэтому общее число экспериментальных полигонов было равно семи.

Исследователи поселили на каждом острове от 40 до 80 самцов и 150 самок A. sagrei, пойманных на самом крупном острове архипелага, Великой Эксуме. Перед тем как выпустить ящериц на островок, у каждого самца измеряли длину тела и задних ног, а также испытывали его выносливость, заставляя бегать в колесе до изнеможения. Все самцы были индивидуально помечены. Выпускали ящериц в мае, а в сентябре собирали выживших. Маленькие размеры островков позволяли собрать всех ящериц, оставшихся в живых по прошествии пяти месяцев. Таким образом, исследователи точно знали, кто погиб, а кто уцелел, и могли оценить направленность и силу отбора по каждому из трех признаков (размер тела, длина ног, выносливость).

Ученые манипулировали двумя параметрами — плотностью популяции ящериц и наличием хищников. Плотность популяций варьировала от 0,09 до 0,30 ящериц на м 2, что соответствует вариабельности этого показателя в природных популяциях. Что касается хищников, то на двух островах их не было (над островами натянули сетку для защиты от птиц), на трех других доступ для птиц был оставлен открытым, а еще на двух кроме хищных птиц были змеи — исследователи выпустили на эти острова по три багамских полоза, которые любят закусить анолисом.

Эксперимент показал, что присутствие змей (но не птиц) резко повышает смертность ящериц. На тех островах, где были змеи, ящерицы приучились выше забираться по стеблям растений. Однако никакого влияния хищников на направленность отбора выявлено не было. Хищники поедали анолисов неизбирательно, независимо от их размера, длины ног и выносливости. Впрочем, в долгосрочной перспективе змеи, возможно, все-таки способны повлиять на направленность отбора — если не напрямую, то через изменившееся поведение. Например, в присутствии змей могут получить преимущество ящерицы, более ловко карабкающиеся по стеблям, что приведет к выработке адаптаций для лазания [65].

Плотность популяции ящериц, напротив, сильно влияет на направленность отбора. На островах с высокой плотностью независимо от наличия хищников наблюдалось избирательное выживание самых крупных, длинноногих и выносливых самцов. Таким образом, подтвердилась гипотеза о том, что характер отбора у островных ящериц сильнее зависит от плотности популяции (и следовательно, от конкуренции с себе подобными), чем от пресса хищников. Показательно, что размер тела и относительная длина конечностей — это как раз те признаки, которые быстрее всего меняются в ходе радиации анолисов на островах Карибского бассейна.

Но все же изучать естественный отбор в природе куда труднее, чем в лаборатории. В последние годы, правда, удалось преодолеть многие технические трудности, связанные с такими исследованиями. Например, недавно британским биологам впервые удалось в деталях проследить, как работает естественный и половой отбор в природной популяции насекомых, а именно полевых сверчков. Для этого на небольшом изолированном лугу, где живет изучаемая популяция, установили 64 видеокамеры, чувствительные к движению и способные вести съемку в инфракрасном диапазоне. Это позволило наблюдать за сверчками круглосуточно в течение двух сезонов ( Rodríguez-Muñoz et al., 2010). Такие исследования, как правило, подтверждают теоретические ожидания и помогают уточнить детали, но иногда преподносят и сюрпризы. Например, в случае со сверчками неожиданно оказалось, что половой отбор действует на самок лишь ненамного слабее, чем на самцов. Это проявилось, в частности, в том, что самки, спарившиеся с большим количеством партнеров, оставляют в среднем больше потомства (традиционно считалось, что это правило распространяется только на самцов). Кроме того, неожиданно высоким оказался процент самок, вообще не оставивших потомства.

Эволюция. Классические идеи в свете новых открытий

Самец полевого сверчкаGryllus campestris поет, используя правое крыло как скрипку, а левое как смычок.

Подобные исследования эволюционных событий на природных полигонах необходимы, потому что дают возможность оценить ограничения «лабораторных» выводов. Заключения, сделанные в лаборатории, не всегда можно прямо примерять к естественным условиям. И даже лучше никогда этого бездумно не делать, слишком сложны природные комплексы и многомерно «экологическое пространство». Такие компактные природные модели, как небольшие островки, озера, пруды, служат своеобразным посредником между лабораторией и бесконечно взаимосвязанным природным миром.

—————

Эволюция в микромасштабе: данные полевых наблюдений


Гуапо отправился в лес и вскоре возвратился с кореньями двух растений, которые мелко изрубил и выжал из них сок. Этот сок известен как яд барбаско; индейцы Южной Америки применяют его для ловли рыбы… Гуапо поднялся немного вверх по течению и там бросил яд. Вода постепенно приняла беловатый оттенок. Не успел барбаско опуститься на дно, а на поверхности уже появилась мертвая рыба, сначала мелкая, потом покрупнее, особенно много гимнотов; наконец… всплыло и несколько карибов с их золотистыми брюшками и бронзового цвета жабрами.

Майн Рид

Изгнанники в лесу


Несмотря на прогресс в понимании генетических основ эволюции, достигнутый во многом благодаря наблюдениям за эволюцией бактерий в пробирке, все же остается большой разрыв между толкованием эволюции макрообъектов и бактерий. Наблюдения за крупными организмами дают в лучшем случае мгновенный снимок эволюционного процесса, начальный и последующий этапы которого теряются во времени. Так что задача поиска хороших макрообъектов с ускоренными темпами эволюции весьма актуальна. Именно поэтому столь пристальное внимание уделяется изучению цихлид африканских озер (о них мы поговорим в главе 6) или усачей озера Тана [66], этих широко известных и ставших уже модельными примеров изучения эволюции «здесь и сейчас».

Ученые из Мексики и Германии недавно обнаружили еще один уникальный макрообъект и занялись изучением его адаптивной истории ( Tobler et al., 2011). Этот объект — обитающие в пещере мелкие рыбки пецилии Poecilia mexicana, родственницы моллинезий. Пещера, послужившая домом многочисленной популяции пецилий, расположена на юге Мексики и называется Cueva del Azufre (Серная пещера). Ее протяженность — около 170 м. Источники в разных частях пещеры сливаются в общий поток, который, вытекая из пещеры, впадает в реку Оксолотан. Воды потока насыщены сероводородом, кое-где в отдельных камерах пещеры сера присутствует в малых концентрациях.

Топология пещеры сложна, и разные ее камеры по-разному освещены. На адаптацию рыбок, как выяснилось, влияют в первую очередь режим освещения и концентрация сероводорода. Мексиканские пецилии — очень изменчивый вид, но популяция из Серной пещеры выделяется из всего разнообразия. Только эти рыбы оказались приспособленными к сероводородному заражению, токсичному не только для других рыб, но и для других популяций того же вида. Так что пещерные пецилии являются обособленным фрагментом видового разнообразия, несмотря на то что весь их ареал — лишь одна пещера длиной 170 м.

Более того, в пределах пещеры выделяется несколько экологических типов пецилий. Одни приспособлены к чистой воде со следами сероводорода (в некоторых камерах бьют такие источники), другие — к насыщенным сероводородом водам, третьи — к разбавленным водам основного потока. Рыбки, приспособленные к разной концентрации сероводорода, различаются генетически. Имеются и морфологические приспособления. Рыбки, живущие у входа в пещеру, приспособлены к хорошему освещению, и у них большие глаза; другие, населяющие среднюю часть потока, адаптированы к пещерной полутьме, у них глаза меньше. Совсем маленькие глаза у тех, что оказались в дальних камерах, где царит полная тьма.

Итак, перед нами мозаичное распределение экологических факторов, морфологических признаков, генетических маркёров. Некоторые из них однозначным образом связаны друг с другом, между другими связь не прослеживается. Физических барьеров между отдельными участками пещерного пространства нет, рыбки легко перемещаются и могут скрещиваться друг с другом. И вся эта мозаика ограничена единственной пещерой! Чем не лабораторная пробирка с эволюционным экспериментом? Более того, ученые описали и сам эксперимент (вернее, одну из его ветвей), который, сами того не зная, поставили местные жители.

Населяющие эти края индейцы каждую весну проводят обряд, связанный с культом плодородия. Правда, в отличие от других обрядов плодородия они не приносят жертвы своим богам, а, напротив, принимают подношение от них. Согласно местным верованиям, божественный подарок служит своеобразным обещанием поддержать людей до сбора урожая и не дать им умереть с голоду. Подарок этот не символический, а вполне материальный, и именно он заинтересовал исследователей.

Подарком служит та самая рыбка пецилия из Серной пещеры. Процесс «дарения» организован так. Индейцы приходят в священную Серную пещеру и выливают в воду настой листьев растения Lonchocarpus urucu, который содержит концентрированный яд барбаско. Яд парализует рыб (и любых холоднокровных животных). Обездвиженные рыбки всплывают к поверхности, тут индейцы собирают их корзинами и используют затем в пищу. Эта церемония известна со времен Колумба. Повлиял ли обряд на физиологию рыб? Да, повлиял. Это безоговорочное «да» было получено в ходе экспериментальной проверки.

Ученые взяли рыбок из камер, расположенных по течению выше, чем ритуальные бассейны, а также из самих бассейнов и ниже их. Ритуальные бассейны, как и другие священные места, на протяжении сотен лет были одни и те же. Выше этих мест рыбки не подвергались действию барбаско. Для каждой группы — не знавших яда и ежегодно пробовавших его — были выбраны рыбки из двух участков (экотопов) с разным сероводородным насыщением. Как мы помним, население экотопов генетически различается.

Ученые проверили рыбок на устойчивость к барбаско, добавляя каждые две минуты по капле яда в колбу с рыбкой. Измеряли концентрацию яда и, соответственно, время, через которое рыбка перестанет двигаться. Логика эксперимента проста: чем выше устойчивость рыбки к яду, тем больше вероятность, что она успеет уплыть и спастись от ловчей ритуальной корзины. И после оставить потомство. Кстати, пецилии живородящи и приносят потомство несколько раз в год. Экспериментальные данные подтвердили: рыбы адаптировались к священному обряду. Особи из экотопов, находящихся выше ритуальных бассейнов, продемонстрировали в полтора раза меньшую устойчивость, чем их привыкшие к яду соседи. Это значит, что индейцы за несколько столетий проведения ритуальных отравлений вывели устойчивую к яду породу пецилий.

Ученым еще предстоит сложить эту захватывающую мозаику в стройную картину. Как происходит генетическая дифференциация при отсутствии физических барьеров в пределах этого ограниченного бассейна? Как связаны морфологическая и генетическая дифференциация? Наконец, какую роль играл человек в этих процессах? В данном случае на все эти вопросы можно ответить, если хорошенько взяться за дело: ведь объект исследования замечательно четко очерчен во времени и пространстве.

—————

Глава 5

Новые гены, новые признаки

В предыдущих главах мы уже познакомились с несколькими примерами появления эволюционных новшеств. Внимательный читатель заметил, что новые гены и новые признаки могут возникать разными способами. Пожалуй, нам пора эти способы систематизировать, чем мы сейчас и займемся.

Желание классифицировать все и вся, свойственное людям, не всегда соответствует реалиям окружающего мира — многообразие природных явлений не обязано быть четко структурированным. Однако классификации нужны нам самим для лучшего понимания природы. Они помогают заархивировать большой объем информации. Для приматов с ограниченной рабочей памятью это на редкость полезная адаптация. Но, как и у многих других адаптаций, у нее есть нежелательные побочные эффекты. Один из них — склонность смешивать условные, выделенные для удобства группировки с реально существующими природными объектами. Мы попробуем не попасться в эту ловушку и не будем относиться к нашей классификации как к чему-то объективному и строгому. Удобно выделить шесть основных способов приобретения инноваций.


•  Мутации в белок-кодирующих областях генов, меняющие функцию белка. Именно таким путем малярийный плазмодий приобрел устойчивость к хлорохину, бактерии — к антибиотикам, а хомячки Песчаных Холмов обзавелись светлой маскирующей окраской.

•  Мутации в регуляторных областях генов, приводящие к тому, что белок не меняется, но начинает синтезироваться в других количествах, при иных условиях или в других частях организма.

•  Дупликация(удвоение) генов с последующим разделением функций между копиями. Дупликация — частный случай амплификации, т. е. умножения числа копий. Причиной амплификации могут быть сбои при копировании («ошибочная» повторная репликация одного и того же участка ДНК) или активность мобильных генетических элементов. Бывают и полногеномные дупликации, когда удваивается весь геном (например, из-за нерасхождения хромосом при мейозе). Другое название полногеномной дупликации — полиплоидизация (полиплоид — организм с более чем двумя хромосомными наборами).

•  Перекомбинирование фрагментов генов и белковых молекул.

•  Горизонтальный перенос: заимствование генов или генных комплексов у других организмов.

•  Симбиогенез: объединение нескольких организмов в единый «сверхорганизм» (при этом может происходить массированный перенос генов одного из симбионтов в геном другого).


В последние годы биологи расшифровали много конкретных случаев появления эволюционных новшеств каждым из этих способов. Мы ознакомимся с несколькими поучительными примерами.

Изменения белок-кодирующих генов

ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ ОБЪЯСНЕН НА МОЛЕКУЛЯРНОМ УРОВНЕ.

Закрепление мутаций в белок-кодирующих областях генов, может, и не самый распространенный способ появления эволюционных новшеств, зато самый понятный и очевидный. В предыдущих главах мы уже рассмотрели примеры таких событий. Здесь мы познакомимся еще с двумя случаями, из которых следуют интересные выводы общего характера.

Первый пример связан с идеей о необратимости эволюции. Она была высказана несколькими авторами, включая Дарвина, еще в XIX веке и с тех пор часто обсуждалась. Такие дискуссии обычно опираются на общефилософские идеи и примеры из палеонтологии и сравнительной анатомии («некоторые наземные позвоночные вернулись в воду, но обратно в рыб не превратились — стало быть, эволюция необратима»). Между тем вопрос важен для понимания базовых свойств эволюции, таких как соотношение в ней случайного и закономерного. Если бы любое изменение можно было обратить вспять, то естественный отбор мог бы быстрее и эффективнее оптимизировать строение организмов, подгоняя их под условия среды без оглядки на их эволюционную историю. Действительно, если какой-то путь оказался неудачным, можно вернуться к началу и попробовать пройти снова другой дорожкой. Необратимость большинства эволюционных изменений, напротив, свидетельствовала бы о том, что эволюционная история накладывает жесткие ограничения на возможности дальнейшей эволюции. Впрочем, оценить степень необратимости того или иного эволюционного события на практике трудно.

В 2009 году Джозеф Торнтон из Орегонского университета и его коллеги на примере глюкокортикоидного рецептора позвоночных (ГР) [67]в деталях изучили вопрос, как и почему эволюционные изменения белка могут стать необратимыми ( Bridgham et al., 2009). Исследователи использовали целый арсенал новейших методов. Начали они со сравнения аминокислотных последовательностей 60 рецепторов стероидных гормонов разных организмов. Они реконструировали эволюционную историю ГР и восстановили аминокислотную последовательность этого белка, какой она была в важнейших узлах (точках ветвления) эволюционного дерева позвоночных.

Выяснилось, что ключевые события в эволюции ГР произошли 400 млн лет назад и были приурочены к отрезку между узлами дерева, соответствующими: 1) разделению предков хрящевых рыб и прочих челюстноротых позвоночных; 2) разделению линий лучеперых и лопастеперых рыб (предки последних по совместительству являются также и предками наземных позвоночных).

Восстановленные аминокислотные последовательности, соответствующие этим двум узлам, авторы назвали AncGR1 и AncGR2. Первый белок был у последнего общего предка челюстноротых (к челюстноротым относятся хрящевые рыбы, костные рыбы и их потомки — наземные позвоночные). Обладателем второго белка был последний общий предок костных рыб и тетрапод, который жил на 40 млн лет позже.

Затем авторы искусственно синтезировали гены ГР этих давно вымерших предков и заставили их работать в культуре клеток китайского хомячка. Вместе с «воскрешенными» генами ГР в клетки был внедрен заимствованный у светлячков ген фермента люциферазы, благодаря которому светлячки светятся. Регуляторная область этого гена была сконструирована таким образом, чтобы синтез люциферазы зависел от активности ГР. В результате можно было по силе свечения оценивать эффективность реагирования ГР на те или иные стероидные гормоны.

Выяснилось, что белок AncGR1 был слабо специализированным рецептором, который реагировал на широкий круг так называемых минералокортикоидов. Он реагировал также и на кортизол, но слабо. Белок AncGR2, напротив, был специализированным рецептором, избирательно реагирующим на кортизол (как и современные ГР человека и других наземных позвоночных).

При переходе от AncGR1 к AncGR2 за 40 млн лет эволюции в белке произошло 37 аминокислотных замен. Ключевую роль в смене функции рецептора сыграли две из них. Первая (замена серина пролином в позиции 106) изменила конфигурацию активного центра таким образом, что аминокислота, находящаяся в 111-й позиции, оказалась рядом с уникальной гидроксильной группой кортизола, которая отсутствует у других стероидных гормонов. Вторая замена произошла как раз в 111-й позиции и привела к тому, что молекула кортизола стала прикрепляться к активному центру рецептора дополнительной водородной связью. В дальнейшем произошло еще три замены, которые усилили новую функцию ГР (избирательное связывание кортизола), снизив его сродство к минералокортикоидам. У этих трех замен, однако, был вредный побочный эффект: они снизили стабильность пространственной конфигурации белка. Чтобы они смогли зафиксироваться, должно было произойти еще две замены, которые авторы назвали «разрешающими» — в том смысле, что они сгладили вредные эффекты других замен и позволили им закрепиться.

Таким образом, для смены функции ГР понадобилось семь аминокислотных замен — две «ключевые», три «оптимизирующие» и две «разрешающие». Эксперименты подтвердили, что, если внести в белок AncGR1 соответствующие семь изменений, белок приобретает новую функцию: начинает избирательно связывать кортизол и перестает реагировать на минералокортикоиды. Такой белок (AncGR1 с семью заменами) функционирует почти так же, как AncGR2, который, как мы помним, отличается от AncGR1 не семью, а 37 заменами. Остальные 30 замен либо являются нейтральными, либо чуть-чуть оптимизируют белок.

Однако дальнейшие исследования показали, что некоторые из этих 30 «не очень нужных» замен, без которых белок ГР вполне мог бы обойтись, имели важный побочный эффект. Они закрыли для белка возможность возврата к исходной функции, т. е. сделали произошедшее ранее изменение необратимым!

Пока новая функция ГР обеспечивалась только семью аминокислотными заменами («ключевыми», «оптимизирующими» и «разрешающими»), эволюция ГР еще могла повернуть вспять. Для этого было достаточно изменить направленность отбора. Допустим, древним позвоночным — предкам костных рыб и тетрапод — вдруг стало бы выгодно, чтобы их ГР снова начал реагировать на минералокортикоиды. В этом случае могли бы сначала вернуться в исходное состояние «оптимизирующие» мутации. Это привело бы к небольшому увеличению чувствительности ГР к минералокортикоидам, и поэтому такое изменение могло быть поддержано отбором. В дальнейшем можно было бы ожидать обращения вспять двух «ключевых» мутаций — это привело бы к полному восстановлению прежней функции.

Итак, если внести в белок AncGR1 семь мутаций, он меняет функцию: начинает избирательно реагировать на кортизол и перестает обращать внимание на минералокортикоиды. Если вернуть эти семь аминокислот в исходное состояние, белок вернется к своей исходной функции. На этом этапе эволюция еще обратима. Однако когда авторы вернули в исходное состояние те же семь аминокислот в белке AncGR2, возврата к прежней функции не произошло. Вместо этого получился абсолютно бесполезный белок, который не реагировал ни на кортизол, ни на минералокортикоиды. Причина, очевидно, в тех 30 «дополнительных» мутациях, которые отличают AncGR2 от AncGR1.

Детальный анализ показал, что как минимум пять из этих 30 аминокислотных замен мешают возврату белковой молекулы к исходной конфигурации, необходимой для связывания минералокортикоидов. Пользы от этих замен было не очень много: они лишь слегка повысили стабильность новой конфигурации, необходимой для связывания кортизола. Но они тем не менее зафиксировались, потому что естественный отбор «видит» только сиюминутную выгоду, пусть и небольшую, и не может заглянуть на шаг вперед. Таким образом, отрезание пути к отступлению — своеобразное эволюционное сжигание мостов — оказалось случайным побочным эффектом мелких, второстепенных улучшений новой функции.

Возврат этих пяти мутаций в исходное состояние крайне маловероятен, потому что организм не получает от этого никакой мгновенной выгоды: новая функция начинает выполняться чуть хуже, старая не восстанавливается. А пока эти пять мутаций не вернутся в исходное состояние, остается невозможной (т. е. однозначно вредной) реверсия тех семи аминокислотных замен, которые обеспечили смену функции белка. Таким образом, перед нами нагляднейший пример эпистаза, превращающего ландшафт приспособленности в труднопроходимый лабиринт, о чем мы говорили в главе 1.

Сколько интересных возможностей было безвозвратно потеряно в ходе эволюции из-за недальновидности ее главного распорядителя — естественного отбора? Точного ответа нет, но очень может быть, что потерянных возможностей было больше, чем реализованных.


КАК МУХИ РАЗУЧИЛИСЬ ЖИТЬ БЕЗ КАКТУСОВ.

Многие организмы приспособлены к узким экологическим нишам, т. е. могут жить только в крайне ограниченном диапазоне условий. Помимо общих и неочевидных соображений о том, что «узкая специализация — путь к совершенству», о механизмах эволюционного становления специалистов известно не так уж много. Мухи-дрозофилиды являются хорошим объектом для таких исследований по двум причинам. Во-первых, к ним относится изученная вдоль и поперек Drosophila melanogaster, для которой разработаны эффективные исследовательские методики. Во-вторых, среди видов этого семейства есть как непритязательные генералисты, способные жить в разнообразных условиях, так и узкие специалисты.

Ярким представителем последних является Drosophila pachea. Личинки этих мух живут только на одном виде кактуса — Lophocereus schottii. В лаборатории они отказываются расти на стандартных питательных средах, но, если добавить в корм экстракт кактуса, развитие происходит нормально. Генетики из Франции, США и Японии выяснили причину столь удивительной кактусозависимости и, следовательно, генетическую подоплеку узкой специализации ( Lang et al., 2012).

Рост насекомых регулируется стероидным гормоном экдизоном. Чтобы синтезировать экдизон, сначала нужно превратить холестерол в 7-дегидрохолестерол (7DHC). Кактусовые мухи D. pacheaне способны осуществлять эту реакцию. Именно поэтому они и погибают на стандартном корме. Если же добавить в корм 7DHC, личинки развиваются нормально, и никаких кактусов им уже не требуется.

В кактусе L. schottiiсодержится несколько специфических стеролов, в том числе латостерол, которого нет ни в одном другом растении пустыни Сонора. Логично предположить, что именно эти стеролы необходимы мухам. Может быть, мухи используют их вместо холестерола в качестве сырья для синтеза экдизона? Эксперименты подтвердили это предположение.

Превращение холестерола в 7DHC у насекомых катализируется ферментом NVD. Оказалось, что у кактусовых мух этот фермент отличается от своих аналогов у других насекомых. В том числе отличаются пять консервативныхаминокислот, которые у всех или почти всех других насекомых одинаковы. Сложные эксперименты с трансгенными мухами показали, что версия фермента, характерная для кактусовых мух, успешно синтезирует 7DHC из латостерола, но не из холестерола. «Стандартная» версия фермента может превращать в 7DHC оба вещества: и холестерол, и латостерол.

Судя по всему, предки кактусовых мух D. pacheaимели «стандартную» версию фермента NVD, которая синтезировала 7DHC из холестерола. Фермент мог работать и с латостеролом, но эта способность оставалась невостребованной, пока мухи не начали осваивать кактус в качестве субстрата для развития личинок. Переход на новое кормовое растение позволил мухам уйти от конкуренции с близкими видами и предоставил в их распоряжение альтернативное сырье для производства 7DHC — латостерол. После этого в генофонде D. pacheaзакрепились мутации, лишившие NVD способности работать с холестеролом. Так мухи попали в зависимость от кактуса.

Немаловажный вопрос: почему эти мутации закрепились? Здесь возможно два сценария. Мутации могли быть нейтральными, т. е. не приносящими ни вреда, ни пользы. Например, они могли «подпортить» фермент, лишив его способности работать с холестеролом, но сохранив возможность работы с латостеролом. В условиях изобилия латостерола такое повреждение не принесло бы вреда. В этом случае мутации могли закрепиться случайно — за счет генетического дрейфа. Второй, более интересный сценарий предполагает, что мутации были полезными, что они повысили приспособленность кактусовых мух. В этом случае они должны были закрепиться под действием отбора, т. е. не случайно, а закономерно.

Два факта указывают на то, что события развивались по второму сценарию (мутации были полезными). Во-первых, трансгенные D. melanogaster, которым их собственный ген nvdзаменили на его аналог, заимствованный у D. pachea, развивались на корме с латостеролом лучше, чем контрольные мухи. Это значит, что вариант nvd, характерный для D. pachea, дает мухам преимущество при наличии в среде латостерола. Во-вторых, у D. pacheaтот участок хромосомы, где находится ген nvd, несет следы действия положительного отбора, с которыми мы ознакомились в главе 2 (см. раздел «Следы естественного отбора»).

Эволюция. Классические идеи в свете новых открытий

КактусLophocereus schottii и мухаDrosophila pachea , которая не может без него жить.

Исследование показало, что для развития узкой экологической специализации, а также для появления нового структурного компонента экосистемы — неразрывной связи мухи с кактусом — достаточно изменения одного-единственного белка.

В какой момент появилось нечто новое — новый специализированный вид, новая экологическая связь? Может быть, это произошло, когда муха-прародительница случайно отложила яйца на кактус, а личинки ухитрились выжить и запомнили запах родного растения? Или когда у более поздних прародителей зарепилась первая мутация, затруднившая синтез 7DHC из холестерола? Вряд ли на такой вопрос можно дать однозначный ответ. Новое зарождается исподволь, из цепочки крошечных, пустяковых изменений. Так же и в человеческих делах — трудно отследить момент, когда и как появляется изобретение: может, тогда, когда в случайном разговоре мелькнула нужная фраза, или в окне соседнего дома ученый увидел намек на нужную форму, или приятель подсказал хорошую идею совсем из другой области… и вот уже ученый вовсю работает, улучшает, подлаживает, ищет лучшие решения для воплощения идеи во всей своей красе.

Изменения регуляции генов

Не всякое новшество требует изменений белок-кодирующих участков ДНК. В основе многих эволюционных преобразований лежат мутации регуляторных некодирующих участков, от которых зависит, где, когда, при каких условиях и с какой интенсивностью будет работать близлежащий ген. Изучать такие эволюционные изменения технически намного труднее, но и на этом фронте биологи в последние годы добились важных успехов.


ЗАГАДКА УЗОРЧАТЫХ КРЫЛЬЕВ.

Плодовые мушки рода Drosophila— идеальный объект для изучения эволюции сложных признаков. В этой группе перемешаны не только узкие и широкие экологические специалисты, но и виды с разнообразными морфологическими признаками. Причем характер родственных связей между видами установлен вполне надежно (т. е. известно, кто от кого и когда произошел), и можно проследить, как в ряду потомков видоизменялся тот или иной сложный признак.

Например, у D. guttiferaна крыльях имеется замысловатый узор, которого нет у других дрозофил. Узор состоит из 16 черных пятен, расположенных в строго определенных местах на продольных жилках и в точках соединения продольных жилок с поперечными, и нескольких серых «теней» между жилками. У родственников D. guttiferaкрылья либо вовсе не окрашены, либо имеют гораздо более простой орнамент. Очевидно, сложная окраска крыльев D. guttifera— недавнее эволюционное приобретение.

Шон Кэрролл, американский генетик и автор превосходных научно-популярных книг, и его коллеги из Висконсинского университета решили выяснить, какие генетические изменения ответственны за появление у D. guttiferaзатейливого орнамента на крыльях. Ранее эта исследовательская группа установила, что независимое появление простых темных пятен на крыльях у разных видов дрозофил связано с изменениями регуляторных участков гена yellow, который управляет синтезом пигмента меланина и отвечает за пигментацию разных частей тела. Об этом исследовании рассказано в книге «Рождение сложности» ( Марков, 2010. С. 344).

Выяснилось, что на стадии куколки yellowработает как раз в тех участках крыла, где впоследствии появятся темные пятна. Следовательно, у этого вида, как и у других дрозофил, формирование пятен идет под управлением yellow. Однако у D. guttiferaраспределение областей экспрессии yellowпо крылу отличается особой сложностью.

Нужно было понять, что заставляет yellowработать в одних частях крыла и не работать в других. Зная, что узоры на крыльях дрозофил зависят от некодирующих регуляторных участков yellow, авторы принялись искать эти участки [68]. Они отсеквенировали фрагмент генома D. guttiferaдлиной в 42 тыс. пар нуклеотидов, включающий ген yellowи его окрестности. Затем они подразделили некодирующие области на 28 перекрывающихся кусочков и стали изучать их свойства при помощи генно-инженерных экспериментов. Каждый кусочек по очереди присоединяли к гену зеленого флуоресцирующего белка (GFP) и вставляли эту конструкцию в геном D. guttifera, а затем смотрели, где будет вырабатываться GFP Таким непростым способом удалось выявить регуляторный участок длиной в 277 пар нуклеотидов, который заставляет присоединенный к нему ген включаться как раз в тех 16 точках развивающегося крыла, где у диких мух D. guttiferaвключается ген yellowи формируются пятна на жилках. Этот регуляторный участок находится на расстоянии около 5 тыс. пар нуклеотидов перед началом кодирующей части yellow. Таким образом, один-единственный регуляторный элемент контролирует формирование всех 16 пятен.

Тем же способом был выявлен еще один регуляторный участок, который отвечает за серые «тени» между жилками. Этот участок длиной в 414 пар нуклеотидов расположен в первом интроне гена yellow. Если присоединить его к гену светящегося белка и вставить в геном D. guttifera, у куколки начинают светиться те участки крыла, где должны быть «тени».

Следовательно, всего лишь два регуляторных элемента определяют все распределение областей экспрессии yellowпо крыловой пластинке (хотя в принципе каждое пятнышко могло бы определяться своим собственным регуляторным элементом). Первый из обнаруженных элементов авторы назвали vs( vein spot— «пятна на жилках»), второй — iv( intervein shade— «тени между жилками»). Эти элементы действуют как переключатели. Первый из них срабатывает там, где должны сформироваться пятна, второй — в местах образования будущих «теней».

Таким образом, «нижняя» часть регуляторного каскада была в общих чертах расшифрована. Распределение пятен по крылу определяется элементами vsи iv. Срабатывание переключателей vsи ivактивирует ген yellow. Ген yellowвключает синтез меланина. Синтез меланина приводит к формированию пятна на крыле.

Этого уже было бы достаточно для хорошей статьи. Но авторы не остановились на достигнутом и продвинулись еще на один шаг вверх по регуляторному каскаду. Им удалось выяснить, на какой сигнал реагирует переключатель vs— что заставляет его включаться в нужном месте и в нужное время.

Не имея никаких подсказок, подступиться к такой задаче непросто, ведь в принципе присоединяться к элементу vs, запуская экспрессию yellow, мог бы любой из многих сотен регуляторных белков (транскрипционных факторов), а на работу этого неизвестного белка наверняка влияют еще какие-то факторы. Авторы, однако, добыли подсказку, изучая отклонения от нормального хода развития в лабораторной популяции мух D. guttifera. Они заметили, что пятна жестко привязаны к определенным опорным точкам на крыловой пластинке. Такими опорными точками являются поперечные жилки и места их соединения с продольными жилками, окончания продольных жилок, а также колоколовидные сенсиллы — рецепторы, расположенные на продольных жилках. Если у мутантной мухи на крыле появляется новая сенсилла или новое место соединения жилок, это всегда приводит к формированию нового пятна. Если, наоборот, сенсилла теряется, то исчезает и соответствующее пятно.

Следовательно, сложный рисунок на крыльях связан с предшествующей «разметкой» крыловой пластины, которая определяет ее структуру. Это позволило сузить круг поиска. Генетическая разметка развивающегося эмбриона или куколки осуществляется небольшим набором генов — ключевых регуляторов развития. Возможно, какой-то из них взаимодействует — прямо или опосредованно — с переключателем vs.

Чтобы найти искомый ген, авторы пересадили элемент vs, присоединенный к гену GFP, в геном мухи D. melanogaster— классического лабораторного объекта, чья генетика развития изучена гораздо лучше, чем у D. guttifera. Оказалось, что у D. melanogasterэлемент vsсрабатывает у основания крыла и на поперечных жилках, но не работает вблизи колоколовидных сенсилл. Точно так же распределены у этого вида и области экспрессии гена wingless— одного из важнейших регуляторов индивидуального развития. На ранних этапах онтогенеза членистоногих winglessучаствует в глобальной разметке туловища, формировании конечностей, определяет границы сегментов. На поздних стадиях развития куколки winglessзанят менее грандиозными проектами, участвуя в том числе в оформлении некоторых деталей строения крыльев.

Пересаженный от D. guttiferaэлемент vsсработал в крыле куколки D. melanogasterровно в тех местах, где активен ген wingless. Это делает winglessхорошим кандидатом на роль «входного сигнала», активирующего vsи включающего yellow. Авторы проверили, как распределены области экспрессии winglessв крыле D. guttifera, и убедились, что все сходится: у вида с пятнистыми крыльями winglessна стадии куколки работает как раз в тех участках крыла, где позже формируются пятна.

Чтобы окончательно убедиться в том, что активность winglessявляется достаточным условием для появления пятен у D. guttifera, авторы провели еще одну серию генно-инженерных экспериментов. На этот раз в эмбрионы D. guttiferaвпрыскивали ген wingless, взятый у D. melanogasterи соединенный с регуляторным участком, заимствованным у дрожжей. Смысл заключался в том, чтобы получить трансгенных мух D. guttifera, у которых области экспрессии winglessв крыльях были бы расположены как-то иначе. В конце концов такие мухи были получены: у них возникла новая область экспрессии winglessвдоль одной из продольных жилок. В полном соответствии с теоретическими ожиданиями у этих мух появилась и новая темная полоса на крыльях, идущая вдоль этой жилки.

Авторы также проанализировали пигментацию крыльев, экспрессию winglessи наличие или отсутствие регуляторного элемента vsу других видов дрозофил. В итоге удалось восстановить ход эволюции узора на крыльях.

Эволюция. Классические идеи в свете новых открытий

Слева — эволюционное дерево, показывающее родственные отношения между видами дрозофил с различными узорами на крыльях. Самый сложный орнамент — уD. guttifera . Справа — схема эволюции узора. ИзWerner et al., 2010 .

Исходно у дрозофил ген winglessэкспрессировался вдоль поперечных жилок, но не работал у концов продольных жилок и в колоколовидных сенсиллах. В гене yellowне было регуляторного элемента vs, способного реагировать на wingless, а крылья не имели орнамента. Это исходное состояние сохранилось у D. melanogaster. Затем в одной из групп дрозофил появился элемент vs, что привело к формированию связи между экспрессией winglessи пятнами на крыльях [69]. Первые темные пятна поэтому появились там, где исходно экспрессировался wingless, — вдоль поперечных жилок.


Эволюция. Классические идеи в свете новых открытий

После того как пигментация стала зависеть от wingless, у эволюции появилась возможность создавать новые узоры, меняя экспрессию этого гена. Ген winglessимеет сложную и пока еще слабо изученную систему регуляции, но в целом его работа ориентируется на базовую разметку и ключевые «опорные точки» развивающегося организма. Эта привязанность winglessк опорным точкам сохранилась и в ходе дальнейших изменений его экспрессии в крыльях. У некоторых видов возникли новые области экспрессии winglessна концах продольных жилок, и там появились пятна. Только у одного вида — D. guttifera— орнамент крыльев усложнился еще сильнее за счет появления дополнительных областей экспрессии winglessв шести колоколовидных сенсиллах.

Получается, что замысловатый орнамент крыльев D. guttiferaразвился на основе существовавшего ранее плана строения крыла. Возможно, примерно таким же образом, отталкиваясь от опорных точек морфогенетической разметки крыла, сформировались узоры на крыльях и у других насекомых, включая бабочек. Но, чтобы это доказать, придется еще немало потрудиться.

Здесь мы видим, как изменение двух регуляторных участков одного гена (гена yellow) привело к формированию сложного признака. Изменение это было таково, что направило уже существующий регуляторный каскад по новому маршруту: старые персонажи в новой пьесе.

—————

Как трехкамерное сердце стало четырехкамерным

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка). У наземных позвоночных — трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом. Затем кровь возвращается к сердцу и попадает в левое предсердие. Большой круг направляет обогащенную кислородом (артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое предсердие.

У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь смешивается с венозной. У животных с четырехкамерным сердцем в ходе развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены: бедная кислородом кровь попадает из правого предсердия в правый желудочек и идет оттуда к легким, насыщенная кислородом — из левого предсердия только в левый желудочек и идет оттуда ко всем прочим органам.

Формирование четырехкамерного сердца было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных потребляют очень много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом. А смешанной артериально-венозной кровью могут довольствоваться холоднокровные позвоночные с трехкамерным сердцем. Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутри-желудочковая перегородка). Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это яркий пример параллельной эволюции.

Биологам из США, Канады и Японии удалось частично расшифровать молекулярно-генетические основы этого важнейшего эволюционного события ( Koshiba-Takeuchi et al., 2009). Ключевую роль в нем сыграли изменения в работе гена Tbx5. Этот ген, кодирующий регуляторный белок, по-разному экспрессируется в развивающемся сердце у амфибий (шпорцевой лягушки Xenopus) и теплокровных (курицы и мыши). У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка (в будущем левом желудочке) и минимальна справа. А как обстоит дело у рептилий?

Выяснилось, что у рептилий — ящерицы и черепахи — на ранних эмбриональных стадиях ген Tbx5экспрессируется так же, как у лягушки, т. е. равномерно по всему будущему желудочку. У ящерицы все так и остается до конца развития. Как и у лягушки, у ящерицы не формируется ничего похожего на перегородку (хотя бы частичную) между желудочками.

Что касается черепахи, то у нее на поздних стадиях формируется градиент экспрессии — такой же, как у цыпленка, только выраженный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии Tbx5черепаха занимает промежуточное положение между ящерицей и курицей. То же самое можно сказать и о строении сердца. У черепахи формируется неполная перегородка между желудочками, но на более поздних стадиях, чем у цыпленка. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (как у амфибий и ящериц) и четырехкамерным, как у крокодилов и теплокровных.

Чтобы подтвердить ведущую роль гена Tbx5в эволюции сердца, были проведены опыты с модифицированными мышами. У этих мышей можно было по желанию экспериментатора отключать ген Tbx5в той или иной части сердечного зачатка. Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов перегородки. Получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.

В другом эксперименте авторам удалось добиться, чтобы ген Tbx5равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона — так же как у лягушки и ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.

Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5экспрессировался бы как у мышей и кур, т. е. в левой части желудочка сильно, а в правой — слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.

Ясно, что эволюция для создания теплокровности и всего того, что обеспечивает это преображение (сердце, система кровообращения, покровы, система выделения и т. д.), пользовалась простыми инструментами: чем меньше требуется менять настроек, тем лучше. И если трехкамерное сердце можно превратить в четырехкамерное за один шаг, то нет причин этим не воспользоваться.

—————

Дупликация генов

МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ — ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.

Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном ( Haldane, 1933). Сегодня в этом нет никаких сомнений. Идея проста. Появление в геноме «лишней» копии гена открывает свободу для эволюционного экспериментирования. Мутации, возникающие в одной из двух копий и ослабляющие исходную функцию гена, не будут отсеиваться отбором, потому что остается вторая копия, сохраняющая прежнюю функциональность. Отбор отсеивает только те мутации, которые снижают приспособленность организма, а для этого нужно, чтобы испортились сразу обе копии гена. Поэтому одна из копий, скорее всего, останется более или менее неизменной, а другая начнет свободно накапливать случайные мутации. С большой вероятностью эта меняющаяся копия будет безнадежно испорчена или вовсе потеряна. Однако есть шанс, что какая-нибудь мутация придаст меняющейся копии новое полезное свойство. Достаточно, чтобы это свойство поначалу было выражено в самой минимальной степени. Отбор «ухватится» за возникшее преимущество и начнет оптимизировать ген для выполнения новой функции.

Такой способ возникновения эволюционных новшеств называют неофункционализацией. Одна из копий удвоившегося гена остается под действием очищающего отбора, не меняется и сохраняет старую функцию, в то время как другая копия приобретает новую. Разумеется, в большинстве случаев новая функция будет родственна исходной: это будет некая вариация на старую тему (помните, мы говорили в главе 1 о трудности перехода с одной возвышенности ландшафта приспособленности на другую?)

Часто бывает и так, что белок, оптимизированный отбором для какой-то одной функции, способен с низкой эффективностью выполнять и другие, второстепенные или вовсе ненужные организму функции — просто в качестве побочного эффекта. Например, большинство ферментов, специализированных для работы с каким-то одним субстратом, могут немножко работать и с другими молекулами, похожими на основной субстрат. Про такие ферменты можно сказать, что они преадаптированык приобретению новой функции. Если условия изменятся таким образом, что эта дополнительная функция окажется полезной, белок может специализироваться на ней — превратить свое хобби в основную работу ( Conant, Wolfe, 2008). Причем это будет особенно легко сделать, если ген данного белка случайно подвергнется дупликации. Ведь в этом случае одна из копий гена может сохранить старую специализацию, а другая — оптимизироваться для выполнения новой функции. Это называют субфункционализацией, или попросту разделением функций.

Ну а если основная функция белка по-прежнему полезна, дополнительная функция («хобби») тоже полезна, а разделения функций не происходит, потому что ген не дуплицировался? В этом случае отбор будет оптимизировать белок для выполнения обеих функций одновременно. Это самое обычное дело: многие гены действительно выполняют в организме не одну, а несколько полезных функций (для простоты изложения будем говорить о случае, когда функций две). Такой ген находится в состоянии адаптивного конфликта. Если в нем возникает мутация, улучшающая выполнение одной из функций, она окажется полезной только в том случае, если от этого не слишком пострадает вторая функция. В результате ген балансирует между двумя направлениями оптимизации, и его структура представляет собой компромисс между противоречивыми требованиями отбора. Понятно, что в такой ситуации ни одна из двух функций не может быть доведена до совершенства. Для таких генов дупликация может стать «долгожданным избавлением» от внутреннего конфликта. Если многофункциональный ген наконец дуплицируется, возникшие копии с большой вероятностью поделят между собой функции и быстро оптимизируются в разных направлениях. Такова схема ухода от адаптивного конфликта.

—————

Классические примеры появления новых генов путем дупликации

Кристаллины — белки хрусталика глаза. Водорастворимость, прозрачность и устойчивость (долгий «срок хранения») — чуть ли не единственные обязательные требования, предъявляемые отбором к белкам-кристаллинам. Вероятно, именно поэтому разные типы кристаллинов у животных многократно формировались из самого разнообразного «подручного материала». Например, дельта-кристаллины птиц и рептилий произошли путем дупликации и субфункционализации от фермента аргининосукцинат-лиазы, тау-кристаллины — от энолазы, SIII-кристаллины — от глутатион-S-трансферазы, дзета-кристаллины — от хинон-оксидоредкутазы. Некоторые кристаллины даже сохранили свою ферментативную активность: такие белки могут в хрусталике работать кристаллинами, а в других тканях — ферментами или шаперонами [70]. Так, эпсилон-кристаллин у птиц одновременно является ферментом лактат-дегидрогеназой ( Wistow, Piatigorsky, 1987; True, Carroll, 2002). От такого «совместительства» их часто освобождают генные дупликации и субфункционализация. Скажем, у человека кристаллин альфа-B совмещает функции кристаллина и шаперона, а у рыбки данио рерио соответствующий ген дуплицировался, причем одна из копий (альфа-B1) сосредоточилась на оптической функции в хрусталике, а вторая (альфа-В2) — на функции шаперона в других тканях ( Smith et al., 2006).

Особенно часто кристаллины формируются из ферментов гликолиза — биохимического процесса, в ходе которого клетка запасает энергию, расщепляя глюкозу без использования кислорода. Дело в том, что в эмбриональном развитии хрусталик формируется из клеток, не способных к кислородному дыханию: эти клетки могут добывать энергию только путем гликолиза. Поэтому они прямо-таки набиты гликолитическими ферментами. Ну а естественный отбор — великий оппортунист и приспособленец, он создает адаптации не из того, что лучше, а из того, что первым подвернется.

В привлечении шаперонов на роль кристаллинов логика примерно такая же — оппортунистическая. Шапероны отвечают за стабильность структуры других белков и сглаживают воздействие стрессовых факторов, будь то мутации или колебания температуры. Хрусталик формируется в некотором смысле в «стрессовых» условиях (без кислородного дыхания), а его содержимое должно быть очень устойчивым к любым стрессам: хрусталик должен сохранить прозрачность и светопреломляющие свойства в течение всей жизни организма, в условиях высокой освещенности, без какой-либо помощи извне, без кровеносных сосудов, без нервов. Поэтому присутствие шаперонов в формирующемся хрусталике — адаптация вполне логичная. Ну а раз они там уже есть, чем не материал для эволюции новых кристаллинов?

Белки-антифризы антарктических рыб.Нототениевые рыбы — самая разнообразная и массовая группа рыб в холодных антарктических морях. Успех нототениевых связан с наличием в их крови удивительных белков-антифризов. Эти белки присоединяются к зарождающимся кристалликам льда и не дают им расти, что позволяет нототениевым жить при экстремально низких температурах (соленая морская вода замерзает при −1,9 °C, а кровь обычных морских рыб — при −0,7… −0,1 °C). Как ни удивительно, антифризы нототениевых произошли от белка, функция которого не имеет ничего общего с защитой от замерзания. Их предком был трипсин — фермент поджелудочной железы, расщепляющий белки в пищеварительном тракте. Все гены антифризов (их у нототениевых несколько) очень похожи друг на друга и явно произошли путем последовательных дупликаций от одного предкового гена, который в свою очередь сформировался из дубликата гена, кодирующего трипсиноген (белок, из которого затем производится фермент трипсин). Начало и конец у генов антифризов остались такими же, как у трипсинового гена, а в середине разместился многократно повторяющийся (амплифицированный) девятинуклеотидный фрагмент из средней части гена трипсина, кодирующий три аминокислоты: треонин-аланин-аланин. Этот повторяющийся аминокислотный мотив составляет «костяк» молекулы антифриза. Судя по показаниям молекулярных часов, дупликация исходного трипсинового гена и появление первого антифриза произошли 5–14 млн лет назад. Это примерно совпадает со временем резкого похолодания в Антарктике (10–14 млн лет назад), а также с началом быстрой адаптивной радиации нототениевых рыб ( Chen et al., 1997).

У одного представителя нототениевых — антарктического клыкача Dissostichus mawsoni— обнаружен белок, промежуточный между трипсиногеном и типичным антифризом: в нем сохранились фрагменты исходного трипсиногена, утраченные остальными антифризами. Этот белок — настоящая молекулярная «переходная форма».

У некоторых арктических рыб в ходе приспособления к жизни в ледяной воде тоже появились белки-антифризы, но другие. Антифриз трески напоминает по своей структуре антифризы нототениевых, но ничего общего не имеет с трипсиногеном. Происхождение трескового антифриза пока не выяснено, ясно только, что это было независимое приобретение. У других арктических рыб свои уникальные антифризы сформировались из других белков — лектинов и аполипопротеинов ( True, Carroll, 2002).

Появление специализированной рибонуклеазы (фермента, расщепляющего РНК) у обезьян, питающихся листьями.У колобин — обезьян Старого Света, питающихся трудноперевариваемой растительной пищей, — развился особый отдел желудка, где симбиотические бактерии переваривают несъедобную для животных целлюлозу [71]. Сама обезьяна питается фактически этими бактериями, а в них, как и в любых быстро растущих бактериальных популяциях, очень много РНК.

Чтобы переваривать бактериальную РНК, колобинам нужен фермент — РНКаза, способная работать в кислой среде. У предков колобин такого фермента не было. Зато у них, как у всех обезьян, была другая РНКаза (RNase1), работающая в щелочной среде и способная расщеплять двухцепочечную РНК. Это один из механизмов противовирусной защиты, не имеющий отношения к пищеварению.

У колобин в связи с переходом к питанию симбиотическими бактериями появилась новая РНКаза — RNase1B. Она производится в поджелудочной железе и поступает в тонкий кишечник. В кишечнике у колобин, в отличие от других обезьян, среда кислая, а не щелочная. Новый фермент отлично переваривает бактериальную РНК, но не способен обезвреживать двухцепочечную вирусную РНК.

Ген Rnase1Bвозник в результате дупликации исходного гена RNase1. После дупликации одна из копий сохранила старую функцию, а другая приобрела новую. При этом на первую копию действовал очищающий отбор, а на вторую — положительный, что привело к закреплению девяти значимых замен. Эксперименты показали, что каждая из этих девяти замен снижает эффективность выполнения исходной функции — расщепления двухцепочечной РНК. Следовательно, дупликация была необходима для развития новой функции: не будь у колобин «запасной» копии гена, которая продолжила выполнять старую функцию, отбор вряд ли смог бы закрепить эти девять мутаций ( Zhang et al., 2002).

«Молочные» белки таракана Diploptera punctata.Эти живородящие тараканы выкармливают своих детенышей специальными белками, которые произошли путем дупликации и неофункционализации от липокалинов — внеклеточных белков, отвечающих за транспорт небольших гидрофобных молекул (липидов, стероидов, ретиноидов и др.) ( Williford et al., 2004). По-видимому, от того же предкового липокалина у другого таракана, Leucophaea maderae, произошел белок-афродизиак, при помощи которого самцы привлекают самок ( Korchi et al., 1999).

—————

Можно ли на практике отличить неофункционализацию от ухода от адаптивного конфликта? По идее, это должно быть не так уж сложно. В первом случае одна копия гена подвергается очищающему (отрицательному) отбору и продолжает выполнять исходную функцию, а вторая копия подвергается положительному отбору. О том, как определить, какой тип отбора действовал на ген, мы говорили в главе 2. Во втором случае обе копии подвергаются положительному отбору, причем эффективность выполнения обеих функций растет.

Проверять такие теории на практике биологи научились лишь недавно. Например, в 2008 году генетики из Университета Дюка (США) применили эти критерии к дуплицированному гену фермента у ипомеи — рода растений из семейства вьюнковых ( Des Marais, Rausher, 2008). Фермент называется дигидрофлавонол-4-редуктаза (DFR). Он восстанавливает различные флавоноиды, превращая их в красные, пурпурные и синие пигменты-антоцианы. Это исходная функция данного фермента, которую он выполняет почти у всех цветковых растений. Кроме того, фермент катализирует некоторые другие химические реакции, причем полный спектр его возможностей на сегодняшний день не установлен.

У ипомеи и нескольких ее близких родственников ген DFRприсутствует в виде трех копий, расположенных вплотную друг к другу ( DFR-A, DFR-B, DFR-C). У других вьюнковых ген имеется только в одном экземпляре. Все вьюнковые с утроенным геном DFRобразуют кладу, т. е. группу, происходящую от одного общего предка и включающую всех его потомков. На начальных этапах эволюции этой группы ген подвергся двум последовательным тандемным дупликациям. Сначала возникло две копии, одна из которых стала геном DFR-B, а вторая дуплицировалась еще раз и превратилась в DFR-Aи DFR-C.

По соотношению синонимичных и значимых замен авторы установили, что после первой дупликации тот ген, который впоследствии разделился на DFR-Aи DFR-C, находился под действием положительного отбора. В нем быстро фиксировались значимые замены, т. е. шла адаптивная эволюция. Что касается гена DRF-B, то в нем скорость фиксации значимых замен после дупликации вроде бы не выросла. Это, казалось бы, свидетельствует в пользу неофункционализации, т. е. говорит о том, что ген DRF-Bсохранил исходную функцию, а DFR-Aи DFR-Cприобрели новую. Однако выводы на этом этапе делать еще рано, потому что важные адаптивные изменения могут быть обусловлены очень небольшим количеством значимых замен. В принципе даже одна-единственная аминокислотная замена может изменить свойства белка.

Чтобы точно установить, имела ли место адаптивная эволюция гена DFR-Bпосле дупликации, необходимо было экспериментально исследовать свойства кодируемого им белка. Именно это и проделали авторы. Они изучили каталитическую активность белков DFR-A, DFR-B и DFR-C ипомеи, а также исходный вариант белка DFR других вьюнковых. Все белки проверялись на способность восстанавливать пять разных субстратов (веществ из группы флавоноидов).

Оказалось, что белок DFR-B ипомеи работает эффективно со всеми пятью субстратами. Исходный белок DFR справляется со всеми ними намного хуже. Наконец, DFR-A и DFR-C вообще не проявляют каталитической активности по отношению к этим пяти субстратам.

Таким образом, белок DFR-B после дупликации стал лучше справляться со своей основной функцией — восстановлением флавоноидов, — чем до дупликации. И это несмотря на то, что после дупликации в нем зафиксировалось мало значимых замен. Как выяснилось, одна-единственная замена в ключевой позиции резко повысила эффективность фермента. История получилась довольно детективная.

У большинства цветковых растений в позиции 133 в белке DFR стоит аминокислота аспарагин (Asn133), которая играет важную роль в «схватывании» ферментом своего субстрата. Белки DFR с Asn133 эффективно восстанавливают флавоноиды. Однако у далеких предков вьюнковых (у общего предка пасленоцветных и горечавковых) этот столь важный аспарагин заменился на аспарагиновую кислоту (Asp133). Это привело к ухудшению «флавоноидной» функции фермента. Почему же такая вредная мутация не была отсеяна отбором? Очевидно, к тому времени у белка DFR в этой эволюционной линии (т. е. у предков пасленоцветных и горечавковых) появилась новая дополнительная функция. Отбор начал оптимизировать белок сразу по двум направлениям, и замена аспарагина на аспарагиновую кислоту в 133-й позиции была следствием компромисса — прямым результатом адаптивного конфликта. В чем состоит эта дополнительная функция, к сожалению, выяснить не удалось. Но изменение произошло в том участке белка, который отвечает за связывание субстрата, значит, речь идет о работе с какими-то новыми субстратами.

С тех пор большинству пасленоцветных и горечавковых пришлось довольствоваться «компромиссным» вариантом белка DFR. Но у предков ипомеи ген DFRудвоился, появилась уникальная возможность уйти от адаптивного конфликта и разделить функции между белками. И предки ипомеи эту возможность не упустили. После дупликации у белка DFR-B восстановился аспарагин в 133-й позиции. Это резко усилило каталитическую активность по отношению к флавоноидам. Эффективность фермента снова стала высокой, как у далеких предков, у которых фермент еще не имел дополнительной функции. И для этого хватило одной-единственной аминокислотной замены (именно поэтому анализ соотношения значимых и синонимичных замен не выявил следов положительного отбора в гене DFR-B).

Что же произошло с генами DFR-Aи DFR-C? Очевидно, они вовсе отказались от старой функции (работы с флавоноидами) и посвятили себя выполнению новой. Если замена аспарагина на аспарагиновую кислоту была компромиссным решением, позволявшим кое-как совместить обе функции в одном белке, то можно предположить, что у DFR-A и DFR-C аспарагиновая кислота заменится на что-то еще, но только не на аспарагин. Так и произошло. У разных видов ипомей в белке DFR-A 133-ю позицию занимают разные аминокислоты, а в белке DFR-C здесь всегда стоит изолейцин, что лишает белок способности работать с флавоноидами.

Хотя в этом исследовании осталась досадная «дырка» — так и не удалось узнать, в чем же состоит новая функция белков DRF, — тем не менее результаты показывают, что имел место именно уход от адаптивного конфликта, а не неофункционализация. Ген DRFстал бифункциональным задолго до дупликации. Дупликация позволила разделить функции между копиями, снять адаптивный конфликт и оптимизировать каждый ген для выполнения какой-то одной функции.

В конце статьи авторы делают важное замечание. Они указывают, что в случае ухода от адаптивного конфликта по сравнению с неофункционализацией выше вероятность сохранения «лишних» копий гена после дупликации. Ведь если дуплицированный ген выполнял две функции еще до дупликации, то процесс разделения функций может быть инициирован многими разными мутациями в любой из двух копий. Случайные мутации с большей вероятностью могут чуть-чуть усилить одну из существующих функций белка, чем создать совсем новую.

С этих позиций легче понять результаты других исследований, в том числе данные о двух полногеномных дупликациях, произошедших на заре эволюции позвоночных.

Секретный код позвоночных выдал ланцетник

Ланцетник ( Branchiostoma) — хрестоматийный пример живого ископаемого, т. е. мало изменившегося потомка очень древнего предка. Ланцетника называют живой схемой хордового животного. Это маленькое червеобразное существо большую часть времени проводит, зарывшись в грунт и отфильтровывая пищевые частицы из морской воды. Вода входит в рот, а выходит через жаберные щели, соединяющие полость глотки с окружающей средой. Ланцетник удивительно похож на ранние стадии эмбрионального развития позвоночных. Это было замечено еще в XIX веке эмбриологом А. О. Ковалевским (1840–1901). Как и у зародышей позвоночных, у ланцетника есть спинная струна — хорда, спинная нервная трубка, жаберные дуги, сердце на брюшной стороне тела и другие характерные признаки, доказывающие его родство с позвоночными.

Тип хордовых делится на три подтипа: головохордовые (единственным представителем которых является ланцетник), оболочники (асцидии, сальпы, аппендикулярии) и позвоночные. Родственные связи подтипов до недавних пор оставались не совсем ясными. Одни эксперты считали, что ланцетник ближе к позвоночным, чем оболочники, другие утверждали, что ближайшими родственниками позвоночных являются оболочники. Впрочем, по поводу того, как примерно выглядел общий предок хордовых, особых разногласий нет уже со времен Ковалевского. Это было червеобразное животное с хордой, спинной нервной трубкой и жаберными щелями, сходное с ланцетником, личинками оболочников и пескоройками — личинками миног. Выводы сравнительной анатомии и эмбриологии подкрепляются палеонтологическими данными: отпечатки примитивных хордовых животных, напоминающих ланцетника, обнаружены в отложениях кембрийского возраста. Как раз в это время и должны были жить формы, близкие к общему предку трех современных подтипов.

В последнее время для выяснения спорных вопросов ранней эволюции хордовых активно привлекаются молекулярногенетические данные. Сначала работали с отдельными генами, потом в распоряжении ученых оказались полные тексты геномов различных позвоночных, а затем и оболочников. Эволюционные деревья постепенно становились все более точными. Однако для окончательного решения ряда вопросов не хватало генома ланцетника. Наконец в 2008 году он был прочтен ( Putnam et al., 2008).

Размер генома ланцетника — 520 млн пар нуклеотидов (в шесть раз меньше, чем у человека); в нем содержится 21 900 белок-кодирующих генов (у человека — примерно столько же); мобильные генетические элементы составляют 30 % генома (у человека — свыше 50 %).

Ланцетники, как выяснилось, генетически очень разнообразны. Парные хромосомы, которые изученный ланцетник получил от отца и матери, различаются по своим нуклеотидным последовательностям на 3,7 % (если учитывать только нуклеотидные замены; вставки и выпадения нуклеотидов добавляют еще 6,8 % различий). Это значит, что родители этого ланцетника генетически отличались друг от друга втрое сильнее, чем человек от шимпанзе, и в десятки раз сильнее, чем отличаются друг от друга представители человеческих рас и народов. Высокий полиморфизм, скорее всего, объясняется тем, что численность популяции, к которой принадлежал исследованный ланцетник, оставалась очень высокой в течение долгого времени. Ланцетники действительно являются массовыми животными. В Китае, например, их гребут лопатами (в буквальном смысле), промывают от песка и варят суп.

Прочтенный геном ланцетника сыграл роль последнего недостающего фрагмента в сложной головоломке родственных отношений вторичноротых животных (к вторичноротым относят хордовых, полухордовых и иглокожих). До его прочтения эволюционное дерево вторичноротых сохраняло долю неопределенности. Но теперь, похоже, для сомнений больше не осталось места. Авторы использовали для построения дерева 1090 генов, общих для всех животных, — больше просто некуда. И дерево получилось весьма устойчивым (каждая точка ветвления имеет очень высокую «статистическую поддержку»). Поэтому можно уверенно сказать, что дерево, показанное на рисунке, уже не будет в дальнейшем меняться. Это окончательное эволюционное дерево вторичноротых, показывающее (даже страшно вымолвить!) истинный ход их эволюции.

Вторичноротые сначала разделились на хордовых и предков иглокожих и полухордовых. От эволюционного ствола хордовых первыми отделились предки ланцетника и только потом — предки оболочников. Таким образом, оболочники все-таки оказались более близкими родственниками позвоночных, чем ланцетник. Зато ланцетник подтвердил свое право на почетное звание самого примитивного хордового (точнее, как сейчас принято говорить, раньше всех ответвившегося).

Еще в 1970 году американский биолог Сусуму Оно, автор монографии «Эволюция путем дупликации генов» ( Ohno, 1970), предположил, что на заре эволюции хордовых их геном подвергся одной или двум дупликациям. Избыточность генома резко возросла, «лишние» гены получили возможность эволюционировать в новых направлениях, что открыло позвоночным путь к созданию сложных адаптаций.

Эволюция. Классические идеи в свете новых открытий

Ланцетник — «живая упрощенная схема хордового животного».

Гипотеза Оно сначала основывалась на скудных фактах, но постепенно появлялись все новые аргументы в ее пользу. В итоге она стала почти общепризнанной, но не хватало решающего доказательства. Ученые возлагали надежды на геномы оболочников, но тут их постигло разочарование. Оказалось, что молекулярная эволюция оболочников протекала исключительно бурно (это видно, в частности, по длине соответствующих веточек на рисунке). В результате геномы оболочников оказались очень сильно перемешаны. Гены оболочников так часто переходили с места на место, с одной хромосомы на другую, что от исходного порядка расположения генов в хромосомах мало что осталось. Между тем для решения вопроса о том, были ли в эволюции хордовых геномные дупликации, необходим анализ «групп сцепления» — длинных участков ДНК, содержащих сходные наборы генов у разных животных. Хромосомы в ходе эволюции рвутся, склеиваются и обмениваются участками, но отдельные кусочки, в том числе довольно длинные, могут сохраняться в относительной целости сотни миллионов лет. Сопоставляя геном ланцетника с геномами позвоночных, ученым удалось реконструировать 17 «исходных групп сцепления», которые соответствуют 17 хромосомам общего предка хордовых. Это означает, что у ланцетника нашлись такие группы генов, которые расположены сходным образом и у позвоночных. Это следы того исходного порядка, в котором гены располагались у последнего общего предка хордовых.

Эволюция. Классические идеи в свете новых открытий

Пескоройка — личинка миноги — представляет собой, как и ланцетник, живую упрощенную схему типичного хордового. Она не сосет кровь у рыб, как многие взрослые миноги, а фильтрует воду через жаберные щели, подобно ланцетнику.

Как и следовало ожидать, каждая из 17 предковых хромосом превратилась в геноме его потомков (в том числе человека) в набор обрывков, рассеянных по разным хромосомам. Теперь мы подошли к самому главному. Оказалось, что каждый из 17 наборов в свою очередь подразделяется на четыре части. Например, набор, соответствующий предковой хромосоме № 8, в геноме человека состоит из девяти фрагментов ДНК. Они подразделяются на четыре группы (в трех группах по два фрагмента, в четвертой — три). Если сравнить между собой этих четыре группы фрагментов, то выясняется, что многие гены представлены в нескольких из них в виде паралогов(или паралогичных генов), по одному паралогу в группе. Паралогичные гены — это родственные гены, когда-то произошедшие от общего гена-предка в результате дупликации. Таким образом, каждая предковая хромосома превратилась в геноме позвоночных в четыре сходные между собой группы фрагментов ДНК. Сходство заключается в том, что если в одной группе есть какой-то ген, то в трех других с высокой вероятностью найдутся его паралоги. Это можно объяснить только тем, что на ранних этапах эволюции позвоночных действительно произошло учетверение генома — две последовательные дупликации. Гипотезу Оно, высказанную более 40 лет назад, наконец можно считать доказанной.

Дупликации произошли после того, как предки хордовых отделились от предков ланцетников и оболочников (их геномы не учетверены и не удвоены), и до того, как разошлись пути костных и хрящевых рыб. Скорее всего, первое удвоение произошло незадолго до, а второе сразу после разделения линий бесчелюстных (миноги, миксины) и челюстноротых (рыбы и наземные позвоночные). Эти линии разделились в раннем кембрии, примерно 530 млн лет назад.

Эволюция. Классические идеи в свете новых открытий

Эволюционное дерево вторичноротых, основанное на последовательностях 1090 белков. Актиния и дрозофила использованы в качестве «внешних групп», асцидия и аппендикулярия представляют оболочников. Длина ветвей отражает количество аминокислотных замен. ИзPutnam et al., 2008 .

Удвоение целого генома — далеко не уникальный случай в истории жизни. Еще одна полногеномная дупликация произошла 350 млн лет назад у предков костистых рыб; 40 млн лет назад то же самое случилось в одной из групп лягушек. Обычно после этого большинство «лишних» генов быстро теряется, и лишь некоторым из них находится новое применение. До тех пор пока два гена-паралога не начнут выполнять в организме разные функции, естественный отбор не может воспрепятствовать мутационной поломке или утрате одного из них.

Ученые составили список из 8437 генов, которые были у общего предка хордовых и сохранились хотя бы у некоторых современных позвоночных. Все эти гены в свое время учетверились, но большая часть появившихся паралогов была утрачена. Сохранились паралоги у 20–25 % генов. Среди генов, дубликаты которых «пригодились» ранним позвоночным, резко повышена доля тех, которые участвуют в регуляции транскрипции (гены — регуляторы активности других генов), в работе нервной системы, в регуляции эмбрионального развития и в передаче разнообразных сигналов. Это явно неслучайный выбор. Он хорошо согласуется с идеей о том, что геномные дупликации у предков позвоночных стали предпосылкой для последующей эволюции по пути усложнения.

Но повторим — естественный отбор не умеет заглядывать в будущее. Он не мог заранее знать, что позвоночные собираются эволюционировать именно в сторону усложнения. Здесь уместно вспомнить о механизме «ухода от адаптивного конфликта», о котором мы говорили выше. Не потому ли сохранились дубликаты генов-регуляторов, что уже у древнейших позвоночных эти гены были многофункциональными и не могли толком оптимизироваться для выполнения какой-то одной формообразующей функции? По-видимому, полногеномные дупликации предоставили позвоночным уникальную возможность быстро снять многие из накопившихся адаптивных конфликтов и, как следствие, избавиться от множества запретов, стоявших на пути морфологических преобразований.

Откуда взялся новый фермент?

Амплификация (увеличение числа копий гена; частным случаем амплификации является дупликация — удвоение) с последующим разделением функций между копиями — по-видимому, самый распространенный способ появления новых генов. Мы уже знаем, что новая функция может появиться у одной из копий как до, так и после амплификации. В обоих случаях обязательным этапом является закрепление полезных мутаций в одной или нескольких копиях размножившегося гена. Проблема в том, что полезные мутации должны появиться быстро — до того как избыточные копии гена будут безнадежно испорчены вредными мутациями. Иначе все вернется на круги своя и в геноме снова останется только одна рабочая копия гена плюс некоторое количество «мусора»— поврежденных мутациями псевдогенов(вышедших из строя, неработающих генов), в которые превратятся остальные копии.

Биологи из Швеции и США разработали теоретически ( Bergthorsson et al., 2007), а затем и экспериментально подтвердили ( Näsvall et al., 2012) сценарий появления новых генов, который они назвали ИАД (инновация — амплификация — дивергенция). Сценарий похож на уже знакомый нам уход от адаптивного конфликта, но имеет важное отличие. В сценарии ИАД амплификация сама по себе имеет адаптивный смысл: новообразованные копии гена с самого начала не являются избыточными. Они полезны, и поэтому отбор препятствует их порче. Это дает им время дождаться появления полезных мутаций. Главная хитрость тут в том, что амплификация гена увеличивает производство кодируемого им белка, а это, как правило, усиливает выполнение функций, за которые отвечает белок.

Схема ИАД показана на рисунке. У гена с основной функцией А появляется (или давно существует в качестве «побочного эффекта») дополнительная функция B, которая поначалу осуществляется с низкой эффективностью (и потому обозначается как b). Если эта побочная функция вдруг окажется полезной (например, из-за изменения условий среды), то отбор начнет поддерживать мутации, усиливающие эту функцию. Простейшим способом добиться этой цели, не нарушив функцию А, является амплификация бифункционального гена. Чем больше копий гена будет в геноме, тем больше будет молекул соответствующего белка и тем эффективнее станет осуществляться функция B. Таким образом, отбор будет поддерживать дупликации гена и защищать появляющиеся копии от мутационных повреждений. Заметим, что амплификация генов — весьма распространенная категория мутаций. Например, у бактерии Salmonella enterica, с которой работали исследователи, вероятность дупликации любого гена составляет примерно 10 −5на каждое клеточное деление [72].

Размножившиеся копии гена могут затем специализироваться. Если в одной из копий возникнут мутации, усиливающие функцию B в ущерб A, отбор их поддержит, ведь функция B «в дефиците», а с функцией A успешно справляются другие копии. Позднее у какой-то из них функция А может дополнительно оптимизироваться — возможно, за счет утраты функции B.

После появления генов-«специалистов», оптимизированных для функций или A или B, остальные копии станут действительно лишними. Скорее всего, они рано или поздно будут испорчены и превратятся в псевдогены или будут утрачены.

Для проверки своих идей ученые поставили эволюционный эксперимент на сальмонеллах. Для начала они взяли бактерий с удаленным геном trpF. Фермент, кодируемый этим геном, катализирует один этап синтеза аминокислоты триптофана. Тот же этап в синтезе другой аминокислоты, гистидина, катализируется ферментом hisA.

Эволюция. Классические идеи в свете новых открытий

Образование нового гена по схеме «инновация — амплификация — дивергенция». Пояснения в тексте. ИзNäsvall et al., 2012 .

Выращивая сальмонелл, лишенных trpF, в среде без триптофана, авторы обнаружили и отобрали сальмонелл-мутантов, у которых синтез триптофана взял на себя hisA. Для этого сальмонеллам пришлось немного подпортить мутациями свой hisA— удвоить три кодона и заменить еще один. В результате фермент hisA стал бифункциональным. Он приобрел способность выполнять функцию trpF, хоть и с низкой эффективностью [73]. Исходная функция hisA при этом тоже пострадала: синтез гистидина стал менее эффективным. Но все же бактерии-мутанты могли теперь выжить в среде, не содержащей ни триптофана, ни гистидина. Таким образом, возникшую мутацию можно рассматривать как первый этап — инновациюв сценарии ИАД. Удастся ли подопытным микробам пройти остальные два этапа?

Бактерий-мутантов, разделенных на несколько линий, выращивали в среде без триптофана и гистидина. Чтобы отслеживать генные дупликации, рядом с hisA поместили ген желтого флюоресцирующего белка, так что о количестве копий данного фрагмента генома можно было судить по силе флюоресценции.

Поскольку мутантный фермент hisA обе свои функции выполнял плохо, поначалу бактерии росли медленно. Однако уже через несколько сотен поколений скорость размножения бактерий во многих линиях увеличилась. Это произошло за счет амплификации бифункционального гена. В некоторых линиях появилось до 20 копий hisA. В результате количество производимого фермента увеличилось, и обе аминокислоты стали синтезироваться быстрее. Таким образом, второй этап сценария — амплификация— тоже подтвердился.

Эксперимент продолжался 3 тыс. поколений. За это время мутации, ускоряющие рост, закрепились во всех линиях. При этом в большинстве линий произошла дивергенция: появились ферменты-«специалисты», эффективно выполняющие одну из двух функций. Иногда это сопровождалось потерей лишних копий (две копии становились «специалистами», остальные терялись). Все это соответствует предсказаниям модели ИАД. Но было обнаружено и кое-что неожиданное: в некоторых линиях под действием мутаций и отбора сформировался фермент-«генералист», хорошо справляющийся с обеими функциями одновременно!

Эксперимент показал, что сценарий «инновация — амплификация — дивергенция» реалистичен. Не исключено, что многие новые гены в ходе эволюции возникали именно таким путем.

Обоняние и цветное зрение развивались в противофазе

Эволюция цветного зрения у наземных позвоночных хорошо изучена. Способность различать цвета определяется светочувствительными белками колбочек — опсинами, которые могут быть «настроены» на разную длину волны. В зависимости от того, какие аминокислоты стоят в ключевых позициях в молекуле опсина, белок избирательно реагирует на световые волны той или иной длины. Еще до выхода на сушу позвоночные выработали систему цветного зрения, основанную на четырех опсинах (тетрахроматическое зрение) [74]. Она сохранилась у многих наземных позвоночных, включая птиц, которые великолепно различают цвета. Возможно, если бы такое зрение было у людей, нам казалась бы убогой трихроматическая система отображения цвета, используемая в наших телевизорах и компьютерных мониторах. У человека, как и у всех обезьян Старого Света, зрение трихроматическое. У большинства других млекопитающих из четырех опсинов, имевшихся у предков, сохранилось только два (дихроматическое зрение). Предки обезьян тоже имели дихроматическое зрение и не умели отличать красный цвет от зеленого.

Утрата млекопитающими двух опсинов, скорее всего, объясняется тем, что их предки вели ночной образ жизни. Они «ушли в ночь» в конце триасового или в начале юрского периода (180–220 млн лет назад). Это было связано с перипетиями конкурентной борьбы между двумя великими эволюционными стволами наземных позвоночных — синапсидами и диапсидами. В пермском периоде (300–250 млн лет назад) синапсидные рептилии — предки млекопитающих — были господствующей группой. В следующем, триасовом периоде их господство пошатнулось, поскольку на сцене появились молодые конкуренты — архозавры, относящиеся к группе диапсидных рептилий. Архозавры делали ставку на крупные размеры, быстрый бег и острые зубы, а у синапсидных рептилий тем временем мало-помалу развивались черты млекопитающих. Они мельчали и уходили «в тень» — осваивали ночной образ жизни, чему в немалой степени способствовало приобретение теплокровности.

В начале юрского периода власть на суше окончательно перешла к одной из групп архозавров, а именно к динозаврам. Синапсиды вымерли почти полностью, за исключением одной группы, которая дала начало млекопитающим. В течение всего юрского и мелового периодов, до самого вымирания динозавров (65,5 млн лет назад), млекопитающим приходилось вести ночной образ жизни чтобы пореже попадаться на глаза господствующим дневным хищникам и к тому же оставаться некрупными. В этих обстоятельствах цветное зрение стало бесполезным, и два опсиновых гена были потеряны. Когда после вымирания динозавров многие млекопитающие снова стали дневными, им пришлось обходиться дихроматическим зрением, поскольку взять новые опсиновые гены взамен утраченных было негде.

До недавних пор ученые предполагали, что оба опсиновых гена были утрачены очень давно, еще до разделения млекопитающих на однопроходных, сумчатых и плацентарных. Но один из потерянных генов обнаружился в геноме утконоса. Это значит, что гены потерялись не сразу, а по очереди и не так быстро. Общий предок всех современных млекопитающих еще имел три опсина, а общий предок сумчатых и плацентарных — уже только два. Некоторые австралийские сумчатые вроде бы имеют полноценное цветное зрение, но ни одного из двух потерянных генов у них обнаружить не удалось. Значит, если у них действительно есть цветное зрение, оно приобретено ими вторично и на иной генетической основе.

Как это может происходить, показывает пример обезьян. У общего предка обезьян Старого Света, который жил 30–40 млн лет назад, один из двух сохранившихся опсиновых генов удвоился, и отбор быстро «настроил» его копии на разные длины волн. Для этого потребовалось зафиксировать всего-навсего три мутации (аминокислотные замены). В итоге зрение у обезьян стало трихроматическим, что дало им возможность отличать спелые плоды от зеленых и свежую листву от старой (у многих тропических растений молодые листья имеют красноватый оттенок).

Параллельно и независимо сформировалось цветное зрение у некоторых обезьян Нового Света. Им повезло меньше: столь необходимой дупликации они не дождались. Недостающий третий опсин возник у американских обезьян как аллельный вариантодного из двух старых опсиновых генов. Поэтому трихроматическим зрением обладают лишь особи, гетерозиготные по данному гену, а гомозиготы обходятся дихроматическим. Ситуация усложняется тем, что находится этот ген в Х-хромосоме, которая у самок имеется в двух экземплярах, а у самцов — только в одном. Поэтому шанс получить от родителей три разных опсина (и трихроматическое зрение) есть только у самок, и то не у всех. Но обезьяны ведут общественный образ жизни, и наличие в группе хотя бы одной самки, способной отличить красное от зеленого, оказывается полезным для коллектива.

Как показал Такуси Кисида из Киотского университета, обоняние наземных позвоночных имеет не менее увлекательную эволюционную историю, чем зрение. Уменьшение числа опсинов, оказывается, сопровождалось увеличением числа обонятельных рецепторов, и наоборот ( Kishida, 2008).

Млекопитающие отличаются от других тетрапод не только проблемами с цветным зрением, но и гораздо более тонким обонянием. Например, у крысы насчитывается до 1600 генов обонятельных рецепторов, тогда как у курицы их всего около 80. В отличие от цветов спектра для различения многочисленных запахов тремя-четырьмя генами не обойтись: для разных летучих молекул нужны разные рецепторы. Многочисленные гены обонятельных рецепторов млекопитающих возникли в результате множественных дупликаций из исходного небольшого набора, унаследованного от предков. Естественно предположить, что развитие обоняния у млекопитающих, как и утрата цветного зрения, было связано с переходом к ночному образу жизни. В этом случае большинство дупликаций обонятельных генов должно было произойти примерно в то же время, что и утрата двух опсиновых генов.

Чтобы проверить эту гипотезу, Кисида сравнил гены обонятельных рецепторов в геномах шести тетрапод: лягушки, курицы, утконоса, опоссума, собаки и мыши. Анализ этих шести видов позволяет реконструировать ситуацию в главных точках ветвления эволюционного дерева наземных позвоночных. Сравнение лягушки с другими видами проливает свет на общего предка современных амфибий и амниот (= рептилии + птицы + млекопитающие), жившего около 340 млн лет назад (начало каменноугольного периода). Курица, как представитель архозавров, помогает составить представление об общем предке синапсидных и диапсидных тетрапод, жившем около 310 млн лет назад (вторая половина каменноугольного периода). Утконос расскажет об общем предке млекопитающих (180 млн лет назад, ранняя юра), опоссум — об общем предке сумчатых и плацентарных (140 млн лет назад, ранний мел). Эволюционные пути предков собаки и мыши разошлись около 85 млн лет назад (поздний мел). Что касается нас с вами, то мы на этом упрощенном эволюционном дереве ближе всего к мыши.

Результаты, полученные Кисидой, говорят о том, что у общего предка амфибий и амниот было 100–110 генов обонятельных рецепторов. У общего предка синапсидных и диапсидных их число осталось прежним. Зато у общего предка однопроходных и териевых их было уже 330, у общего предка плацентарных и сумчатых — 670, а общий предок мышей и собак имел 740 генов обонятельных рецепторов. Главный результат состоит в том, что почти все дупликации обонятельных генов были приурочены к отрезку эволюционного дерева, заключенному между общими предками диапсидных и синапсидных (310 млн лет назад) и плацентарных и сумчатых (140 млн лет назад).

Таким образом, период массовых дупликаций обонятельных генов совпадает с периодом утраты опсиновых генов. Первый опсиновый ген был потерян на отрезке между общим предком диапсидных и синапсидных и общим предком однопроходных и териевых, т. е. на ранних этапах становления млекопитающих. Второй опсиновый ген был потерян на отрезке между общим предком однопроходных и териевых и общим предком сумчатых и плацентарных.

Любопытно, что восстановление цветного зрения у обезьян Старого Света сопровождалось утратой многих обонятельных генов (или превращением их в неработающие псевдогены). Как видим, развитие зрения и обоняния происходило в противофазе. Когда древние млекопитающие перешли к ночному образу жизни, роль зрения уменьшилась, а обоняния — возросла. Когда обезьяны снова стали полагаться в основном на зрение, их обоняние ослабло.

Еще одна любопытная деталь состоит в том, что одно из семейств обонятельных генов (известное как семейство № 7; у приматов это самое многочисленное семейство обонятельных генов) подвергалось усиленной дупликации уже послеразделения плацентарных и сумчатых. О некоторых рецепторах этого семейства известно, что они реагируют на половые феромоны. Есть вещи в мире запахов, которые никаким зрением не заменишь.

У читателей может возникнуть резонный вопрос: неужели для улучшения зрения или обоняния достаточно добавить новый рецептор? А откуда возьмутся новые мозговые структуры, которые будут обрабатывать сигналы от нового рецептора? Так вот, похоже на то, что новых мозговых структур для этого не требуется, потому что имеющиеся структуры используют для интерпретации сигналов самообучающиеся алгоритмы. В процессе развития мозг автоматически обучается различать сигналы, приходящие от разных рецепторов, и интерпретировать их именно как разные сигналы. Ничего не меняя в структуре мозга, можно добавить в сетчатку новый опсин, и мозг сам разберется, что делать с новым типом сигналов. На это указывают результаты опытов с трансгенными мышами, которым пересадили ген третьего, человеческого опсина (ничего не меняя в мозгу). Судя по результатам тестов, такие мыши лучше отличают красный цвет от зеленого, чем их дикие сородичи ( Jacobs et al., 2007).

Новые белки из старого конструктора

Большинство белковых молекул состоит из нескольких функциональных блоков (доменов). Например, белки, участвующие в передаче сигналов, часто содержат домены двух типов — регуляторные и каталитические. Первые реагируют на поступающие сигналы и определяют условия, при которых белок-передатчик «сработает». Вторые передают сигнал следующему участнику каскада (например, присоединяют фосфатную группу к другому белку, переводя его в активное состояние). Каждый такой белок действует как оператор условного перехода «если… то», причем регуляторный домен отвечает за «если», а каталитический — за «то».

Ученые давно предполагали, что перетасовка фрагментов белковых молекул может быть важным источником эволюционных новшеств ( Ратнер, 1993). На это указывают данные сравнительной генетики, а недавно начали появляться и прямые экспериментальные подтверждения. Одно из них получили биологи из Калифорнийского университета в Сан-Франциско, взявшись изучать сигнальный каскад, регулирующий половое поведение дрожжей ( Peisajovich et al., 2010).

Дрожжи, как уже говорилось в главе 3, делятся на два «пола»: а и α. Эксперименты проводились с полом а. Сигналом к спариванию для этих клеток служит альфа-фактор — феромон, выделяемый полом α (см. рисунок). Феромон взаимодействует с рецептором Ste2, который находится на поверхности клетки а. В результате комплекс из трех белков, прикрепленный к рецептору с внутренней стороны мембраны, распадается. Освободившийся белок Ste4 взаимодействует с белком Ste5, в результате чего Ste5 с прикрепленными к нему протеинкиназами [75]Ste11, Ste7 и Fus3 транспортируется к клеточной мембране. Здесь благодаря посредничеству белка Ste50 устанавливается связь между Ste11 и Cdc42. Последний белок входит в состав комплекса из трех белков, один из которых — киназа Ste20 — активирует белок Ste11, прикрепляя к нему фосфатную группу. Ste11 в свою очередь фосфорилирует киназу Ste7, а она активирует киназу Fus3. Активированный белок Fus3 отправляется в ядро, где он активирует несколько транскрипционных факторов, которые в свою очередь включают комплекс генов, необходимых для спаривания. В клетке приостанавливаются процессы, связанные с ростом и делением, меняется морфология клетки, и кончается все тем, что клетка а сливается со своим половым партнером — клеткой α.

Эксперименты проводились с 11 белками, которые на рисунке обозначены серыми овалами. Шесть из них состоят более чем из одного домена. Гены многодоменных белков разрезали на части, а фрагменты перекомбинировались случайным образом. В итоге были получены гены 66 новых белков. Эти гены затем поодиночке вставляли в дрожжевые клетки. При этом исходный сигнальный каскад оставляли без изменений, лишь добавляя к нему новых потенциальных участников. Все искусственные гены были соединены с одним и тем же регуляторным участком (промотором), что обеспечивало одинаковый (невысокий) уровень активности внедренных генов.

Эволюция. Классические идеи в свете новых открытий

Схема сигнального каскада, запускающего программу «брачного поведения» у дрожжей. ИзPeisajovich et al., 2010 .

Чтобы оценить эффективность работы сигнального каскада у 66 генно-модифицированных штаммов дрожжей, в их геномы был добавлен ген зеленого флуоресцирующего белка, соединенный с промотором, который реагирует на один из транскрипционных факторов, активируемых белком Fus3. В результате по силе свечения можно было определить силу реакции сигнального каскада на добавление в среду альфа-фактора. Регистрировались два параметра: «базовая» сила свечения, которая наблюдается до добавления альфа-фактора, и скорость, с которой свечение усиливается после добавления феромона.

Оказалось, что в десяти случаях из 66 добавление нового белка изменило поведение сигнального каскада. У одних штаммов изменился базовый уровень активности, у других — интенсивность реакции на феромон.

Но эти изменения теоретически могли быть вызваны не перекомбинированием доменов в добавленном белке, а просто тем, что какого-то домена в клетке стало больше. Чтобы исключить эту возможность, провели контрольные эксперименты. В клетки вставляли дополнительные копии целых генов и их усеченных, но работающих вариантов (кодирующих только один из доменов многодоменного белка). Эти манипуляции, однако, не повлияли на работу сигнального каскада. Значит, полученные в эксперименте новые признаки связаны именно с новыми свойствами белков, образованных путем перекомбинирования доменов.

Приводит ли более интенсивная работа сигнального каскада к реальному повышению половой активности? Чтобы это выяснить, исследователи смешивали модифицированные дрожжи с дикими дрожжами другого пола (альфа) и подсчитывали число успешных слияний. Оказалось, что те клетки, у которых скорость реагирования каскада на феромон увеличилась, действительно спариваются чаще, чем контрольные, и наоборот — те клетки, у которых чувствительность каскада снизилась, спариваются реже.

Рекордсменами оказались дрожжи с искусственным белком, состоящим из половинок Ste50 и Ste7, и с другим химерным белком, собранным из фрагментов Ste5 и Ste11. Эти «половые гиганты» спаривались втрое чаще, чем контрольные исходные дрожжи.

Для некоторых случаев удалось расшифровать молекулярные механизмы возникших изменений. Например, белок, собранный из регуляторного домена Ste5 и каталитического домена Ste11, создал новый «обходной» путь передачи сигнала от рецептора Ste2 к Fus3. Это заставляет клетку интенсивнее реагировать на феромон, что повышает вероятность спаривания.

Может ли повышение половой активности дрожжей, наблюдавшееся в эксперименте, быть полезным? Будет ли оно поддержано отбором, если такая мутация возникнет в природной популяции? Судя по тому, что мы знаем о действии отбора на склонность к сексу (см. главу 3), это возможно, особенно в неблагоприятных и переменчивых условиях. В эксперименте повышение половой активности ничуть не повредило здоровью подопытных клеток.

Такие исследования показывают, что перекомбинирование доменов может быть важным источником эволюционных новшеств — наряду с другими «крупномасштабными» мутациями, такими как дупликация генов и появление новых регуляторных участков ДНК. Важно, что перекомбинирование может приводить к мгновенномупоявлению новых признаков, тогда как дупликация генов создает новшества не сразу, а лишь после того, как две копии гена хоть немного «разойдутся» по своим функциям, накопив нуклеотидные замены.

—————

Комбинаторика, поставленная на поток

Большинство генов у эукариот состоит из кодирующих участков — экзонови некодирующих вставок между ними — интронов. Интроны — потомки мобильных генетических элементов, буйно расплодившихся в геномах ранних эукариот. Экзонно-интронная структура генов облегчает создание новых белков комбинаторным путем, хотя возникла она, конечно, не для этого. Тем не менее, раз уж так получилось и гены эукариот приобрели экзонно-интронную структуру, это открыло перед эволюцией интересные возможности.

Интроны необходимо удалить, прежде чем синтезировать белок на основе инструкций, записанных в гене. Если этого не сделать, интроны начнут транслироваться, и вместо рабочего белка получится ерунда. Для удаления интронов из молекул матричных РНК (мРНК), считанных с гена, развился механизм сплайсинга. Мобильные элементы — предки интронов — сами себя вырезали из мРНК. Это были «самосплайсирующиеся» элементы (такие и сейчас есть у некоторых прокариот). Если бы они этого не делали, зараженный ими геном стал бы нежизнеспособным, а вместе с ним погибли бы и они сами. У древних эукариот функция сплайсинга перешла от интронов к специальным молекулярным машинкам — сплайсосомам. В состав сплайсосом входят молекулы РНК — наследники тех частей древних самосплайсирующихся интронов, которые, собственно, и осуществляли самосплайсинг. Интроны, разумеется, должны содержать (и действительно содержат) в своей последовательности нуклеотидов специальные сигнальные участки, по которым сплайсосома распознает интрон и определяет, где у него конец и где начало — иначе интрон не может быть вырезан.

С универсальной системой вырезания интронов у эукариот появилась возможность изготавливать новые белки путем альтернативного сплайсинга. Так называют ситуацию, когда одна и та же молекула мРНК в зависимости от условий комбинируется (на генетическом жаргоне это звучит как «сплайсируется») по-разному. Например, в клетках печени из конкретной мРНК вырезаются только интроны, а в клетках мозга из нее же вместе с двумя соседними интронами вырезается и расположенный между ними экзон. Получается два разных белка, синтезируемых на основе одного и того же гена.

Недавно выяснилось, что альтернативный сплайсинг чаще всего используется у самых сложных организмов, таких как наземные позвоночные, и особенно млекопитающие. Более того, оказалось, что у приматов — к которым мы имеем честь принадлежать — альтернативный сплайсинг развит в полтора-два раза сильнее, чем у других млекопитающих ( Barbosa-Morais et al., 2012).

Именно поэтому у человека и других приматов разнообразие белков намного выше, чем у дрозофилы или червя C. elegans, хотя по числу белок-кодирующих генов все эти животные не так уж сильно отличаются друг от друга. Как мы помним из главы 3, нельзя до бесконечности наращивать количество полезных генов в геноме, потому что это повышает риск генетического вырождения. Так вот, похоже на то, что альтернативный сплайсинг стал для высших животных удобным способом увеличивать разнообразие белков, не повышая числа генов в геноме.

Альтернативный сплайсинг позволяет по-разному комбинировать экзоны одного и того же гена. При этом порядок экзонов не меняется: разница только в том, что одни экзоны могут быть выброшены вместе с интронами, а другие оставлены. В некоторых генах даже возникли целые наборы — «кассеты» альтернативных экзонов, причем в зрелую мРНК после сплайсинга попадает только один экзон из каждой кассеты. Об одном из таких генов ( DSCAM) мы рассказали в заключительной главе «Рождения сложности».

Однако альтернативный сплайсинг не позволяет комбинировать экзоны, входящие в состав разныхгенов. Для этого нужны перестройки уже не на уровне мРНК, а на уровне геномной ДНК: нужны транспозиции, т. е. перемещения фрагментов ДНК из одного места генома в другое. Это не редкость — случайные транспозиции являются одним из классических типов геномных мутаций, а для геномных паразитов — транспозонов это и вовсе стиль жизни. Вопрос в том, играет ли перекомбинирование экзоновв геномной ДНК существенную роль в появлении эволюционных новшеств.

У эукариот есть немало белков, скорее всего, возникших именно этим способом. Интересно, что они крайне неравномерно распределены по эволюционному дереву. Их очень много у животных, причем у всех — от губок до млекопитающих. У других эукариот (растений, грибов и протистов) их намного меньше. Функции большинства таких многодоменных белков животных связаны с поддержанием целостности организма (взаимодействие клеток, формирование тканей, прием и передача сигналов, формирование межклеточной среды и т. п.). Похоже, на ранних этапах эволюции животного царства был своеобразный бум формирования новых генов путем перекомбинирования экзонов ( Patthy, 1999).

—————

Горизонтальный перенос генов и симбиоз

Дупликация и перестановки участков ДНК одного и того же генома открывают большие эволюционные возможности. Еще больше их дает комбинирование фрагментов разных, неродственных геномов [76]. Обмен генами между неродственными организмами можно уподобить генной дупликации, сильно растянутой во времени. Ведь любые два организма имеют общего предка (а степень их родства определяется тем, как давно он жил). Разделение предкового вида на два в чем-то подобно дупликации: два генома отныне будут эволюционировать независимо друг от друга, приспосабливаясь к разным факторам среды и накапливая разные мутации. Если по прошествии миллионов лет представитель одного из видов-потомков заимствует ген у другого и встроит его в свой геном, где сохранилась другая, иначе изменившаяся копия того же самого предкового гена, это и впрямь напоминает дупликацию с разделением функций.

Разнообразие живых существ очень велико, столь же огромно и разнообразие генетических вариантов. Какие возможности открылись бы перед эволюцией, если бы живые существа научились брать из глобального генетического «банка данных» именно то, что им нужно! Но они этому так и не научились (за исключением Homo sapiens— единственного вида, начавшего осваивать сознательную генную инженерию) и берут, как правило, наугад. Иногда это приводит к успеху, но нечасто. На одну удачную попытку, скорее всего, приходятся миллионы неудачных.

Есть и еще более радикальный способ скомбинировать в одном организме эволюционные достижения давно разошедшихся линий. Это симбиогенез — формирование нового организма путем объединения двух старых.

Оба явления, неродственный ГПГ и симбиогенез, рассмотрены в книге «Рождение сложности». Однако за те пять лет, что прошли с момента ее написания, в этой области были сделаны новые удивительные открытия, о которых нельзя не рассказать.


ВОЙНА СИМБИОНТОВ.

Наездники — большая группа паразитических перепончатокрылых насекомых, откладывающих яйца в тела других насекомых. Личинки наездников пожирают жертву заживо изнутри. В «Рождении сложности» мы упомянули о том, что многие наездники вводят в тела своих жертв помимо яиц еще и особые вирусоподобные частицы, которые помогают личинкам паразита подавить иммунную защиту хозяина. Как выяснилось, гены, управляющие формированием этих частиц, были заимствованы наездниками у настоящего вируса, который 100 млн лет назад встроился в геном их предка ( Bézier et al., 2009).

Но жертвы наездников небеззащитны. Как известно, многие насекомые буквально нашпигованы различными симбиотическими микробами. Симбионты помогают хозяевам решать многие жизненные задачи: от синтеза незаменимых аминокислот и витаминов до переваривания химически чистой целлюлозы, фиксации атмосферного азота и борьбы с сорняками на грибных плантациях муравьев-земледельцев.

В круг задач, выполняемых симбионтами, входит и защита хозяев от наездников. Именно эту роль взяла на себя бактерия Hamiltonella defensa, обитающая в клетках многих насекомых, питающихся растительными соками. Гамильтонелла выделяет вещества, смертельные для личинок наездников: в этом и состоит защита. Бактерия, как и другие внутриклеточные симбионты, наследуется по материнской линии: она проникает в яйца, которые откладывает зараженная самка. Не побрезговали такой микробной защитой и гороховые тли Acyrthosiphon pisum.

Итак, наездники атакуют тлю при помощи симбиотических вирусов, а та защищается симбиотическими бактериями. Однако детальные исследования показали, что в действительности все еще интереснее. Как выяснилось, защиту обеспечивают не любые гамильтонеллы, а только те, в чей геном встроился вирус-бактериофаг APSE ( A. pisumsecondary endosymbiont). В геноме этого вируса содержатся гены токсичных белков. Именно эти токсины, закодированные в вирусном геноме, используются симбиотическим комплексом «тля — бактерия — вирус» для борьбы с общим врагом — личинками наездника ( Oliver et al., 2009). Насекомые ведут друг с другом настоящую вирусологическую войну!

Содержание в своем теле защитных симбионтов не является бесплатным удовольствием ни для тлей, ни для бактерий. При выращивании в лаборатории в отсутствие наездников тли, не зараженные гамильтонеллой, размножаются успешнее зараженных. Это значит, что признак «наличие симбионта» является вредным и отбор его постепенно отбраковывает. Со временем популяция тлей может полностью освободиться от бактерии. То же самое происходит и в паре «бактерия — вирус»: оказалось, что гамильтонеллы в лабораторных линиях освобождаются от вируса за 3–4 года. Разумеется, ситуация меняется на обратную, если тли регулярно подвергаются нападению наездников. В этом случае отбор благоприятствует как распространению гамильтонеллы в популяции тлей, так и распространению вируса APSE в популяции гамильтонелл.

Исследование еще раз показало, что бактерии могут быстро приобретать новые полезные свойства с помощью вирусов. Это может иметь далеко идущие последствия — особенно если бактерия вовлечена в тесные взаимоотношения с другими организмами. Не исключено, что та поразительная скорость, с которой насекомые приспосабливаются к новым условиям (например, к новым кормовым растениям или ядам), отчасти объясняется деятельностью фагов, проводящих генно-инженерные эксперименты на бактериях — симбионтах насекомых.


СИМБИОНТЫ ПЕРЕКРАШИВАЮТ ХОЗЯЕВ В ЗЕЛЕНЫЙ ЦВЕТ.

Многие фенотипические признаки насекомых определяются не генами самого насекомого, а генами живущих в нем микробов. Это заставляет рассматривать насекомых (и многих других животных) как симбиотические «сверхорганизмы». Недавно выяснилось, что даже окраска насекомого может определяться симбионтами! В отличие от американских хомячков, которым для изменения окраски нужно дожидаться мутаций в собственном гене Agouti(см. главу 2), некоторым насекомым для этого достаточно заразиться подходящей бактерией.

Гороховая тля, подобно многим своим шестиногим сородичам, нашпигована разнообразными симбионтами. С гамильтонеллой, которая в содружестве с вирусом APSE защищает тлю от наездников, мы уже познакомились. Похожие услуги может оказывать тлям и бактерия Serratia. Другой симбионт, без которого тля и вовсе не может существовать, — бактерия Buchnera. Она синтезирует для хозяина питательные вещества, отсутствующие в его пище — растительном соке, а также влияет на способность насекомого приспосабливаться к колебаниям температуры. Исследование японских и французских биологов добавило к этому списку еще одну симбиотическую бактерию, которая до сих пор оставалась незамеченной. Новооткрытый симбионт заставляет тлей, красных от рождения, зеленеть с возрастом ( Tsuchida et al., 2010).

В природе встречаются как зеленые, так и красные гороховые тли. Окраска для тлей — не просто украшение, от нее зависит судьба насекомого. Божьи коровки преимущественно охотятся на красных тлей, а наездники чаще нападают на зеленых. Вероятно, совместное влияние этих двух главных врагов тлей приводит к тому, что в популяциях жертв поддерживается полиморфизм (разнообразие) по окраске. Было известно, что окраска определяется генетически, причем красный цвет доминирует над зеленым. Кроме того, недавно выяснилось, что гены, необходимые для синтеза красных пигментов (каротиноидов), тли позаимствовали у грибов — для животных это один из немногих доказанных случаев «удачных», т. е. приведших к появлению новых полезных признаков, генетических заимствований ( Moran, Jarvik, 2010).

Изучая природные популяции тлей, обитающих во Франции, ученые заметили, что из яиц, отложенных некоторыми зелеными особями, вылупляются красные нимфы (личинки). По мере роста такие насекомые постепенно зеленеют.

Авторы изучили симбиотическую микробиоту необычных насекомых и обнаружили неизвестную ранее бактерию из рода Ricketsiella. Близкие родственники риккетсиеллы, Legionellaи Coxiella, вызывают опасные болезни у человека.

Ученые решили проверить, не связана ли странная, меняющаяся с возрастом окраска тлей с бактериальными симбионтами. Для этого они «вылечивали» тлей по очереди от каждого симбионта — от гамильтонелл, серраций и риккетсиелл. Затем тлям, зараженным только бухнерой, впрыскивали гемолимфу «зеленеющих» тлей. После этой процедуры часть потомства тлей оказывалась заражена риккетсиеллой. Незараженные особи сохранили свою природную окраску, тогда как все зараженные красные тли с возрастом позеленели. Если тля была зеленой от рождения, риккетсиелла не влияла на ее окраску. У позеленевших тлей удалось обнаружить положительную корреляцию между интенсивностью зеленой окраски и количеством риккетсиелл в организме. Таким образом, зеленая окраска у некоторых тлей определяется не ее собственными генами, а наличием симбиотической бактерии Rickettsiella.

Окраска тли зависит от двух групп пигментов: красных каротиноидов и зеленых полициклических хинонов. Оказалось, что риккетсиелла не влияет на количество производимых тлей красных пигментов, но увеличивает количество зеленых. Этим объясняется блеклый оттенок насекомых, позеленевших под влиянием риккетсиеллы. Он заметно отличается от яркозеленой окраски тлей, не имеющих каротиноидов и потому зеленых от рождения. В первом случае имеет место смешение красных пигментов с зелеными, во втором красные пигменты изначально отсутствуют.


Дальнейшие исследования покажут, какую роль в жизни тлей играют изменения окраски под воздействием бактерий. Не исключено, что риккетсиелла помогает тлям защищаться от божьих коровок, которые, как мы помним, чаще нападают на красных тлей. Однако зеленые тли чаще становятся жертвами наездников. Может быть, не случаен тот факт, что среди тлей, зараженных риккетсиеллой, с повышенной частотой встречаются особи, зараженные также гамильтонеллой или серрацией. Ведь обе эти бактерии защищают тлю от наездников.

—————

Заимствованный ген позволил бактерии вступить в симбиоз с кальмаром

Не все многоклеточные, подобно тлям, получают необходимых симбионтов по наследству от родителей. Многие должны сами найти их в окружающей среде. Учитывая огромное разнообразие микроорганизмов, легко понять, что в такой ситуации первостепенное значение приобретает взаимное узнаваниесимбионта и хозяина. Как они находят друг друга? Что позволяет им не ошибиться в выборе напарника?

Аналогичный вопрос встает и в отношении паразитических бактерий, у которых порой очень близкие формы паразитируют на разных хозяевах. Например, одна из разновидностей бактерии Salmonella entericaзаражает только людей, а другая имеет широкий круг хозяев — от приматов до грызунов. При этом геномы обеих разновидностей чрезвычайно похожи друг на друга. Попытки найти в их геномах то ключевое различие, от которого зависит выбор хозяина, пока не увенчались успехом. Несколько лучше обстоит дело с изучением симбиотических систем, в которых оба участника (а не только бактерия) заинтересованы в точном узнавании партнера. Например, расшифрован механизм узнавания в симбиотической ассоциации растений с азотфиксирующими бактериями ( Проворов, Долгих, 2006). В этом случае ключевую роль играют выделяемые бактериями вещества, влияющие на работу генов в клетках корня растения-хозяина.

Недавно удалось расшифровать механизм выбора партнера еще у одной пары симбионтов — тихоокеанского кальмара Euprymna scolopesи светящейся бактерии Vibrio fischeri. Бактерии живут в особом «светящемся органе» кальмара, который расположен на нижней стороне тела в мантийной полости. Самое интересное, что бактерии V. fischeriдружат не только с кальмарами, но и с рыбой Monocentris japonica, у которой на нижней челюсти имеются две яркие «фары». Они помогают рыбе охотиться в темноте.

Американские биологи нашли бактериальный ген (его условное обозначение — rscS), играющий ключевую роль в содружестве бактерий с кальмарами ( Mandel et al., 2009). Ген rscSкодирует белок-рецептор, который располагается на клеточной мембране, реагирует на какие-то внешние сигналы и передает их внутрь клетки, активизируя другой белок — транскрипционный фактор SypG.

В свою очередь SypG стимулирует активность группы генов, которые кодируют белки, необходимые для синтеза особых полисахаридов, которые выводятся из бактериальной клетки и располагаются на ее наружной поверхности. От этих полисахаридов зависит способность бактерий размножаться в слизи, выделяемой кальмаром.

Чтобы проверить способность разных штаммов V. fischeriвступать в симбиоз с кальмарами, исследователи выводили маленьких кальмарчиков в стерилизованной воде, а затем обмывали их растворами, содержащими разные штаммы светящегося микроба. Было проверено в общей сложности 12 «кальмарных» и 10 «рыбных» линий. Как и следовало ожидать, все кальмарные линии успешно прижились в кальмарах (кальмары вскоре стали светиться), тогда как из «рыбных» линий это сумела сделать только одна. Затем все линии были проверены на наличие гена rscS. Оказалось, что у этого гена есть два аллельных варианта ( rscS Aи rscS B), причем только аллель rscS Aпозволяет бактерии вступить в симбиоз с кальмаром. Именно этот вариант гена присутствует у всех «кальмарных» штаммов и у того «рыбного» штамма, который сумел наладить отношения с кальмаром. У остальных рыбных штаммов либо присутствует второй вариант гена ( rscS B), либо ген вовсе отсутствует. Дополнительные генно-инженерные опыты подтвердили, что наличие аллеля rscS Aу V. fischeriявляется необходимым и достаточным условием симбиоза с кальмарами.

На основе сравнения нуклеотидных последовательностей трех других генов исследователи построили эволюционное дерево изученных штаммов микроба. Судя по этому дереву, изначально V. fischeriне имел гена rscSи жил в симбиозе только с рыбами. Затем один из штаммов микроба приобрел этот ген. Все штаммы, имеющие ген rscS, образуют на дереве монофилетическую (происходящую от одного предка) группу. Это означает, что ген был приобретен только один раз. Сначала он существовал в единственном варианте — rscS A. Некоторые из потомков того микроба, который впервые обзавелся новым геном, покинули своих прежних хозяев — рыб — и перешли к симбиозу с кальмарами. Впоследствии кое-кто из них вернулся к симбиозу с рыбами, причем это возвращение сопровождалось изменениями в гене rscS. Так появился второй вариант этого гена — rscS B , который, возможно, улучшает «взаимопонимание» между микробами и рыбами, хотя проверить это пока не удалось.

Откуда же взялся у светящихся бактерий новый ген rscS? Теоретически он мог быть приобретен либо путем дупликации с последующим приобретением новой функции, либо путем горизонтального генетического переноса. Второй вариант вероятнее, потому что в геноме светящегося микроба нет других генов, сколько-нибудь похожих на rscS. У какого организма был заимствован ген, пока неизвестно: разнообразие морских микробов огромно и фактически только начинает изучаться.

Авторы отмечают, что это первый известный случай, когда главным «действующим лицом» во взаимном узнавании симбионтов оказался регуляторный ген. Как говорилось выше, этот ген запускает синтез специфических полисахаридов в ответ на какие-то внешние сигналы. Скорее всего, в роли этих сигналов выступают вещества, выделяемые кальмаром. Сама же система синтеза полисахаридов имелась у микробов задолго до приобретения гена rscS. Не исключено, что у «рыбных» штаммов она включается в ответ на вещества, выделяемые рыбами, но это еще предстоит проверить.

—————

Горький привкус победы, или Как дрожжи заплатили за успех

Эволюция — вечный поиск компромисса между противоречивыми требованиями, предъявляемыми организму сложной и переменчивой средой. В эволюции, как и в экономике, не бывает (ну, почти не бывает) «бесплатных обедов»: чтобы приобрести что-то одно, приходится отказаться от чего-то другого — либо от уже существующих полезных признаков, либо от возможности их приобретения в будущем. Второй вариант встречается чаще, поскольку отбор не заглядывает в будущее и не замечает таких потерь. Но и первый вариант нередок. К приобретению симбионтов это тоже относится: чтобы принять ценного гостя, порой приходится поступиться чем-то важным, например средствами защиты от похожих, но вредных «гостей».

РНК-интерференция— распространенный у эукариот защитный противовирусный механизм. Ключевую роль в РНК-интерференции играют белки Dicer и Argonaute. Система срабатывает, когда в клетке появляются двухцепочечные молекулы РНК (обычно это означает, что клетка заражена вирусом). Белок Dicer атакует двухцепочечную РНК и вырезает из нее короткие фрагменты, которые присоединяются к белку Argonaute. Образовавшийся комплекс из белка и короткой РНК находит и уничтожает любые молекулы РНК, содержащие такую же последовательность нуклеотидов, как в коротком фрагменте.

РНК-интерференция используется в экспериментах как удобный способ «выключения» генов. Достаточно ввести в клетку искусственно синтезированные двухцепочечные молекулы РНК с последовательностью нуклеотидов, соответствующей фрагменту какого-нибудь гена, чтобы все матричные РНК, считанные клеткой с этого гена, были уничтожены. В результате ген оказывается фактически выключенным: кодируемый им белок не синтезируется.

Эта замечательная методика, однако, неприменима к одному классическому лабораторному объекту — пекарским дрожжам Saccharomyces cerevisae. Этот вид дрожжей и несколько его ближайших родственников не имеют системы РНК-интерференции. Правда, недавно американские биологи обнаружили, что этот недостаток можно исправить. Для этого достаточно пересадить дрожжам гены белков Dicer и Argonaute от чуть более дальнего родственника — S. castellii, у которого система РНК-интерференции находится в рабочем состоянии. Действующую систему РНК-интерференции обнаружили и у других родственных видов ( Drinnenberg et al., 2009). Это значит, что у предков пекарских дрожжей система тоже была исправна и по эволюционным меркам «сломалась» лишь недавно.

Что же заставило пекарские дрожжи отказаться от противовирусной защиты? Или, говоря более корректным языком, почему отбор не отсеял мутации, нарушившие работу системы РНК-интерференции у предков S. cerevisae?

Чтобы ответить на этот вопрос, авторы, ранее открывшие РНК-интерференцию у S. castellii, провели эксперименты с пекарскими дрожжами, у которых способность к РНК-интерференции была восстановлена путем пересадки двух генов от S. castellii. Генно-модифицированные дрожжи выращивали на 50 разных средах. Везде они размножались с такой же скоростью, что и «дикие» дрожжи без РНК-интерференции.

Зато обнаружилось, что S. cerevisaeс восстановленной способностью к РНК-интерференции быстро теряют свой симбиотический вирус, который живет в их цитоплазме в виде комплекса из нескольких двухцепочечных молекул РНК. Этот вирус, известный под названием killer(убийца), содержит в своем геноме ген токсичного белка и одновременно защищает клетку, в которой находится, от действия токсина. Яд выделяется дрожжами в окружающую среду и убивает те дрожжевые клетки, у которых нет симбиотического вируса-убийцы. Это классическая система «яд — противоядие», которую используют многие симбионты и паразиты, чтобы повысить конкурентоспособность хозяина (как в данном случае) или чтобы не дать ему от себя избавиться.

РНК-интерференция разрушает двухцепочечную РНК вируса-убийцы. В результате дрожжи теряют способность вытеснять конкурентов, не имеющих вируса-убийцы, и становятся беззащитными перед конкурентами, у которых такой вирус есть. Таким образом, отсутствие РНК-интерференции дает дрожжам преимущество, позволяя им содержать в своих клетках полезный вирус.

Применимы ли эти выводы к другим грибам? Авторы провели целенаправленный поиск генов РНК-интерференции в геномах грибов, у которых есть вирусы-убийцы, а также поиск таких вирусов у грибов, о которых уже было известно, что РНК-интерференция у них есть.

Выяснилось, что между наличием вирусов-убийц и РНК-интерференции существует строгая отрицательная зависимость. У всех видов, имеющих вирусы-убийцы, нет РНК-интерференции. При этом родственные виды могут обладать РНК-интерференцией, но тогда у них наверняка нет вирусов-убийц.

Утрата генов РНК-интерференции произошла независимо в девяти эволюционных линиях грибов. В четырех случаях из девяти это сопровождалось приобретением вирусов-убийц. Случаев повторного приобретения генов путем ГПГ выявлено не было.

Почему РНК-интерференция была потеряна в пяти линиях, в которых вирусов-убийц обнаружить не удалось? Пока неизвестно. Может быть, такие вирусы были у их предков, но потом потерялись (как это произошло и в некоторых природных популяциях дрожжей).

Все девять случаев утраты РНК-интерференции произошли недавно: они приурочены к самым верхним, концевым веточкам эволюционного дерева. Если какие-то грибы и утрачивали РНК-интерференцию в более далеком прошлом, их потомки не дожили до наших дней. Возможно, это означает, что потеря РНК-интерференции в долгосрочной перспективе оказывается проигрышной стратегией и ведет к вымиранию ( Drinnenberg et al., 2011).

Бактерии наследуют приобретенный иммунитет

Говоря о горизонтальном переносе у неродственных организмов и РНК-интерференции, нельзя не упомянуть об одном исключительном явлении — приобретенном иммунитете у бактерий. Это явление замечательно вдвойне. Это, во-первых, неопровержимый случай наследования приобретенных признаков (о чем так долго спорили и продолжают спорить биологи) и, во-вторых, горизонтальный перенос, поставленный на конвейер и работающий на пользу своему хозяину. Речь идет о так называемой CRISPR-системе.

В книге «Рождение сложности» в главе о наследовании приобретенных признаков мы рассказали о смелой гипотезе австралийского иммунолога Эдварда Стила и его коллег, предположивших, что приобретенный иммунитет у позвоночных иногда может наследоваться ( Стил и др., 2002). Будь это так, пришлось бы признать реальность «ламарковского» наследования приобретенных признаков у позвоночных, пусть и в виде редкого, специфического исключения. Но прошло уже больше десятилетия, а гипотеза Стила так и не получила весомых подтверждений. При нынешних темпах развития биологии это означает, что Стил был не прав и приобретенный иммунитет у позвоночных не наследуется.

Но пути науки неисповедимы. Не успели неоламаркисты оплакать эту потерю, как микробиологи преподнесли им роскошный подарок. Они обнаружили, что у многих бактерий и архей есть особая система приобретенного иммунитета, основанная на заимствовании генетического материала у паразитов (вирусов и плазмид) и «вписывании» приобретенных защитных свойств прямо в геном. Эти свойства автоматически становятся наследственными и передаются всем потомкам данной бактерии. Новооткрытая система — максимальное приближение природы к «подлинно ламарковскому» наследованию, известное на сегодняшний день.

Этот тип иммунитета обеспечивается маленькими молекулами РНК, гены которых находятся в особых локусах (участках хромосомы), получивших неудобоваримое название CRISPR (clustered regularly interspaced short palindromic repeats — расположенные группами, регулярно подразделенные короткие палиндромные повторы).

Локусы CRISPR найдены у 90 % архей и 40 % бактерий. Каждый такой локус состоит из нескольких несоприкасающихся палиндромных повторов [77], между которыми имеются промежутки — спейсеры. Спейсер — это короткий участок вирусной или плазмидной ДНК. Размер CRISPR-повтора — от 23 до 47 нуклеотидных пар, спейсера — от 21 до 72. Число групп «повтор/спейсер» может достигать 375, но обычно меньше 50. В бактериальном геноме может быть один или несколько локусов CRISPR.

Поблизости от CRISPR расположены гены белков Cas (CRISPR associated). Эти белки необходимы для работы данной системы. Большинство Cas — это нуклеазы (ферменты, разрезающие молекулы ДНК и РНК), полимеразы (ферменты, осуществляющие матричный синтез НК) и нуклеотид-связывающие белки. Всего эта группа объединяет около 40 семейств белков.

Повторы CRISPR-последовательностей в пределах каждого вида микробов почти одинаковы, но сильно различаются от вида к виду.

В 2007 году было показано, что бактерия Streptococcus thermophilusв ходе борьбы с вирусами-бактериофагами изменяет свой локус CRISPR, достраивая к концу старой последовательности одну или несколько единиц «повтор/спейсер». Добавленные спейсеры совпадали с участками вирусного генома. При этом бактерии приобретали устойчивость к данному вирусу. Если изменить последовательность нуклеотидов нового спейсера или вообще удалить его, приобретенная устойчивость к фагу теряется.

В последующие два года ученые доказали, что локусы CRISPR эволюционируют в ответ на вирусные атаки, так что состав и порядок расположения спейсеров — это своебразная хроника вирусных инфекций, перенесенных данной бактерией и ее предками. Итак, взаимодействие с вирусами приводит к появлению иммунитета, который сохраняется в ряде поколений.

В формировании иммунитета участвуют Cas-белки. Без них микроб не может вставлять в свой геном вирусную или плазмидную ДНК в качестве спейсеров. Если в клетку проникает чужеродная ДНК, то Cas-белки перво-наперво распознают ее. Потом они же вырезают участок чужой ДНК и встраивают в локус CRISPR новую рабочую единицу «повтор/спейсер». Обновленная бактериальная хромосома нормально реплицируется и передается по наследству потомкам.

При транскрипции CRISPR формируется цепочка РНК (CRISPR-РНК, или crРНК), которая затем нарезается на короткие кусочки, состоящие из двух половинок палиндромного повтора и заключенного между ними спейсера. Эту нарезку также осуществляют Cas-белки.

В результате получается внушительный набор коротких сгРНК с различными вирусными спейсерами. Среди них и тот, который был счастливо приобретен при недавнем инфицировании. Молекулы crРНК объединяются с некоторыми Cas-белками. Если в клетку снова попадет такой же вирус, то РНК, несущая соответствующий спейсер, узнает комплементарный участок вирусной ДНК, а Сas-белки обезвредят ее. Узнавание чужой ДНК при помощи комплементарной crРНК происходит эффективно и быстро.

Эволюция. Классические идеи в свете новых открытий

Схема одного из двух локусовStreptococcus thermophilus , содержащих CRISPR и ассоциированные геныcas . Серым цветом показаныcas -гены, черным — CRISPR-последовательности. Под черным прямоугольником вынесена подробная структура CRISPR. Черные ромбики — это палиндромные повторы, а белые маленькие прямоугольники — спейсеры, представляющие собой участки плазмидной или вирусной ДНК. Буквами внизу обозначена нуклеотидная последовательность палиндромного повтора. Справа — «шпилька», петлеобразная структура, в которую сворачивается РНК, считанная с палиндромного повтора. Из Horvath, Barrangou, 2010 .

При частых атаках определенного вируса соответствующая рабочая единица «повтор/спейсер» поддерживается в рабочем состоянии в ряде поколений (мутации, повреждающие ее, отсеиваются отбором). Если же паразит больше не нападает, то соответствующая единица «повтор/спейсер» со временем накопит мутации, перестанет работать или исчезнет. Так что CRISPR-иммунитет — это самонастраивающаяся система ( Horvath, Barrangou, 2010).

В любой иммунной системе важнейшая проблема состоит в том, чтобы предотвратить атаку защитных молекул на собственный организм. Иммунная система должна отличать свое от чужого, иначе это будет не иммунитет, а самоубийство. Американским ученым из Северо-Западного университета (Эванстон, США) удалось выяснить, как бактерии решают эту задачу. Оказалось, что в узнавании чужеродной ДНК участвуют не только спейсеры, но и ограничивающие спейсер фрагменты палиндромных повторов. Если комплементарным оказывается не только спейсер, но и окружающие его нуклеотиды, то это «родная» ДНК, и иммунной атаки не происходит. Если же спейсер комплементарен проверяемой последовательности, а фрагменты повторов — нет, то это чужой геном, и тогда белки Cas избавляются от паразитической ДНК ( Marraffini, Sontheimer, 2010).

Итак, система CRISPR позволяет микробам напрямую вносить полезные изменения в свой геном, не прибегая к помощи случайных мутаций и отбора. Своеобразный (и, по-видимому, совершенно уникальный) способ быстрого создания полезных наследственных признаков! Но сама эта замечательная система, конечно, развилась более традиционным способом. Ее происхождение пока не выяснено в деталях, однако прослеживается преемственность между ней и системой РНК-интерференции, о которой рассказано выше ( Deltcheva et al., 2011).

Бактериальные гены помогли нематодам стать паразитами

Число доказанных случаев горизонтального переноса генов от бактерий к животным пока невелико, но быстро растет. О двух из них мы рассказали в «Рождении сложности» (о переносе генов паразитической бактерии вольбахии в геном насекомого-хозяина и о заимствовании бделлоидными коловратками генов бактерий, грибов и растений). Кроме того, обнаружено заимствование генов тлями у своих бактериальных симбионтов ( Nikoh, Nakabachi, 2009), а также перенос генов водоросли в геном удивительного морского моллюска Elysia chlorotica. Этот моллюск, похожий на ползающий зеленый листок, сохраняет хлоропласты съеденных водорослей живыми в своих тканях и таким образом приобретает способность к фотосинтезу ( Rumpho et al., 2008). Заимствованные у водорослей ядерные гены помогают моллюску обслуживать ворованные хлоропласты (имеющие собственный маленький геном). Вот уж поистине радикальное эволюционное новшество: фотосинтезирующее животное!

Во всех этих случаях речь идет либо о переносе генов от симбионта к хозяину (что помогает хозяину обеспечивать симбионта всем необходимым), либо о заимствованиях, польза которых не вполне очевидна. В принципе эти случаи можно было бы рассматривать как курьезы, не играющие важной роли в эволюции животных. Другое дело, если бы удалось показать роль ГПГ в становлении какой-нибудь большой и экологически значимой группы животных.

Именно это удалось сделать в последние годы на примере фитопатогенных нематод (круглых червей) ( Danchin et al., 2010). Нематоды, паразитирующие на растениях, — опаснейшие вредители: причиняемый ими ущерб оценивается в 157 млрд долларов в год. Уникальная особенность фитопатогенных нематод — наличие впечатляющего арсенала ферментов для разрушения компонентов стенки растительных клеток: целлюлозы, гемицеллюлоз и пектинов. Эти ферменты необходимы паразитам для проникновения в ткани растения и перемещения в них. У других животных, за редчайшими исключениями, таких ферментов нет. Зато они есть у многих бактерий и грибов. Поэтому напрашивается предположение, что нематоды позаимствовали соответствующие гены у бактерий или грибов путем горизонтального переноса.

Cравнительный анализ аминокислотных последовательностей этих ферментов у нематод, а также похожих белков, имеющихся у других организмов, показал, что все эти ферменты действительно были заимствованы нематодами у бактерий. Большинство заимствований произошло на ранних этапах эволюции фитопатогенных нематод. Заимствованные гены впоследствии подвергались многочисленным дупликациям. Получившиеся новые копии генов накапливали отличия и делили между собой функции. В результате нематоды обзавелись целым арсеналом ферментов для разрушения растительных клеточных стенок.

Каждая группа этих ферментов имеют свою историю. Например, гены полигалактуроназ— ферментов, расщепляющих пектины, — нематоды заимствовали у микроба, родственного современной бактерии Ralstonia solanacearum. Эта бактерия паразитирует на тех же растениях, что и нематоды, «одолжившие» ее ген. Возможно, предки современных нематод проглатывали предков ральстонии, копаясь в корнях растений. Гены ферментов ксиланаз, расщепляющих гемицеллюлозу, нематоды позаимствовали у почвенных бактерий — клостридий на самых ранних этапах своей эволюции. Выяснено и происхождение других групп заимствованных ферментов: целлюлаз(взяты у почвенной бактерии, близкой к Cytophaga hutchinsonii), пектат-лиаз, арабинази экспансинов(взяты в разное время у разных представителей актинобактерий).

Таким образом, становление большой группы животных — фитопатогенных нематод — было неразрывно связано с горизонтальным переносом генов от бактерий к животным. Каким образом бактериальные гены попадали в половые клетки животных, неизвестно, но мы должны признать, что такие события иногда случаются и могут иметь далеко идущие последствия. Едва ли можно сомневаться в том, что эволюционный успех фитопатогенных нематод был обеспечен именно заимствованными у бактерий генами ( Mayer et al., 2011).

Сельскохозяйственные симбиозы

В популярных книгах об эволюции принято уделять много внимания искусственному отбору и его плодам — новым видам, породам и сортам животных и растений, выведенным людьми в ходе уникального «эволюционного эксперимента», начавшегося свыше 10 тыс. лет назад в связи с переходом к сельскому хозяйству.

Эта традиция заложена еще Дарвином. В то время образованной английской публике не нужно было объяснять, что такое отбор (селекция, selection). Многие джентльмены увлекались селекцией собак, лошадей, голубей, различных растений и не понаслышке знали, как быстро можно добиться радикальных изменений в строении и внешнем облике организмов путем отбора, т. е. отбраковки «неудачных» особей и размножения «удачных» (что бы ни понимал под «удачностью» конкретный селекционер).

Поэтому Дарвин и назвал открытый им механизм эволюции «естественным отбором». Он хотел, чтобы все сразу поняли, о чем речь. Гениальная догадка Дарвина состояла в том, что в природе должен самопроизвольно идти процесс, аналогичный тому, что происходит в голубятне эксперта-голубевода, выводящего новую породу.

Любому селекционеру-практику отлично известно, как сильно могут различаться особи одного вида по своим наследственным качествам. Оставляя «на развод» одних животных (например, самых длинноногих) и отбраковывая других, селекционер создает ситуацию, в которой репродуктивный успех (приспособленность) особи зависит от определенного наследственного признака. С точки зрения отбираемых собак ситуация выглядит так: «Чем длиннее твои ноги, тем больше у тебя шансов оставить потомство». В результате те генетические варианты (аллели), которые способствуют развитию длинных ног, распространяются в популяции, а «гены коротких ног» исчезают, выбраковываются. В итоге мы получаем новую породу — например, борзую.

Дарвин догадался, что такой же процесс должен сам собой происходить в природе. Например, если более длинноногие особи будут в среднем ловить больше зайцев, а следовательно — лучше питаться, а следовательно — будут сильнее и крепче, то они оставят в среднем больше потомства, чем их коротконогие сородичи. Разумный селекционер для этого не нужен: природа все сделает сама. В итоге возникнет новая разновидность с ногами более длинными, чем у предков.

Значительная часть книги Дарвина «О происхождении видов» посвящена искусственному отбору, его результатам и возможностям. Позже Дарвин написал еще отдельную книгу об этом — «Изменения животных и растений в домашнем состоянии». Логика очень проста:


• искусственный отбор позволяет менять строение организмов и создавать новые разновидности;

• в природе должен самопроизвольно происходить (и происходит) точно такой же процесс;

• следовательно, в природе должны самопроизвольно появляться новые разновидности.


Иногда высказывается мнение, что между искусственным и естественным отбором есть принципиальная разница, поскольку в первом случае направление отбора задает разумный агент, а во втором — «слепые силы природы». На самом деле эта разница вовсе не принципиальна.

Во-первых, новые породы часто выводились людьми бессознательно, без всякого умысла. Человек действовал тоже не как «разумный агент», а скорее как «слепая природная сила». Например, для людей, занимающихся молочным животноводством, естественно оставить корову, которая дает много молока, в живых, а ту, что дает мало молока, пустить на мясо. Такое поведение автоматически приводит к тому, что высокоудойные коровы будут оставлять больше потомства. Это значит, что будет идти отбор на удойность. Людям при этом совершенно не обязательно осознавать, что они занимаются селекцией. С другим примером бессознательного отбора мы познакомились в главе о полезных мутациях. Важнейшим отличием культурных злаков от дикорастущих предков является то, что у первых семена крепко держатся в колосе, а у вторых — легко осыпаются. Древние земледельцы просто не доносили до дома (или места молотьбы) те семена, которые осыпались в пути, пока люди несли срезанные серпами колосья. Им доставались те семена, которые лучше держались в колосе. Эти же семена использовались потом для посева. Таким образом, происходил бессознательный отбор растений с неосыпающимися семенами. Еще пример: совершенно бессознательно и даже вовсе о том не ведая, виноделы, пивовары и пекари за несколько тысячелетий вывели новые разновидности дрожжей — винные, пивные, хлебопекарные. Люди понятия не имели, что занимаются селекцией, — просто оставляли «на развод» лучшую закваску ( Legras et al., 2007; Fay, Benavides, 2005).

Во-вторых, между искусственным и естественным отбором есть ряд переходных состояний. В природе агенты отбора тоже не всегда являются «слепыми силами». Яркий пример — сельское хозяйство у насекомых. Некоторые муравьи и термиты имеют высокоразвитую агрокультуру. Разводя в своих муравейниках и термитниках грибы на специально обустроенных огородах, насекомые в течение миллионов лет осуществляли самую настоящую селекцию своих сельскохозяйственных культур. В результате, например, грибы, возделываемые термитами подсемейства Macrotermitinae, утратили способность к самостоятельной жизни и стали сильно отличаться от своих диких предков. Они живут только в термитниках на специально обустроенных грядках из растительного материала, пропущенного через кишечник термитов. Эти окультуренные грибы образуют особый род Termitomyces, все виды которого неразрывно связаны с термитами. Симбиоз термитов с грибами возник единожды свыше 30 млн лет назад в экваториальной Африке и оказался очень успешным. В настоящее время подсемейство термитов-грибоводов включает десять родов и около 330 видов, и все они играют важнейшую роль в круговороте веществ и функционировании тропических сообществ Старого Света. Профессиональными грибоводами являются и муравьи-листорезы, но в отличие от грибов в термитниках муравьиные грибные культуры еще сохранили способность к самостоятельной жизни.

—————

Симбиотические бактерии помогают жукам выращивать съедобные грибы

Жук-лубоед Dendroctonus frontalis, которого в США называют южным сосновым жуком, наносит большой урон сосновым лесам на юго-востоке США. Неудивительно, что ученые стараются как можно лучше изучить его биологию, чтобы придумать, как с ним бороться.

Этот жук прогрызает под корой сосны извилистые ходы и засевает их грибом Entomocorticium, который служит пищей личинкам жука. Взрослые жуки бережно хранят небольшое количество гиф и спор гриба — посевной материал для плантаций — в особых углублениях (микангиях) на нижней стороне груди.

Жучьим посевам вредит другой гриб — Ophiostoma, который не годится в пищу личинкам и является агрессивным «сорняком». Гриб-сорняк действует не в одиночку, у него тоже есть покровители-симбионты — маленькие клещи, которые перебираются с одного дерева на другое, прицепившись к жуку-лубоеду. Клещи питаются грибом Ophiostoma, а в качестве «платы за услуги» помогают грибу распространяться по лесам и попадать в галереи жуков-грибоводов. У клещей для переноса грибов тоже есть специальные углубления на теле, подобные микангиям жуков. В этой сложной симбиотической системе есть еще один участник, гриб Ceratocystiopsis, который состоит во взаимовыгодных отношениях с клещами, но может также служить пищей личинкам жука.

Изучая содержимое микангиев и засеянных грибами ходов под электронным микроскопом, американские биологи обнаружили там помимо перечисленных трех видов грибов тонкие нити актинобактерий ( Scott et al., 2008). Актинобактерии — своеобразная и очень древняя группа прокариот, представители которой образуют ветвящиеся многоклеточные структуры, похожие на грибницу. Неудивительно, что до недавних пор актинобактерий считали грибами и называли «актиномицетами». Сходство с грибами у этих бактерий настолько велико, что они, подобно настоящим грибам, способны образовывать симбиотические комплексы с одноклеточными водорослями. Эти комплексы называют актинолишайниками.

Актинобактерии — большие мастера по производству антибиотиков. Недавно было показано, что муравьи-листорезы, выращивающие съедобные грибы на грядках из пережеванных листьев, защищают свои огороды от паразитов при помощи антибиотиков, выделяемых симбиотическими актинобактериями ( Currie et al., 2006). Поэтому, обнаружив актинобактерий в микангиях и «грибных галереях» жуков-лубоедов, ученые сразу предположили, что и в данном случае, как у муравьев-листорезов, может иметь место симбиоз между жуками и актинобактериями, производящими антибиотик.

Как выяснилось, жуки носят в своих микангиях две разновидности актинобактерий — белую и красную. Белая разновидность не приносит жукам пользы, зато красная эффективно подавляет рост гриба-сорняка Ophiostoma. Таким образом, актинобактерии, подобно гербицидам на наших посевах, действительно помогают жукам бороться за высокие урожаи.

Ученые выделили из красных актинобактерий действующее вещество, которое оказалось неизвестным ранее антибиотиком. Его назвали «микангимицином». Дальнейшие исследования показали, что микангимицин производится в больших количествах красными актинобактериями, а белые не выделяют его совсем. Чистый микангимицин подавляет рост обоих грибов — и «полезного» Entomocorticium, и «вредного» Ophiostoma, однако для этого требуются разные концентрации антибиотика. Чтобы затормозить рост гриба-сорняка, достаточно низких концентраций микангимицина. Чтобы в такой же степени замедлить рост съедобного гриба, концентрация должна быть повышена в 20 раз.

Открытие показало, что сложные сельскохозяйственные симбиотические системы, включающие помимо культивируемого гриба еще и бактерию — своего рода гербицид, не являются уникальной особенностью муравьев-листорезов. Таким образом, все черты цивилизованного сельского хозяйства — отбор на полезные свойства, сорняки, гербициды — можно увидеть и в «нецивилизованных» сообществах.

—————

Глава 6

Новые виды, или Как предотвратить скрещивание

Вид — одно из самых странных и спорных понятий в биологии. Оно было введено английским ботаником Джоном Рэем в XVII веке. Вид, определенный Рэем, представлял собой череду неизменных предков и потомков, причем родитель мог дать начало только такому же, как и он сам, организму. Рэй наблюдал на своем огороде, что из семян культурного растения может вырасти только то же самое растение, а сорняки вырастают из других, своих собственных семян или корневищ (в то время многие думали, что они появляются из тех же семян культурных растений нежелательным, хотя и неизбежным приращением). Так что исходное определение вида такое: совокупность тождественных друг другу организмов, способных давать подобное себе потомство.

Через несколько промежуточных ступеней концепция вида обрела помимо свойства устойчивости еще и свойство изменчивости. С одной стороны, очевидно, что в природе действительно существуют более или менее четко обособленные совокупности похожих особей, которые, как правило, могут скрещиваться и производить плодовитое потомство и которые связаны более тесным родством друг с другом, чем с представителями других подобных совокупностей. С другой стороны, особи в группе никогда не бывают на одно лицо, как двое из ларца. С третьей, далеко не всегда удается четко и однозначно определить, где проходит граница, какие группы особей следует считать самостоятельнымии видами, а какие — только подвидами, породами или разновидностями. Поэтому попытки дать виду строгое определение, избавиться от всех «более или менее» и «как правило» неизменно терпят неудачу. Предложены десятки «концепций вида», сотни критериев, тысячи определений — все без толку. Понятие как было расплывчатым и нечетким, так и осталось.

Удивляться тут нечему. Как отмечал еще Дарвин, виды не должны, да и не могут быть совершенно четкими и дискретными. Ведь их главное свойство — пластичность, способность постепенно меняться в силу законов изменчивости, наследственности и отбора. Между разновидностью и видом нет четкой грани, потому что разновидности со временем могут стать видами, а существующие сегодня виды в прошлом были всего лишь разновидностями каких-то других, предковых видов. В современной биосфере мы застали разные совокупности особей на разных стадиях этого процесса. По-видимому, периоды относительно стабильного существования вида чередуются с периодами быстрых изменений, причем первые продолжаются в среднем дольше. Именно поэтому в биосфере все-таки преобладают «хорошие», четко обособленные виды, в то время как спорные, переходные случаи встречаются реже. Хотя и это тоже спорно. Трудно найти такую группу животных или растений, в классификации которой не было бы сомнительных мест.

При всей расплывчатости формального определения виды все же реальны, по крайней мере у организмов, размножающихся половым путем. Вид — это прежде всего единый генофонд, совокупность аллелей, эволюционирующих как одно целое (см. главу 3). С бесполыми организмами сложнее. Непонятно, как провести грань между разновидностью и видом, например, у бделлоидных коловраток. Как бы мы ни старались, и то и другое — всего лишь совокупности более или менее родственных, конкурирующих друг с другом клонов, неспособных к регулярному обмену наследственным материалом. Тем не менее специалисты по коловраткам изо всех сил стараются (честно говоря, не слишком успешно) поделить на четкие виды как моногононтных коловраток, размножающихся половым путем, так и бесполых бделлоидных — и поди разбери, что при этом имеется в виду на самом деле.

—————

Эволюция видов и языков: единство постепенности и дискретности

Эволюция языков похожа на эволюцию биологических видов, хотя это сходство не следует преувеличивать. Лингвистическая эволюция в основном нейтральна — не имеет приспособительного характера. Нельзя утверждать, например, что грамматика чукотского языка лучше приспособлена к холодному климату, чем грамматика языков африканцев. В биологической эволюции, впрочем, тоже велик элемент нейтральности. Для построения эволюционных деревьев биологи предпочитают использовать именно нейтральные признаки. Дело в том, что приспособительные признаки — менее надежное свидетельство родства. Они могут возникать у неродственных форм в сходных условиях из-за одинаковой направленности отбора. Специалисты по исторической лингвистике активно и успешно используют математические методы построения эволюционных деревьев, разработанные биологами ( Lieberman et al., 2007; Pagel et al., 2007).

Аналогия с эволюцией языков помогает лучше понять два ключевых свойства биологической эволюции (на первый взгляд противоречивых): постепенность изменений и относительную дискретность видов.

С постепенностью все просто. Языки, как и виды, эволюционируют путем накопления мелких изменений. Один язык (например, латынь) превращается в другой (например, итальянский) постепенно. Каждое следующее поколение говорит лишь немного иначе, чем предыдущее. Не бывает так, чтобы родители, говорящие на латыни, родили детей, которые, научившись говорить, вдруг заговорили по-итальянски. Так же и в эволюции видов: родители одного вида не могут родить детенышей, относящихся уже к другому виду (в одном научно-популярном фильме были кадры, в которых мамочка из породы питекантропов родила сапиентного детеныша и с удивлением его разглядывает. Такого, конечно, не бывает). Переход происходит плавно и незаметно. Четкие различия проявляются, только если сравнивать конечные звенья длинной цепи постепенных изменений.

Менее очевидны причины дискретности. Несмотря на множество наблюдаемых случаев плавных переходов между видами, гибридных зон, кольцевых видов и тому подобного, большинство видов все-таки дискретны — имеют четкие границы. Обычно между видами есть заметные разрывы (хиатусы) как в геномных последовательностях, так и по видимым признакам. Если виды все время меняются, почему разнообразие все-таки структурировано, почему мы не наблюдаем повсюду одни лишь плавные переходы?

Одна из причин — дискретность экологических условий и пониженная конкурентоспособность промежуточных форм. Например, в тайге условия одни, среди арктических льдов — другие, к первым условиям лучше приспособлен бурый медведь, ко вторым — белый. Промежуточные формы в обоих биотопах будут проигрывать в конкурентной борьбе живущим там специалистам. О таком механизме формирования дискретности, основанном на пониженной приспособленности малочисленных промежуточных форм, писал еще Дарвин. Дополнительное объяснение можно получить из аналогии с языками.

Языки тоже в основном дискретны. Конечно, в зонах смешения разноязычных народов часто формируются гибридные диалекты (аналог гибридных зон в биологии). Но все-таки большинство людей говорит на каком-то определенном языке, а не на смешанном диалекте. Главная причина дискретности в биологии и лингвистике, по-видимому, одна и та же. Человеку выгодно уметь свободно и полноценно обмениваться информацией с достаточно большой популяцией себе подобных. Говорить на смеси русского и немецкого неудобно: плохо будут понимать и русские, и немцы. Живым организмам точно так же выгодно уметь свободно и полноценно обмениваться генами (смешивая их в потомстве) с достаточно многочисленной группой особей. В пределах каждого генофонда гены под действием отбора притираются, приспосабливаются друг к другу. Иметь в своем геноме смесь генов, приспособленных к разным генофондам, невыгодно, потому что потомство такого организма от скрещивания с любой из «чистых» форм, скорее всего, будет иметь пониженную жизнеспособность. Преимущество свободного обмена информацией (словесной или генетической) в пределах достаточно больших популяций в тенденции приводит к формированию и поддержанию наблюдаемой дискретности. В природе часто возникают межвидовые гибриды, но численность их, как правило, остается небольшой, а их потомство в будущем может постепенно разойтисьпо двум исходным видам. Попадая в генофонд вида А, смешанный набор генов гибридной особи будет под действием отбора постепенно очищен от «посторонних примесей», так что в итоге в генофонде останутся только гены, хорошо приспособленные именно к этому генофонду. То же самое произойдет и с теми генами гибрида, которые будут подвергаться отбору в пределах генофонда Б. Именно поэтому межвидовая гибридизация, явление довольно частое, лишь изредка приводит к слиянию двух разошедшихся видов в один.

—————

Хоть биологи и не могут дать четкого определения вида, видообразование (появление новых видов) является фундаментальным эволюционным процессом. Опять-таки это относится в первую очередь к организмам, размножающимся половым путем. Микробиологи, скажем по секрету, уже махнули рукой на попытки выстроить «нормальную» классификацию своих объектов на видовом уровне и предпочитают говорить о линиях, штаммах и клонах. Считать ли, например, бактерий, выработавших в эксперименте Ленски способность питаться цитратом, новым видом бактерий? Никто не знает. Непонятно, как решать подобные вопросы в принципе. Разве что голосованием.

Но у эукариот, практикующих половое размножение, понятие «вид» — нечто большее, чем просто условность. Пока две популяции не превратились в два разных вида, между ними продолжается генетический обмен, их генофонд развивается как единое целое, их эволюционные судьбы тесно связаны. Они могут выработать мелкие различия, адаптируясь к местным условиям, как хомячки в районах со светлой и темной почвой, но поток генов между популяциями будет эти различия постоянно размывать. Чтобы различия между популяциями начали накапливаться, чтобы популяция получила шанс пойти своим, независимым эволюционным путем, поток генов, связывающий ее с другими популяциями, должен прекратиться или как минимум резко уменьшиться. Должна возникнуть репродуктивная изоляция. Это обязательное условие видообразования ( Mayr, 1942). История рождения нового вида — это история последовательного формирования разных типов репродуктивной изоляции, накладывающихся друг на друга. Одни формы изоляции начинают процесс видообразования, другие его продолжают, третьи заканчивают, делая разделение необратимым. Последовательность событий, приводящих к видообразованию, может быть очень разной.

В роли первичного изолирующего фактораможет выступать географический барьер (морской пролив, пустыня, горный хребет, широкая река). В этом случае говорят об аллопатрическомили географическом видообразовании. Но барьер может и не быть таким масштабным, он может иметь совсем другую, негеографическую природу. Барьером могут стать экологические или поведенческие свойства видов. Например, популяции могут разойтись по разным кормовым растениям или по срокам размножения. Такое видообразование, происходящее без помощи географического барьера, называют симпатрическим или экологическим.

Независимо от природы первичного изолирующего барьера разделившиеся популяции рано или поздно становятся генетически несовместимыми. Возникает постзиготическая изоляция, проявляющаяся в снижении жизнеспособности или плодовитости гибридного потомства. «Постзиготическая» значит «после образования зиготы». То есть происходит скрещивание, оплодотворение, формируется зигота — а все проблемы начинаются уже потом. Состоят они в пониженной приспособленности этой зиготы и организма, который из нее вырастет. Постзиготическая изоляция — не адаптация, развившаяся под действием отбора. Она лишь побочное следствие накопления генетических различий между популяциями (см. ниже).

Эволюция. Классические идеи в свете новых открытий

Аллопатрическое(a) и симпатрическое(б) видообразование.

Если две разобщенные популяции, между которыми уже возникла частичная постзиготическая изоляция, вдруг встретятся (например, из-за исчезновения географического барьера, разделявшего их), то они, скорее всего, поначалу будут охотно скрещиваться друг с другом. Но гибридное потомство будет иметь пониженную приспособленность, а это значит, что отбор поддержит любые мутации, снижающие вероятность гибридизации и способствующие выбору «своих» в качестве брачных партнеров. Этот эффект называется « усилением» ( reinforcement), и он приводит к тому, что представители разошедшихся популяций перестают даже пытаться спариться друг с другом. На этом этапе могут быстро развиться разнообразные изолирующие механизмы, в том числе морфологические (например, различия в строении копулятивных органов) и поведенческие (разные брачные наряды и ритуалы ухаживания). Эти механизмы уже являются настоящими адаптациями для предотвращения гибридизации, поскольку они развились под действием отбора. Изоляция, порождаемая такими адаптациями, называется презиготической(до образования зиготы).

Существует несколько возможных сценариев видообразования, в которых разные типы репродуктивной изоляции возникают в разной последовательности и по разным причинам (см. рисунок). Например, презиготическая изоляция может сформироваться и без помощи «усиления»: либо медленно, вместе с постзиготической, как побочный эффект постепенного накопления различий (морфологических и поведенческих) между географически разобщенными популяциями, либо быстро, например из-за мутации, изменившей сроки цветения или выбор кормового растения. В последнем случае по мере адаптации к новой нише может автоматически развиться постзиготическая изоляция (гибриды будут хуже приспособлены и к новой, и к старой нише, чем родительские формы). Это, в свою очередь, будет способствовать «усилению» презиготической изоляции под действием отбора. Презиготическая изоляция, существующая достаточно долго, может действовать подобно географическому барьеру, приводя к постепенному развитию постзиготической изоляции, и т. д. Итог один: исходный вид разделяется на два репродуктивно изолированных дочерних вида. Мы разберем несколько примеров, показывающих, что в природе могут срабатывать разные сценарии видообразования в зависимости от ситуации.

Эволюция. Классические идеи в свете новых открытий

Возможные сценарии видообразования.Жирными стрелками выделены последовательности событий, предположительно являющиеся наиболее типичными (часто встречающимися в природе).

Друг от друга все дальше и дальше

Формирование постзиготической изоляции — своего рода точка невозвращения, после которой у двух популяций остается мало шансов слиться обратно в один вид. Многочисленные факты говорят о том, что постзиготическая изоляция возникает автоматически, сама собой, без помощи какого-либо «отбора на несовместимость» или других специальных механизмов. Единственное, что для этого нужно, — это фактическая разобщенность двух популяций (отсутствие генетического обмена — неважно, по какой причине) и время. Причем времени может потребоваться много: до 10 млн лет и даже больше. Ну а если на популяции действует интенсивный разнонаправленный отбор, постзиготическая изоляция может развиться очень быстро, всего за несколько сотен поколений (на это указывают результаты экспериментов, с которыми мы вскоре познакомимся).

В конце 1930-х — начале 1940-х годов прошлого века Феодосий Добжанский и Герман Мёллер предложили простую модель, согласно которой постзиготическая несовместимость разобщенных популяций развивается как неизбежный побочный эффект их разобщенности. Допустим, в исходной популяции, еще до разделения, все особи имели генотип A 1B 1C 1D 1(предположим для простоты, что организмы гаплоидные). Но вот популяция по какой-то причине разделилась — например, несколько особей занесло бурей на необитаемый остров. После этого в каждой из двух популяций, материковой и островной, будут независимо закрепляться разные мутации — неважно, под действием отбора или дрейфа. Например, в островной популяции закрепится мутация в локусе A. Теперь генотип у обитателей острова будет A 2B 1C 1D 1. Может ли это привести к постзиготической несовместимости с материковой популяцией, где сохранился исходный генотип? Вряд ли, потому что ген А 2вполне совместим с генами B 1, C 1и D 1(иначе он бы не смог закрепиться в островной популяции). Но вот по прошествии какого-то времени в материковой популяции закрепилась другая мутация, например в локусе B. Теперь генотип материковых особей — A 1B 2C 1D 1. Ген В 2совместим с A 1, C 1и D 1: это было «проверено» отбором, который в противном случае отбраковал бы ген B 2и не дал ему закрепиться в материковой популяции. Однако ген B 2не проверялся отбором на совместимость с геном A 2, который закрепился на острове. Следовательно, с некоторой вероятностью эти гены могут оказаться несовместимыми.

Очевидно, что вероятность появления пары несовместимых генов в двух популяциях будет расти пропорционально квадрату числа различающихсягенов (т. е. квадрату «генетического расстояния» между популяциями). Например, если в каждой популяции закрепилось по одной мутации, как в нашем примере, то существует только одна пара потенциально несовместимых (не проверявшихся отбором на совместимость) генов: А 2и B 2. Если закрепилось по две мутации (например, в островной популяции генотип стал A 2B 1C 2D 1, в материковой A 1B 2C 1D 2), то таких не проверенных отбором пар будет уже четыре: конфликт может возникнуть между A 2и B 2, A 2и D 2, C 2и B 2, C 2и D 2. Если в каждой популяции закрепилось по три мутации (все в разных локусах), число потенциально несовместимых пар будет равно девяти, и т. д.

Таким образом, модель Добжанского — Мёллера предсказывает, что число генов, ответственных за генетическую несовместимость, должно расти с ускорением, как снежный ком. Если предположить, что различия накапливаются с постоянной скоростью (т. е. исходить из допущения о равномерном ходе молекулярных часов), то число «генов несовместимости» должно быть пропорционально квадрату времени, прошедшего с момента разделения популяций.

Модель предполагает, что главную роль в формировании постзиготической изоляции играют попарныеантагонистические взаимодействия («антагонистический эпистаз») между разными локусами. Если учитывать возможность конфликтов не только между двумя, но и между тремя и более локусами, то картина существенно усложнится.

В течение 70 с лишним лет, прошедших с момента появления этой модели, в ее работоспособности мало кто сомневался. Ее преподавали в университетах, а генетики, опираясь на нее, занимались поиском конкретных «генов несовместимости», порой весьма успешно. Но вот проверить ее напрямую не удавалось. Для этого нужно сравнить число генетических различий с числом «генов несовместимости» в нескольких парах родственных видов, различающихся по времени своего расхождения. Главная проблема в том, как подсчитать «гены несовместимости».

Лишь в 2010 году сразу двум научным коллективам одновременно удалось преодолеть эту трудность. Первая работа выполнена сотрудниками Чикагского университета на дрозофилах ( Matute et al., 2010). Среди ее авторов — Джерри Койн, написавший замечательную научно-популярную книгу Why evolution is true( Coyne, 2009) о доказательствах эволюции.

Ученые воспользовались тем обстоятельством, что некоторые виды дрозофил, хотя и разошлись давно, все еще сохранили способность к гибридизации. Авторы скрещивали самок Drosophila melanogasterс самцами двух других видов: D. simulansи D. santomea. Эволюционные пути видов melanogasterи simulansразошлись 5,4 млн лет назад, melanogasterи santomea— примерно 12,8 млн лет назад. Таким образом, время независимого существования в двух парах видов различается в 2,4 раза, и количество генетических различий тоже (собственно, по последнему и вычислили первое!). Если гипотеза Добжанского — Мёллера верна, число «генов несовместимости» в паре melanogastersantomeaдолжно быть примерно в 2,4 2 = 5,76 раза больше, чем в паре melanogastersimulans.

Чтобы подсчитать «гены несовместимости» в каждой паре, авторы использовали большую, включающую сотни линий, коллекцию дрозофил D. melanogasterс различными делециями — выпадениями небольших участков генома. У мух из этих линий делеции поддерживаются в гетерозиготном состоянии. То есть у каждой мухи в одной хромосоме отсутствует какой-то кусочек, но в другой, парной хромосоме этот кусочек имеется. При этом вторая, целая хромосома, во-первых, «помечена» какой-нибудь доминантной мутацией (чтобы сразу было видно, кому из потомства она досталась), во-вторых, она неспособна рекомбинировать — обмениваться участками с парной хромосомой во время мейоза. Половина половых клеток такой мухи получает целую хромосому с меткой, а другая половина — хромосому с недостающим фрагментом и без метки.

Делеции, имеющихся в разных линиях, в общей сложности покрывают почти весь геном. Авторы скрещивали самок из этих линий (напомним, все они относятся к виду melanogaster) с самцами simulansи santomea. От таких межвидовых скрещиваний рождаются только самки. Потомство мужского пола погибает на ранних стадиях.

Здесь нужно сделать небольшое отступление, чтобы объяснить, почему так получается. Дело в том, что у самцов дрозофил, как и у людей, только одна X-хромосома, а у самок — две. Поэтому гены, расположенные в X-хромосоме, у самцов имеются в единственном экземпляре. Если хоть в одном из них имеется летальная мутация, самец обречен. У самки же есть вторая копия X-хромосомы, в которой данный ген может быть нормальным. Нормальная копия гена «перекрывает» действие испорченной копии, и муха выживает.

Что же за летальные мутации сидят в генах Х-хромосомы гибридных самцов? Это, очевидно, те самые «гены несовместимости», ради поиска которых все и было затеяно. Они конфликтуют с какими-то другими генами в геноме того вида, которому не принадлежит данная X-хромосома. Причем из того факта, что гибридные самки все-таки выживают, можно сделать вывод, что все «гены несовместимости» в данной паре видов рецессивны. Допустим, если несовместимыми являются гены A 2и B 2, причем ген B расположен на Х-хромосоме, то гибридные самки с генотипом A 1A 2B 1B 2будут жить, а самцы с генотипом A 1A 2B 2погибнут.

Итак, при скрещивании самки melanogasterс самцом simulansили santomeaвсе потомство состоит из дочерей. Причем эти дочери будут двух типов. Первому типу достанется от матери, самки melanogaster, хромосома с отсутствующим кусочком. У таких гибридных мух соответствующий кусочек будет присутствовать в единственном экземпляре — в парной хромосоме, полученной от отца. Таким образом, отцовские гены, расположенные в этом кусочке, окажутся в «оголенном» ( гемизиготном) состоянии — как если бы они сидели в X-хромосоме самца. Если в этом фрагменте хромосомы имеется рецессивный «ген несовместимости», гибридные самки будут иметь пониженную жизнеспособность или вообще погибнут. Второй тип дочерей получит от матери melanogasterцелую хромосому с меткой (по метке можно определить, к какому из двух типов относится данная гибридная самка). Все гены будут в двух экземплярах, и рецессивная несовместимость не проявится, т. е. все самки второго типа должны выжить.

Таким образом, по количественному соотношению гибридных дочерей первого и второго типа можно определить, содержится ли в данном кусочке хромосомы «ген несовместимости». Если обоих типов примерно поровну — значит, «гена несовместимости» там нет; если самок первого типа оказалось существенно меньше, чем второго, значит, он там есть.

Эволюция. Классические идеи в свете новых открытий

Схема экспериментов с дрозофилами. Хромосомыmelanogaster (mel) показаны косой штриховкой, хромосомыsantomea (san)  — серым цветом. Скрещивается самка melanogaster с самцом santomea. Самая короткая —Y -хромосома, X -хромосома подлиннее. Черным показан отсутствующий участок хромосомы (в данном случае —X -хромосомы). Хромосома с отсутствующим участком помечена буквамиdf (отdeficiency ). ВтораяX -хромосома самкиmelanogaster — целая и помеченная доминантной мутациейBar . В результате межвидового скрещивания получаются гибридные дочери двух типов: одни несут «целую» материнскую хромосому с меткой, другие получают от матери «урезанную» хромосомуdf . По выживаемости дочерей второго типа можно понять, есть ли в том кусочке ДНК, который был вырезан из хромосомыdf , «ген несовместимости». ИзMatute et al., 2010 .

Таким непростым способом, скрещивая самок из пятисот линий melanogasterс различными делециями с самцами simulansи santomea, авторы просканировали 80 % мушиного генома в поисках «генов несовместимости». Им удалось выявить десять участков, содержащих «гены несовместимости», в паре melanogastersimulans. В паре melanogastersantomeaтаких участков оказалось 65, т. е. в 6,5 раза больше. Можно заметить, что эта величина близка к числу, предсказанному моделью Добжанского — Мёллера (5,74). При помощи сложных статистических методов авторы подтвердили, что их результаты гораздо лучше соответствуют предсказанию модели Добжанского — Мёллера об ускоряющемся, параболическом росте числа «генов несовместимости», чем альтернативной гипотезе о линейном росте. Так классическая модель наконец-то получила красивое подтверждение.

Вторая работа была выполнена на растениях рода Solanum(паслен) сотрудниками Мемфисского и Индианского университетов ( Moyle, Nakazato, 2010). Использовалось не три, как в первом исследовании, а четыре близких вида, различающихся по времени расхождения. Здесь тоже авторам понадобилась громадная коллекция подопытных линий, но на этот раз это были линии не мух, а томатов, и различались они не делециями, а небольшими фрагментами геномов диких видов рода Solanum, «встроенными» в геном томата. Получены эти линии были путем межвидовой гибридизации и последующих многократных «возвратных» скрещиваний с помидорами. Для каждой линии было известно, какой именно чужеродный фрагмент внедрился в ее геном. У каждой линии авторы измерили жизнеспособность семян и пыльцы. Если в данной линии оба показателя были в норме, из этого делался вывод, что фрагмент ДНК чужого вида, встроившийся в геном этой линии, не содержит «генов несовместимости». Таким способом удалось подсчитать, как и в первом исследовании, число участков генома, содержащих «гены несовместимости». Расчеты проводились раздельно для жизнеспособности семян и пыльцы.

Результаты по жизнеспособности семян полностью совпали с предсказанием модели Добжанского — Мёллера: число «генов несовместимости», влияющих на этот признак, растет пропорционально квадрату генетической дистанции. С пыльцой, правда, получился отрицательный результат: число «генов несовместимости», влияющих на этот признак, по мере увеличения генетической дистанции растет линейно, а не по параболе. Почему — пока не ясно. Авторы предполагают, что на стерильность пыльцы сильно влияют не попарные, а более сложные взаимодействия между многими локусами.

Так или иначе, обоим научным коллективам удалось получить эмпирические подтверждения адекватности модели Добжанского — Мёллера по крайней мере для некоторых ситуаций. Отрадно, что классики и на этот раз оказались недалеки от истины.

Вид из пробирки

Биологи давно мечтали воспроизвести процесс видообразования в лаборатории. Успехи в этой области достигнуты немалые. Все этапы и «слагаемые» этого процесса, как выяснилось, вполне воспроизводимы в эволюционном эксперименте. И если биологи то и дело не объявляют торжественно об искусственном создании настоящего нового вида, то только из-за расплывчатости критериев вида, о которой говорилось выше. Причем среди применяемых критериев есть и такие, которые просто «по определению» не позволяют назвать новым видом что-либо выведенное в лаборатории (или обособившееся недостаточно давно).

Хотя существует множество «хороших» (признаваемых большинством специалистов) видов, способных скрещиваться друг с другом и давать плодовитое гибридное потомство, главным критерием вида для организмов с половым размножением все-таки считается репродуктивная изоляция. Именно на ней чаще всего и сосредоточиваются усилия биологов, ставящих эксперименты по искусственному видообразованию.

В одних экспериментах изучают зарождение презиготической изоляции. Для этого разные линии подопытных организмов подвергают разнонаправленному отбору (например, помещают в контрастные неблагоприятные условия и выращивают в течение многих поколений), а затем смотрят, не отбило ли у них охоту к перекрестному скрещиванию. Иногда охоту действительно отбивает, животные начинают избирательно скрещиваться со «своими», т. е. теми, чьи предки приспосабливались к таким же условиям (мы еще поговорим об этих опытах).

В других экспериментах изучают формирование постзиготической изоляции, т. е. пониженной приспособленности гибридов. Эти работы показали, что под действием разнонаправленного отбора такая изоляция может сформироваться гораздо быстрее, чем за счет одного лишь случайного накопления различий «по Добжанскому — Мёллеру». Ранее это было показано на тлях ( Шапошников, 1965) и дрозофилах ( Oliveira, Cordeiro, 1980), а недавно был проведен важный эксперимент на дрожжах ( Dettman et al., 2007), с которого мы и начнем.

Дрожжи размножаются как половым путем, так и бесполым — почкованием. Биологи из Университета Торонто (Канада) получили из одной родительской диплоидной клетки 12 подопытных популяций. Изначально все они были генетически идентичны, но потом в результате мутаций и отбора могли накапливать различия. Популяции выращивали в течение 500 поколений в контрастных неблагоприятных условиях: шесть популяций при повышенной солености, шесть — в «голодной» среде с низким содержанием глюкозы. Контрольную (предковую) линию продолжали растить в нормальной среде.

После этого ученые проверили, произошла ли адаптация, т. е. стали ли подопытные популяции лучше приспособлены к своим средам по сравнению с предками. Приспособленность оценивали по скорости почкования клеток в условиях конкуренции с предковой линией. Оказалось, что адаптация произошла во всех 12 линиях, хотя величина приспособленности варьировала. К соленой среде дрожжи приспособились лучше, чем к голодной (вот уж поистине, от голодной диеты скорее умрешь, чем привыкнешь).

Теперь можно было приступить к главной части эксперимента — к выявлению постзиготической изоляции, если таковая возникла. Исследователи получили гибридное потомство, скрестив представителей «соленых» (С) и «голодных» (Г) линий. Кроме того, были получены гибриды подопытных линий с предками (П). Оказалось, что чистые линии С и Г приспособлены к своим средам значительно лучше, чем любые гибриды. Стало быть, частичная постзиготическая изоляция налицо.

Если приспособленность популяций к своим средам складывалась только за счет суммирования эффектов отдельных полезных мутаций, а эпистаза — влияния измененных генов друг на друга — не было, то приспособленность гибридов разного типа должна быть примерно одинаковой. Например, в соленой среде гибриды С/Г и С/П должны демонстрировать одинаковую приспособленность. Это, однако, оказалось не так. Гибриды С/П в соленой среде чувствовали себя лучше, чем С/Г (хотя и хуже, чем чистая линия С). То же самое справедливо и для «голодной» среды: здесь гибриды Г/П оказались более приспособленными, чем С/Г.

Этот результат можно объяснить двояко. Либо адаптации к одной из двух неблагоприятных сред сами по себе снижают приспособленность к альтернативной среде, либо имеет место эпистаз, т. е. гены, ответственные за адаптацию к разным средам, мешают друг другу работать. В первом случае дрожжи из линии С должны расти в голодной среде хуже, чем П, а в соленой среде П должны расти лучше, чем Г. Это не подтвердилось. Следовательно, главную роль в снижении приспособленности гибридов С/Г играет эпистаз.

Но это уже детали. Главный же результат в том, что показана возможность быстрого формирования постзиготической изоляции под действием разнонаправленного отбора. Как мы помним, появление такой изоляции — ключевой этап видообразования.

—————

Гибридизация не всегда вредна

У американских жаб-лопатоногов виды отделены друг от друга зыбкой гранью. Многие виды нет-нет да и скрещиваются, производя гибридное потомство. Это характерно не только для амфибий: та же картина наблюдается во многих группах млекопитающих, рыб, насекомых. Представление о виде как о совокупности особей, полностью изолированной от всех остальных подобных совокупностей, — абстракция вроде «идеального газа».

Все же конспецифичные (внутривидовые) скрещивания обычно происходят гораздо чаще, чем гетероспецифичные (межвидовые), а потомство от них оказывается более жизнеспособным и плодовитым. Это справедливо и для американских лопатоногов Spea bombifronsи S. multiplicata. Ареалы этих видов частично перекрываются, и в зоне совместного обитания иногда происходит гибридизация. Гибридные жабы отличаются от чистокровных пониженной плодовитостью. Поэтому жабам в общем случае невыгодно скрещиваться с чужаками. Как часто бывает в подобной ситуации, жабы выработали специальные средства взаимного узнавания, позволяющие отличить своих от чужих. Главным из этих средств является брачная песня самца. Характерно, что в тех районах, где живет только один из видов жаб, самцы поют почти одинаково. Однако в зоне совместного проживания их песни заметно различаются [78].

Было замечено, что в маленьких водоемах гибридизация происходит чаще, чем в больших. Карин Пфенниг из Университета Северной Каролины предположила, что это может быть выгодно жабам S. bombifrons, поскольку головастики у этого вида развиваются дольше. Чем меньше лужа, тем выше риск, что она пересохнет до того, как головастики успеют завершить развитие.

Для начала Пфенниг убедилась, что гибридные головастики развиваются быстрее, чем чистокровное потомство S. bombifrons. Следовательно, если размножение происходит в маленькой луже, для самок этого вида может быть выгодно спариваться с «чужими» самцами. Потомство получится менее плодовитым, но это все-таки лучше, чем смерть от высыхания.

Затем были изучены брачные предпочтения. Жаб сажали в искусственные водоемы двух типов — мелкие (глубиной 6 см) и глубокие (30 см). На противоположных сторонах водоема устанавливались два динамика. Из одного доносилась песня самца Spea bombifrons, из другого — брачный призыв самца S. multiplicata. Самку сажали на островок в центре бассейна и первые 30 минут держали под стеклянным колпаком, давая привыкнуть к обстановке. Динамики все это время работали. Потом колпак снимали, и самка получала возможность свободно плавать по бассейну. Если она приближалась на расстояние корпуса к одному из динамиков, считалось, что она «сделала свой выбор».

В глубоком водоеме самки S. bombifronsуверенно выбирали песню «своего» самца. В мелком водоеме те же самые самки вели себя по-другому: теперь они с одинаковой частотой откликались как на «свой», так и на «чужой» призыв. Самки S. multiplicata, напротив, всегда выбирали кваканье своего самца независимо от глубины водоема. Что и понятно: головастики этого вида и так развиваются быстро, поэтому скрещивание с чужаками не может принести их потомству ничего, кроме вреда.

Кроме того, между самками S. bombifronsбыли выявлены индивидуальные различия. Некоторые самки почти всегда выбирали «своих», другие предпочитали «чужих», а третьи радикально меняли свои предпочтения при переходе из глубокого водоема в мелкий.

Пфенниг предположила, что склонность менять предпочтения в зависимости от глубины выгоднее тем самкам, которые находятся в худшем физическом состоянии. Потомство тощих самок менее жизнеспособно, развитие головастиков занимает больше времени, и они с большей вероятностью не доживают до метаморфоза. Следовательно, именно тощие самки особенно заинтересованы в том, чтобы в мелкой луже скреститься с чужим самцом. Но мог ли естественный отбор «почувствовать» это и внести соответствующие дополнения алгоритм выбора партнера? По-видимому, мог. Как выяснилось, худосочность самки действительно повышает вероятность того, что она изменит свои брачные предпочтения при переходе из глубокого водоема в мелкий. Иными словами, жабы, изменившие свои предпочтения в мелкой луже в пользу чужаков, оказались в среднем более худосочными, чем те, которые «остались при своем мнении», т. е. продолжали выбирать своих ( Pfennig, 2007).

Карин Пфенниг установила несколько важных фактов. Во-первых, она показала, что межвидовая гибридизация может быть полезной, и тогда у животных могут выработаться адаптации, позволяющие им целенаправленно выбирать в качестве партнеров представителей не своего, а чужого вида. Это заставляет еще раз задуматься над смыслом этого загадочного природного явления — «биологического вида».

Во-вторых, удалось продемонстрировать, что одно и то же животное может менять свои брачные предпочтения в зависимости от условий, причем в одних ситуациях предпочтение отдается своим, а в других — чужим. Алгоритм выбора брачного партнера может быть сложным, и в него могут входить разнообразные операторы условного перехода («если… то…»).

В-третьих, выяснилось, что на выбор своего или чужого самца влияют не только внешние условия, но и физическое состояние самки. Это значит, что самке приходится проводить некую «самооценку» и учитывать ее результаты в ходе принятия решения. О том, к каким эволюционным последствиям могут приводить подобные алгоритмы выбора, мы поговорим чуть позже (см. раздел «Как отличить своих от чужих»).

—————

В поисках генов видообразования

Итак, постзиготическая изоляция возникает в результате фиксации несовместимых (конфликтующих) аллелей в разобщенных популяциях. Что же это за гены, изменения которых порождают такие конфликты? В принципе при скрещивании представителей двух давно разошедшихся популяций конфликтовать может что угодно с чем угодно. Но все-таки интересно было бы найти конкретные гены, ответственные за несовместимость. Для таких генов придумано броское название — « гены видообразования». Ясно, что в разных парах видов конфликтующие гены, скорее всего, будут разными. Несмотря на их несомненное присутствие у разошедшихся видов, идентифицировать их пока удается нечасто. Мы расскажем о нескольких таких удачных примерах.

Несколько генов видообразования нашли у дрозофил ( Orr et al., 2004). Как правило, это гены, так или иначе связанные с размножением. Например, один из них, OdsH, вызывает гибридную стерильность (бесплодие) у самцов, полученных от скрещивания Drosophila simulansи D. mauritiana— видов, разделившихся 0,3–1,0 млн лет назад. Функция гена состоит в регуляции экспрессии ряда других генов, участвующих в сперматогенезе. Многие гены видообразования несут следы действия положительного отбора. По-видимому, это значит, что постзиготическая несовместимость часто развивается под действием разнонаправленного отбора (как в эксперименте с дрожжами), а не просто за счет пассивного накопления нейтральных различий.

Что касается млекопитающих, то у них пока описан только один такой ген — Prdm9, ответственный за стерильность мужского потомства при скрещивании двух видов (или подвидов, случай спорный) домовых мышей: Mus musculusи Mus domesticus. То, что где-то на 17-й мышиной хромосоме есть «ген гибридной стерильности», конфликтующий с несколькими другими генами при межвидовых скрещиваниях, было известно давно, но установить его идентичность удалось лишь в 2008 году. С тех пор ген Prdm9активно изучают. При этом выяснилось много интригующих фактов. В частности, обнаружилась связь Prdm9со стерильностью не только у гибридных мышей, но и у других животных. Например, у людей мутации этого гена приводят к мужскому бесплодию.

Функцию Prdm9установили лишь в 2012 году. Оказалось, что ген отвечает за формирование «горячих точек рекомбинации» — мест, где хромосомы чаще всего рвутся, чтобы обменяться участками во время мейоза. В норме у мышей разрывы хромосом при подготовке к кроссинговеру происходят в нефункциональных частях генома, но, если работа Prdm9нарушена, хромосомы начинают рваться где попало, в том числе в регуляторных областях жизненно важных генов. Мыши с такими генетическими дефектами бесплодны, потому что у них не образуются жизнеспособные половые клетки ( Brick et al., 2012).

У растений выявлено около 40 генов видообразования. Как правило, это тоже гены, связанные с размножением — с созреванием пыльцы, ускорением или отсрочкой цветения, механизмами «узнавания» подходящей пыльцы тканями пестика (к этим механизмам относится и самонесовместимость, о которой мы говорили в главе 3). У растений признаки действия положительного отбора на гены видообразования тоже есть, но не такие четкие, как у дрозофил. Возможно, случайные процессы играют в видообразовании у растений более важную роль ( Rieseberg, Blackman, 2010).

Один из интересных случаев связан с домашним рисом (см. главу 2). Согласно данным археологии и генетики, азиатский культурный рис Oryza sativaбыл одомашнен на юге Китая 9 тыс. лет назад ( Molina et al., 2011). С тех пор было выведено много сортов, подразделяющихся на две большие группы: O. s. indica(длиннозерные сорта) и O. s. japonica(круглозерные).

«Индийские» и «японские» сорта разделились не менее 3–4 тыс. лет назад и с тех пор эволюционировали аллопатрически, т. е. выращивались в разных районах, почти не скрещиваясь друг с другом. За это время в их генофондах успели накопиться взаимно несовместимые мутации, что привело к частичной репродуктивной изоляции, а именно к снижению плодовитости гибридов indicaи japonica. Это можно рассматривать как наметившееся разделение азиатского культурного риса на два вида.

Несовместимость indicaи japonicaопределяется несколькими локусами, структура и функция которых активно изучаются. Китайским генетикам удалось в общих чертах расшифровать принцип действия одного из «локусов несовместимости» S5( Yang et al., 2012). Локус включает пять белок-кодирующих генов: ORF1, ORF2, ORF3, ORF4и ORF5(от open reading frame, открытая рамка считывания — так по традиции обозначают плохоизученные гены с неизвестной функцией). У локуса S5есть три варианта (аллеля), один из которых ( S5i) характерен для большинства сортов indica, другой ( S5j) — для japonica, а третий ( S5n) — для некоторых сортов, которые дают нормальное плодовитое потомство при скрещивании как с индийскими, так и с японскими сортами. Было показано, что, если вставить в геном japonicaген ORF5 indica, получаются растения с пониженной плодовитостью. Если то же самое проделать с генами ORF3и ORF4, плодовитость растений не снижается.

Этого недостаточно, чтобы понять, как работает локус S5и почему аллели S5iи S5jплохо сочетаются друг с другом. Для выяснения этого вопроса авторы скрещивали в разных сочетаниях многочисленные сорта риса (как обычные, так и трансгенные), оценивали плодовитость гибридов, подсчитывали соотношение разных генотипов в гибридном потомстве и, конечно же, сравнивали нуклеотидные последовательности локуса S5у разных сортов.

Выяснилось, что гены ORF1и ORF2одинаковы у всех сортов, а значит, не в них причина несовместимости. Ген ORF3кодирует белок, похожий на белок теплового шока, — шаперон Hsp70. Такие белки защищают клетку от различных стрессов. У indicaген ORF3в рабочем состоянии, у japonicaв нем произошла делеция (выпало 13 нуклеотидов), и поэтому белок ORF3утратил функциональность.

Белок ORF4, кодируемый геном ORF4, в норме располагается на мембране мегаспор (клеток, из которых у цветковых растений образуется зародышевый мешок, а после оплодотворения — семя). ORF4является рецептором, т. е. реагирует на какое-то вещество, находящееся снаружи от клеточной мембраны, и передает сигнал внутрь клетки. У indica ORF4испорчен мутацией, у japonicaон в рабочем состоянии.

Наконец, ORF5является ферментом (аспартатной протеазой) и в норме выделяется клеткой во внешнюю среду. Там он участвует в синтезе сигнального вещества, на которое реагирует рецептор ORF4. У indica ORF5активен, у japonica— нет.

Таким образом, генотип indicaможно обозначить как 3+4−5+, japonica— как 3−4+5−. Механизм действия этих генов, объясняющий пониженную плодовитость гибридов, показан на рисунке. Белки 5+ и 4+, действуя сообща, выступают в роли «убийц», а белок 3+ является «защитником».

Сигнальное вещество, синтезируемое при участии белка 5+, воспринимается рецептором 4+, что приводит (по неизвестной пока причине) к нарушению работы важной внутриклеточной структуры (эндоплазматической сети). Если в клетке есть белок-защитник 3+, клетка останется жива. Если же белок 3+ отсутствует, в клетке включится программа клеточной смерти (апоптоза), и клетка погибнет. Именно это и происходит с половиной будущих семян у гибридов indicaи japonica. Погибают мегаспоры, унаследовавшие от гибридного родительского организма генотип japonica, в котором нет гена-защитника 3+, зато есть ген 4+, позволяющий белку 5+ довести клетку до самоубийства.

Эволюция. Классические идеи в свете новых открытий

Схема, объясняющая пониженную плодовитость гибридного потомства от скрещивания сортовNanjing 11 (indica, генотип 3+4−5+) иBalilla (japonica, генотип 3−4+5−). Материнская клетка (диплоидная) дает в результате мейоза четыре гаплоидные мегаспоры. Материнская клетка, как и все гибридное растение, гетерозиготна по трем рассматриваемым генам и поэтому содержит как рабочие(3+, 4+, 5+) , так и нерабочие(3−, 4−, 5−) варианты трех белков. В результате мейоза из нее образуются гаплоидные мегаспоры двух типов: с генотипомindica и с генотипомjaponica (генотипы не перекомбинируются, потому что все три гена расположены вплотную друг к другу на хромосоме). Поначалу в мегаспорах сохраняются все шесть белков, унаследованных от материнской клетки, но впоследствии в них остаются только белки, закодированные в геноме самой мегаспоры. При этом белок5+ , выделяющийся в межклеточное пространство, действует на все мегаспоры независимо от того, закодирован ли он в их геноме. Мегаспоры с генотипомjaponica погибают, потому что на них действуют совместно оба белка-убийцы5+ и4+ , а белка-защитника3+ у них нет. Мегаспоры с генотипомindica выживают, потому что у них нет убийцы4+ и есть защитник. ИзYang et al., 2012 .

Что касается сортов, которые свободно скрещиваются и с indica, и с japonica, то у них могут быть разные генотипы, например, 3−4−5− или 3+4+5−. Несовместимость проявляется, только когда с носителем аллеля 5+ скрещивается растение с генами 3− и 4+. Тогда у половины мегаспор не окажется защитника (3+) от действующих совместно «убийц» 5+ и 4+.

Для диких родственников культурного риса, в том числе для предкового вида Oryza rufipogon, характерен генотип 3+4+5+, т. е. активны и оба «убийцы», и «защитник». Скорее всего, такой же генотип был и у первых одомашненных сортов риса. Вероятно, у диких предков все три гена зачем-то нужны (хотя мы пока не знаем зачем), а переход к «культурной» жизни на возделываемых полях сделал их излишними. Впоследствии у двух групп сортов, indicaи japonica, закрепились мутации, выводящие из строя некоторые гены этого комплекса. Внутри каждой группы мутации были взаимно совместимыми, потому что несовместимые комбинации, такие как 3−4+5+, отсеивались отбором. Но отбор не проверял мутации, закрепившиеся в одной группе, на совместимость с мутациями, закрепившимися в другой. Так и возникла частичная постзиготическая несовместимость между сортами — в полном согласии с моделью Добжанского — Мёллера.

—————

Ранние этапы видообразования могут сопровождаться геномными перестройками

Крупные геномные перестройки, такие как разрыв или слияние хромосом, могут привести к быстрому развитию постзиготической изоляции. Часто особи с разным числом хромосом либо вовсе не могут произвести потомство либо это потомство будет бесплодным. У гибридов первого поколения, получивших от отца и матери разное количество хромосом, в ходе мейоза хромосомы не могут должным образом разбиться на пары и распределиться по половым клеткам; в результате гибриды оказываются бесплодными.

Но это, конечно, не абсолютное правило. Будь оно абсолютным, все мутации, меняющие число хромосом, немедленно отсеивались бы отбором, а мы знаем, что это не так. Различия в числе хромосом не всегда препятствуют их нормальному спариванию в ходе мейоза. Хромосомы просто соединяются гомологичными участками: например, две половинки разорвавшейся хромосомы могут пристроиться к соответствующим половинкам своего неразорванного прототипа. И тогда гибридная особь произведет жизнеспособные половые клетки.

Есть виды, у которых число хромосом варьирует, а особи с разным числом хромосом сохраняют генетическую совместимость. Впрочем, такая ситуация вряд ли может сохраняться долго: плодовитость гибридов, скорее всего, будет все-таки понижена, поэтому отбор будет способствовать выработке дополнительных изолирующих механизмов. В итоге родительский вид разделится на два дочерних, различающихся по числу хромосом. Или измененный кариотип(хромосомный набор) будет отсеян отбором, и вид сохранит исходное число хромосом.

Межвидовая изменчивость по числу хромосом встречается гораздо чаще, чем внутривидовая. Например, у человека 23 пары хромосом, а у шимпанзе и других человекообразных — 24. Вторая хромосома человека возникла в результате слияния двух предковых хромосом, причем в месте слияния остался «шрам», который ни с чем не спутаешь: две расположенные «голова к голове» последовательности, типичные для концевых участков хромосом (теломер).

Если не учитывать многочисленные случаи полиплоидии, то самая большая вариабельность по числу хромосом среди видов одного рода наблюдается у бабочек-голубянок Agrodiaetus. В пределах этого рода диплоидное число хромосом варьирует от 20 до 268, хотя род появился и начал дивергировать недавно: 2,5–3,8 млн лет назад ( Lukhtanov et al., 2005) и все его виды очень похожи друг на друга. У позвоночных изменчивость тоже может быть значительной: например, у сомиков Corydorasдиплоидное число хромосом колеблется от 44 до 102, у южноамериканских грызунов туко-туко ( Ctenomys) — от 10 до 70.

Каким образом у недавно разделившихся видов формируются такие сильные различия по числу хромосом, если внутривидовая хромосомная изменчивость — явление довольно редкое? Возможны два сценария.

Во-первых, различия могут накапливаться постепенно, причем каждая перестройка (слияние или разрыв хромосом) соответствует одному акту видообразования. Такое «пошаговое» формирование межвидовых хромосомных различий, по-видимому, широко распространено в природе. Его начальные этапы можно наблюдать у некоторых видов с варьирующим числом хромосом, таких как домовая мышь и обыкновенная бурозубка.

Но возможен и другой сценарий: кратковременный взрывообразный рост хромосомной изменчивости внутри вида, за которым следует быстрое разделение исходного вида на несколько дочерних. Этот второй сценарий недавно удалось подтвердить В. А. Лухтанову из Зоологического института в Санкт-Петербурге и его испанским коллегам ( Lukhtanov et al., 2011). Исследователи описали удивительный случай высокого хромосомного полиморфизма в пределах одного вида бабочек, горошковой беляночки Leptidea sinapis. Этот вид встречается от Португалии и Испании на западе до Сибири на востоке.

Оказалось, что число хромосом у бабочек этого вида убывает с запада на восток — от 2n = 106 в испанских популяциях до 2n = 56 в Восточном Казахстане. Кроме того, число хромосом может варьировать в одной и той же популяции (такое наблюдается в Италии, Румынии и Казахстане).

Большинство особей в этих популяциях являются хромосомными гетерозиготами. Это значит, что они получили разное число хромосом от отца и матери. В ходе мейоза у них образуются наряду с обычными бивалентами (парами соединившихся гомологичных хромосом) еще и триваленты(две хромосомы из одного набора спариваются с одной хромосомой из другого). Эти триваленты затем нормально разделяются и расходятся по дочерним клеткам. Судя по обилию хромосомных гетерозигот, они не отсеиваются отбором (или отсеиваются медленно), т. е. потомство родителей с разным числом хромосом имеет нормальную приспособленность.

Сравнение нуклеотидных последовательностей митохондриальных и ядерных генов подтвердило, что между особями и популяциями с разным числом хромосом нет существенных генетических различий: это действительно один и тот же вид, а не комплекс из нескольких «скрытых видов» или видов-двойников. По оценкам авторов, последний общий предок всех изученных популяций жил от 8500 до 31 000 лет назад. По-видимому, быстрый рост численности и расселение Leptidea sinapisпо обширным территориям были приурочены к завершению последнего ледникового максимума, причем экспансия сопровождалась взрывообразным ростом хромосомной изменчивости.


Эволюция. Классические идеи в свете новых открытий

У горошковой беляночки (Leptidea sinapis ) число хромосом варьирует от 56 в восточной части ареала до 106 в западной, что не мешает этим бабочкам сохранять генетическую совместимость.


Тот факт, что число хромосом варьирует не хаотически, а закономерно убывает с запада на восток, едва ли может быть случайностью. Причины такой клинальной изменчивостипока неизвестны, так же как и то, откуда и в каком направлении расселялись бабочки. Хотя особи, живущие по соседству, сохраняют генетическую совместимость невзирая на различия в числе хромосом, вполне возможно, что бабочки из удаленных популяций, у которых число хромосом различается очень сильно, уже стали частично или полностью несовместимыми (это еще предстоит проверить).

Так или иначе, исследование показало, что быстрый рост внутривидовой изменчивости по числу хромосом — реальное явление. Какую роль оно играет в видообразовании — опять-таки покажут дальнейшие исследования, а пока можно лишь констатировать, что теоретически эта роль может быть значительной. Помимо того что хромосомные перестройки могут стать непосредственной причиной постзиготической изоляции, они могут способствовать этому косвенно — через ослабление рекомбинации (обмена участками) перестроенных хромосом в процессе кроссинговера.

Схожее явление обнаружено недавно у коловраток Brachionus plicatilis. Эти крошечные (0,3 мм в длину) существа обитают в соленых озерах по всему миру и используются как корм для мальков аквариумных рыбок. Коловратки Brachionusв последнее время стали популярным лабораторным объектом (в главе 3 рассказано об эволюционном эксперименте с ними).

Что касается вида B. plicatilis, то он привлекает внимание исследователей как раз тем, что на нем удобно изучать ранние этапы видообразования. B. plicatilisявляется единым видом только на первый взгляд. В действительности этих коловраток правильнее считать комплексом «скрытых» (криптических) видов, или видов-двойников, которые начали дивергировать несколько миллионов лет назад.

В зависимости от применяемых критериев классификации число видов в комплексе B. plicatilisоказывается разным. Биологи чаще всего используют три концепции вида: морфологическую(вид как совокупность особей с похожим строением), генеалогическую(вид как обособленная ветвь на эволюционном дереве) и биологическую(по признаку наличия или отсутствия репродуктивной совместимости).

На основе морфологической концепции эти коловратки были описаны как один вид. Генеалогический подход, основанный на сравнении ДНК, позволил разным авторам выделить от 14 до 22 видов-двойников, которые по морфологии либо вообще неразличимы, либо для их определения требуются большие выборки и изощренный статистический анализ. При этом некоторые из ви