Книга: Вечность. В поисках окончательной теории времени



Вечность. В поисках окончательной теории времени

Шон Кэрролл

Вечность. В поисках окончательной теории времени

Дженни за все время

© ООО Издательство «Питер», 2016

Пролог

Кто-нибудь на самом деле знает, сколько времени?

Чикаго, Does Anybody Really Know What Time It Is?

Эта книга – о природе времени, о зарождении Вселенной и о фундаментальной структуре физической реальности. Мы здесь не мыслим какими-то мелкими, незначительными категориями. Мы рассматриваем вековые, основательные проблемы. Откуда взялись время и пространство? Действительно ли все ограничивается той Вселенной, которую мы видим, или же существуют другие «Вселенные» за пределами доступного нашему взору? Чем будущее отличается от прошлого?

Согласно авторам Оксфордского словаря, время – наиболее часто используемое существительное в английском языке. На протяжении своей жизни мы движемся сквозь время, с одержимостью следим за ним и ежедневно пытаемся перегнать, – и все же, как ни удивительно, мало найдется людей, которые смогут простыми словами объяснить, что же такое время.

Мы живем в эпоху Интернета, поэтому логично будет обратиться за помощью к свободной энциклопедии Wikipedia. На момент написания этой книги статья Time начинается следующими словами:

Время – это компонент измерительной системы, используемый для определения порядка следования событий, для сравнения продолжительности событий и интервалов между ними, а также для количественного описания движения объектов. Время – одна из главных тем религиозных, философских и научных изысканий, но даже величайшим ученым не удается дать определение времени в непротиворечивой форме, применимой ко всем областям исследований.[1]

Ну, поехали. К концу книги мы сможем сформулировать очень точное определение времени, которое будет применимо ко всем областям. К сожалению, намного менее очевидно, почему время обладает теми свойствами, которыми обладает, – хотя несколько интригующих идей мы с вами все же изучим.

Космология, учение обо всей Вселенной, за последнюю сотню лет здорово продвинулась вперед. Четырнадцать миллиардов лет назад наша Вселенная (или, по крайней мере, та ее часть, которую мы в состоянии наблюдать) находилась в невообразимо горячем, плотном состоянии, которое мы называем Большим взрывом. С той поры Вселенная расширяется и охлаждается, и, судя по всему, она продолжит делать это во всем обозримом будущем, а может быть, на протяжении вечности.

Сто лет назад ничто из этого нам не было известно – ученые практически не имели никакого представления о структуре Вселенной за пределами галактики Млечный Путь. Сегодня, когда мы сумели снять мерки с наблюдаемой Вселенной, мы в силах детально описать не только ее размер и форму, но также составные части и приблизительный ход истории. Однако на многие важные вопросы, в частности связанные с первыми моментами Большого взрыва, мы ответить пока не можем. Как мы узнаем, эти вопросы играют критически важную роль в нашем понимании времени – не только на бескрайних просторах космоса, но и в наших лабораториях на Земле и даже в нашей повседневной жизни.

Время после Большого взрыва

Очевидно, что с течением времени Вселенная эволюционирует: ранняя Вселенная была горячей и плотной, современная Вселенная холодная и разреженная. Но я собираюсь обрисовать намного более глубокие связи. Самая загадочная характеристика времени – наличие у него направленности: прошлое отличается от будущего. Это стрела времени. В отличие от направлений в пространстве, которые между собой равноправны, у Вселенной, несомненно, есть предпочтительная ориентация во времени. Основная тема этой книги – то, что стрела времени существует, потому что Вселенная эволюционирует определенным образом.

Причина, почему у времени есть направление, кроется в том, что Вселенная полна необратимых процессов – событий, которые происходят в одном направлении времени, но никогда в другом. Можно превратить яйцо в омлет, как в классическом примере, но невозможно сделать из омлета целое яйцо. Молоко смешивается с кофе; топливо сгорает и превращается в выхлопные газы; люди рождаются, взрослеют и умирают. В Природе мы повсеместно обнаруживаем последовательности событий, в которых один тип событий всегда предшествует другому, а другой – всегда следует после. Все вместе они определяют стрелу времени.

Примечательно, что в основе всего нашего понимания необратимых процессов лежит одно-единственное понятие – то, что называется энтропией и измеряет «неупорядоченность» объекта или скопления объектов. С течением времени энтропия упрямо увеличивается или, по крайней мере, остается постоянной – это знаменитое второе начало термодинамики.[2] А причина, почему энтропия стремится возрастать, обманчиво проста: существует намного больше способов устроить беспорядок, чем организовать порядок; следовательно (при прочих равных условиях), упорядоченные конфигурации будут естественным образом перетекать во все более беспорядочные. Совсем несложно перемешать молекулы яйца, для того чтобы получить омлет, но аккуратно собрать их обратно, сформировав целое яйцо, нам не под силу.

На этом традиционная история, которую физики обычно рассказывают о себе, заканчивается. Но существует еще один ингредиент, обладающий невероятной важностью, который пока что не получает должного внимания: если все во Вселенной эволюционирует в направлении увеличения беспорядка, то оно должно было стартовать с невероятно упорядоченной конфигурации. Вся эта логическая цепочка, объясняющая, почему невозможно превратить омлет в яйцо, очевидно, базируется на фундаментальном предположении, касающемся ранней Вселенной: она пребывала в состоянии очень низкой энтропии и очень высокой упорядоченности.

Стрела времени соединяет раннюю Вселенную с тем, что мы в буквальном смысле испытываем в каждый момент нашей жизни. Это не только разбивание яиц и другие необратимые процессы, такие как добавление молока в кофе или захламление комнаты, в которой никто не убирается. Стрела времени – это причина, почему нам кажется, что время течет мимо нас или (если угодно) почему мы плывем сквозь время. Это причина, почему мы помним прошлое, но не будущее. Почему мы растем и изменяемся, почему у нас происходит процесс обмена веществ и почему мы в конце концов умираем. Почему мы верим в причинно-следственную связь. Это принципиальный компонент нашего представления о свободе воли.

И все это благодаря Большому взрыву.

Мы видим далеко не всё

Загадка стрелы времени, по сути, сводится к следующему: почему условия в ранней Вселенной были именно такими, какими они были; почему существовала конфигурация с низкой энтропией, позволившая произойти всем этим интересным и необратимым процессам? Исследованиям этого вопроса и посвящена данная книга. К сожалению, правильного ответа на него никто пока что не знает. Но в развитии современной науки мы достигли этапа, на котором у нас уже есть необходимые инструменты для того, чтобы всерьез взяться за эту загадку.

И ученые, и древние мыслители всегда старались понять время. В Древней Греции философы досократовских времен Гераклит и Парменид занимали разные позиции по вопросу природы времени: Гераклит подчеркивал первичность изменения, в то время как Парменид отрицал реальность изменения вообще. Девятнадцатый век был героической эпохой статистической механики: люди научились устанавливать поведение макроскопических объектов исходя из их микроскопических составляющих, – когда такие фигуры, как Людвиг Больцман, Джеймс Клерк Максвелл и Джозайя Уиллард Гиббс, сумели дать определение энтропии и описать ее роль в необратимых процессах. Однако им ничего не было известно об общей теории относительности Эйнштейна или о квантовой механике и уж, конечно, о современной космологии. Впервые в истории науки у нас по крайней мере есть шанс собрать обоснованную теорию времени и эволюции Вселенной.

Я собираюсь предложить следующую версию: Большой взрыв не был началом Вселенной. Космологи иногда говорят, что Большой взрыв представляет истинную границу пространства и времени, до которой ничего не существовало, – на самом деле даже само время не существовало, поэтому понятие «до», строго говоря, в этом случае применять нельзя. Однако мы слишком мало знаем об окончательных законах физики, чтобы с уверенностью делать подобные заявления. Ученые все чаще начинают апеллировать к возможности того, что Большой взрыв в действительности не был началом всего, – это всего лишь фаза, через которую проходит Вселенная или как минимум наша часть Вселенной. Если это правда, то вопрос о нашем низкоэнтропийном начале принимает другую форму: не «Почему Вселенная зародилась в таком низкоэнтропийном состоянии?», а «Почему наша часть Вселенной прошла через период такой низкой энтропии?»

Хотя этот вопрос и не кажется более простым, это – другой вопрос, и он открывает нам новый диапазон возможных ответов. Не исключено, что Вселенная, которую мы видим, – всего лишь часть намного более крупной Мультиленной, которая не зарождается в низкоэнтропийной конфигурации. Я приведу доводы, что самая разумная модель Мультиленной – такая, где энтропия увеличивается просто потому, что энтропия способна увеличиваться всегда: не существует состояния максимальной энтропии. В качестве дополнительного бонуса Мультиленная может быть абсолютно симметричной во времени: начиная с какого-то момента в середине, когда энтропия имеет высокое значение, она эволюционирует по направлению к прошлому и будущему в состояния, в которых энтропия еще выше. Вселенная, доступная нашему взору, – это всего лишь крошечный отросток невероятно массивного ансамбля, и наше конкретное путешествие из плотного Большого взрыва к извечной пустоте – это часть более глобального стремления всей Мультиленной к увеличению ее собственной энтропии.

В любом случае это всего лишь одна из возможностей. Считайте это примером одного из сценариев, которые космологам следует рассматривать, если они решают всерьез взяться за проблемы, порождаемые стрелой времени. И независимо от того, ведет ли нас данная конкретная идея в правильном направлении, сами по себе эти проблемы уже невероятно увлекательны и реальны. На протяжении этой книги мы будем изучать проблемы времени с самых разных точек зрения: путешествия во времени, информация, квантовая механика, природа вечности. Когда уверенности относительно того, как должен звучать финальный ответ, еще нет, вопрос следует пробовать задавать всеми способами, какие только возможны.

Всегда останутся скептики

Не все согласны с тем, что космология должна играть значительную роль в нашем понимании стрелы времени. Однажды мне довелось провести семинар на эту тему в большой аудитории на физическом факультете одного крупного учебного заведения. Один из пожилых профессоров этого факультета посчитал мое выступление недостаточно убедительным и приложил усилия для того, чтобы все присутствующие узнали о его неудовольствии. На следующий день он разослал электронное сообщение другим сотрудникам факультета и при этом был достаточно любезен для того, чтобы включить в список адресатов и меня:

Наконец, величина энтропии Вселенной как функция времени – это интересная проблема для космологии, но предполагать, что от нее зависят законы физики, – совершеннейшая бессмыслица. Утверждение Кэрролла о том, что второе начало термодинамики обязано своим существованием космологии, – одно из глупейших [sic] заявлений, что мне доводилось слышать на физических семинарах, за исключением заявления [фамилия вырезана] о сознании в квантовой механике. Я удивлен тем, что присутствовавшие физики любезно выслушали подобный вздор. Позже у меня состоялся ужин с несколькими аспирантами, которые с готовностью поддержали мои возражения, но Кэрролл остался непоколебим.

Надеюсь, он прочитает эту книгу. Здесь содержится много громких заявлений, но я проявлю осмотрительность, подразделив их на три типа: 1) примечательные результаты современной физики, звучащие удивительно, но тем не менее являющиеся общепризнанными фактами; 2) масштабные заявления, с которыми согласны не все работающие физики, но которые тем не менее должны быть приняты, так как их истинность не вызывает никаких вопросов; 3) умозрительные идеи за пределами зоны комфорта современного положения дел в науке. Определенно, мы не будем чураться отвлеченных и спекулятивных рассуждений, но они всегда будут ясно обозначены как таковые. В конечном счете вы будете вооружены всеми необходимыми знаниями для того, чтобы самостоятельно решать, какие части истории имеют смысл, а какие нет.

Тема времени включает огромное количество идей – от бытовых до шокирующих. Мы заглянем в термодинамику, квантовую механику, специальную и общую теории относительности, теорию информации, космологию, физику элементарных частиц и квантовую гравитацию. Первую часть книги можно рассматривать в качестве обзорной экскурсии, рассказывающей об энтропии и стреле времени, эволюции Вселенной и разнообразных концепциях самой идеи «времени». После этого мы постараемся подойти к вопросу более систематизированно: во второй части мы глубоко задумаемся о пространстве – времени и относительности, включая возможность путешествий назад во времени. В третьей части мы серьезно рассмотрим понятие энтропии, изучив ее роль во множестве контекстов – от эволюции жизни до загадок квантовой механики.

В четвертой части мы соберем все вместе, для того чтобы смело посмотреть в глаза загадкам, которые энтропия ставит перед современными космологами: как должна выглядеть Вселенная и насколько это похоже на то, как Вселенная на самом деле выглядит? Я продемонстрирую, что Вселенная выглядит совершенно не так, как «должна» (разумеется, объяснив, что я имею в виду, употребляя это слово), – по крайней мере, так дела обстоят для Вселенной, которую мы видим вокруг нас. Если наша Вселенная зародилась в Большом взрыве, то ее существование отягощается тонко подстроенным граничным условием, для которого мы не можем найти достойного объяснения. Однако если наблюдаемая Вселенная является частью более крупного ансамбля – Мультиленной, то, возможно, у нас есть шанс объяснить, почему в крохотной части этого ансамбля энтропия на одном конце времени так разительно отличается от энтропии на другом.

Все это, конечно, непростительное теоретизирование, однако к этим измышлениям стоит отнестись серьезно. Ставки велики – время, пространство, Вселенная, так что ошибки, которые мы непременно будем делать по пути, без сомнений, также будут отличаться масштабностью. Иногда полезно отпустить свое воображение в свободное плавание, даже если наша конечная цель – вернуться на Землю и объяснить, что происходит на кухне.



Часть I. Время, опыт и Вселенная

Глава 1. Прошлое – это воспоминания настоящего

Что же такое время? Если никто меня об этом не спрашивает, я знаю; если бы я захотел объяснить тому, кто спрашивает, – нет, не знаю.

Св. Августин. Исповедь

В следующий раз, когда у вас возникнет необходимость скрасить пару часов в баре, на борту самолета или в очереди за справкой в районном отделении дорожной полиции, проведите время с пользой: попробуйте поспрашивать незнакомцев, что такое, по их мнению, время. Кстати, это было частью моих исследований во время подготовки к написанию книги, которую вы держите в руках. Думаю, вы услышите множество интересных ответов: «Время – это то, что движет нас вперед по жизни», «Время отделяет прошлое от будущего», «Время – это часть Вселенной» и прочие вариации на ту же тему. Мне больше всего понравилось такое определение: «Время – это то, благодаря чему мы знаем, что что-то происходит».

Все эти понятия верны лишь отчасти. И хотя облечь понятие времени в слова не так уж просто, в повседневной жизни мы, как и Святой Августин, справляемся с ним вполне успешно. Большинство людей умеют определять время по часам, могут оценить, сколько времени займет поездка из дома на работу или приготовление чашки кофе, и способны прийти на ужин с друзьями в назначенный час. Даже если у нас не получается дать четкое определение тому, что такое «время», на интуитивном уровне мы осознаем, что это и как оно работает.

Как и судья Верховного суда, столкнувшийся с вопиющим проявлением бесстыдства, мы прекрасно понимаем, что за явление происходит перед нами, и в большинстве случаев этого достаточно. Однако определенные аспекты времени все же остаются загадочными и непостижимыми. Итак, действительно ли мы знаем, что означает это слово?

Что мы понимаем под временем

Мир никогда не преподносит нам абстрактные понятия на блюдечке с голубой каемочкой, чтобы мы могли спокойно разобраться в них и согласовать с другими понятиями. Все гораздо сложнее. В своей жизни мы сталкиваемся с феноменами, наблюдаем и описываем их. Затем на основании полученных данных мы формулируем понятия, которые помогают нам понимать, как замеченные феномены соотносятся с остальными составляющими нашего существования. Что касается трудноуловимых понятий, таких как энтропия, все более или менее ясно. Это не какие-то штуковины, на которые можно внезапно наткнуться, прогуливаясь по улице. Мы наблюдаем разнообразные природные явления и выделяем некую закономерность, шаблон, о котором удобнее всего мыслить в терминах нового понятия, например, под названием энтропия. Вооружившись этим новым полезным понятием и подмечая различные другие явления, мы уточняем и совершенствуем исходное определение энтропии.

Если же речь идет о такой примитивной, но в то же время основополагающей идее, как время, то тот факт, что понятие времени также изобрели, а не получили в готовом виде от щедрой Вселенной, куда менее очевиден – ведь мы в буквальном смысле не представляем себе жизни без времени. Тем не менее одной из важнейших задач науки (и философии) является превращение интуитивного понимания базовых концепций, подобных времени, в строгие научные понятия. По пути также выясняется, что мы вовсе не однозначно понимаем и используем термин «время». У него несколько разных значений, каждое из которых заслуживает подробного освещения.

Существуют три аспекта времени, и все они одинаково важны для нас.


1. Время отмечает моменты во Вселенной.

Время – это координата, оно помогает нам находить объекты.


2. Время измеряет продолжительность периодов между событиями.

Время – это то, что мы измеряем с помощью часов.


3. Время – это среда, сквозь которую мы движемся.

Время – вестник перемен. Мы движемся сквозь него или – что то же самое – время протекает сквозь нас: из прошлого через настоящее в будущее.


На первый взгляд все это звучит очень похоже. Время отмечает моменты, измеряет продолжительность и движется из прошлого в будущее – вроде бы эти идеи не противоречат друг другу. Но если копнуть глубже, то оказывается, что они не обязательно должны быть взаимозависимы – скорее они представляют собой логически независимые понятия, которые по какой-то случайности в реальном мире тесно переплетены. Почему же так происходит? Ответ на этот вопрос чрезвычайно важен – куда важнее, чем принято было думать в научной среде.

1. Время отмечает моменты во Вселенной

Однажды Джона Арчибальда Уилера, влиятельного американского физика, который ввел в обиход термин «черная дыра», спросили, что такое время. Немного подумав, он ответил так: «Время – это то, благодаря чему в природе не происходит все одновременно».

В этом высказывании кроется важная истина, и оно полно глубокой мудрости. Когда мы думаем о мире в рамках привычных бытовых понятий – не с точки зрения ученых или философов, а как обычные люди, живущие своей жизнью, – мы обычно идентифицируем «мир» как набор вещей, находящихся в различных местах. Физики объединяют все эти разнообразные места в единое понятие под названием «пространство». В зависимости от контекста они используют разные способы описания того, что находится в пространстве, – атомы, элементарные частицы или квантовые поля. Однако базовая идея остается неизменной. Вы находитесь в комнате, в которой есть мебель, несколько книг, какая-то еда, возможно, даже другие люди и обязательно какое-то количество молекул воздуха. Все подобные вещи – от ближайших к вам и до находящихся в межгалактическом пространстве – образуют «мир».

И мир изменяется. Мы видим объекты в определенных сочетаниях друг с другом, но мы видим их и в других сочетаниях (очень трудно составлять разумные предложения, описывающие эту идею, без отсылок к понятию времени). Но мы не видим эти разные сочетания «одновременно» или «одномоментно». Мы видим одну конфигурацию: вот вы сидите на диване, а у вас на коленях кошка, а затем другую: кошка спрыгнула на пол, обидевшись, что вы погрузились в книгу и не уделяете ее царственной персоне достаточно внимания. Таким образом, мир предстает перед нами в разных конфигурациях снова и снова, и все эти конфигурации чем-то отличаются друг от друга. К счастью, мы можем пометить множество подобных конфигураций, для того чтобы не запутаться во всевозможных состояниях окружающего мира: Мурка уходит «сейчас», а сидела у вас на коленях «до этого». Такие метки и составляют то, что мы называем временем.

Итак, мир существует, и более того, мир происходит снова и снова. В этом смысле мир аналогичен множеству кадров на кинопленке, только фильм на этой пленке снят камерой, способной захватить в объектив всю Вселенную (а также, насколько нам известно, включает бесконечное число кадров, отделенных бесконечно малыми промежутками). Разумеется, пленка – это не просто куча отдельных кадров. Они должны быть составлены в правильном порядке, иначе фильм попросту не будет иметь смысла. В этом и заключается роль времени. Про какие-то события мы можем не просто сказать, что «вот это произошло», и «вот это тоже произошло», и «вот тот случай тоже имел место». Мы можем сказать, что первое событие произошло до второго, а третье – после него. Время не просто метка на каждом из возможных экземпляров мира; оно обеспечивает порядок, помещая каждый из экземпляров на свое место в правильной последовательности.

Конечно же, в кадре настоящего фильма никогда не присутствует целая Вселенная. Любой фильм монтируется: одна сцена или угол съемки внезапно сменяются другим. Попробуйте представить себе фильм, в котором такой переход происходит после каждого кадра, то есть каждый последующий кадр содержит совершенно новую сцену. Его невозможно было бы смотреть: происходящее на экране казалось бы нам случайной мешаниной изображений. Кажется, существует какой-то авангардный французский фильм, снятый как раз с использованием такой техники.

Настоящая Вселенная совсем не похожа на авангардный фильм. Мы чувствуем определенную непрерывность движения времени: если сейчас у вас на коленях сидит кошка, существует вероятность, что она может спрыгнуть и уйти, однако вы навряд ли задумываетесь об опасности того, что любимая Мурка через мгновение попросту дематериализуется. На микроскопическом уровне непрерывность не абсолютна: частицы могут появляться и исчезать или, по крайней мере, при определенных условиях трансформироваться в частицы другого типа. Однако реальность не подвергается каждое мгновение массовым изменениям.

Этот феномен непрерывности заставляет взглянуть на «мир» с новой точки зрения. Вместо множества разбросанных тут и там в пространстве вещей, постоянно меняющих конфигурацию, мы разом начинаем думать о целой истории мира или любой его составляющей. Мурка теперь для нас не совокупность упорядоченных клеток и жидкостей, а существо, прожившее целую жизнь – от момента рождения и до смерти. История объекта (кошки, планеты, электрона) во времени определяет его мировую линию – траекторию, которую объект прочерчивает в пространстве с течением времени.[3] Мировая линия объекта представляет собой всего лишь полный набор позиций, которые он когда-либо занимал в мире, отмеченных определенными моментами времени.


Вечность. В поисках окончательной теории времени

Рис. 1.1. Мир, упорядоченный по моментам времени. Объекты (включая людей и кошек) остаются в пространстве от момента к моменту, определяя тянущиеся сквозь время мировые линии


Поиск самих себя

Умение мыслить обо всей истории Вселенной разом в противоположность представлению о Вселенной как о наборе непрерывно перемещающихся туда-сюда объектов – это первый шаг к восприятию времени как еще одного пространства (мы будем подробно говорить об этом в следующих главах). Для слежения за вещами во Вселенной мы используем как временные, так и пространственные координаты. Предположим, вы хотите встретиться с другом за чашечкой кофе, или попасть на определенный сеанс в кинотеатре, или прийти на работу одновременно с коллегой. Для этого вы указываете время: «Давай встретимся в кофейне в шесть часов вечера в этот четверг».

Однако если вам необходимо встретиться с кем-то, то, разумеется, сообщить лишь о времени встречи недостаточно; вы также должны договориться о месте (о какой именно кофейне идет речь выше?). Физики утверждают, что пространство «трехмерное». Это означает, что нам требуются три числа для уникального обозначения любого местоположения. Если имеется в виду какая-то точка, расположенная близко к Земле, то физик укажет значения широты, долготы и высоты над поверхностью Земли. Если же мы говорим о каком-то удаленном – в астрономическом смысле – местоположении, то его можно обозначить направлением в небе (это два числа, аналогичные широте и долготе) и расстоянием от Земли. Совершенно неважно, каким именно способом указывать эти три величины; самое главное, что их всегда ровно три. Данные величины называются координатами положения в пространстве. Просто представьте себе, что к каждой точке приклеена небольшая этикетка, сообщающая точное местонахождение этой точки в пространстве.


Вечность. В поисках окончательной теории времени

Рис. 1.2. Координаты любой точки в пространстве


В повседневной жизни у нас есть множество возможностей облегчить себе существование и избежать перечисления всех трех пространственных координат. Если вы предложите другу встретиться «в кофейне на углу Восьмой улицы и Мейн-стрит», то явным образом сообщите ему две координаты: «Восьмая» и «Мейн-стрит». Вряд ли кто-то предположит, что кофейня находится в воздухе или под землей, – очевидно, что здание стоит на земле. Этим удобством обозначения местоположений мы обязаны тому факту, что в быту нам чаще всего приходится иметь дело с двумерным пространством, то есть с объектами, расположенными вплотную к поверхности Земли. Однако для того, чтобы абсолютно точно указать местоположение точки в пространстве, вам все же потребуется привести значения всех трех координат.

Каждая точка в пространстве встречается единожды в каждый момент времени. То, что можно описать определенным местоположением в пространстве в какой-то определенный момент времени, физики называют событием (не следует думать, что так говорят лишь о каких-то исключительно выдающихся событиях; любая случайная точка в пустом пространстве в любой конкретный момент времени зовется событием, если она обозначена уникальным образом). То, что мы называем «Вселенной», – это всего лишь множество событий: каждая точка пространства в каждый момент времени. Получается, что для того, чтобы выбрать уникальное событие, нам требуется четыре числа: три пространственные координаты и одна временна́я. Именно поэтому принято говорить, что Вселенная четырехмерна. Такое понятие чрезвычайно удобно, и мы будем часто использовать термин «пространство – время», подразумевая вышеописанное множество целиком, то есть все возможные точки в пространстве в любые возможные моменты времени.

Это огромный концептуальный скачок. Пожалуй, стоит даже притормозить на секунду, чтобы в полной мере осознать то, что мы только что сформулировали. Вполне естественно представлять себе мир в виде некой трехмерной непрерывно меняющейся конгломерации («происходит снова и снова, но каждый раз слегка по-иному»). И что же мы делаем сейчас? Мы предлагаем взглянуть на все это бескрайнее множество, на всю историю мира как на единый четырехмерный объект, где дополнительным четвертым измерением служит время. В этом смысле время как бы нарезает четырехмерную Вселенную на копии пространства, датируемые моментами времени: вся Вселенная по состоянию на 10:00 20 января 2010 года, вся Вселенная по состоянию на 10:01 20 января 2010 года и т. д. Бесконечное множество таких срезов и составляет в итоге нашу Вселенную.

2. Время измеряет продолжительность периодов между событиями

Второй аспект времени связан с возможностью измерения периодов, отделяющих разные события друг от друга. Звучит очень похоже на то, о чем мы говорили в предыдущем разделе: «время отмечает моменты во Вселенной», не так ли? Однако существует отличие. Время не просто отмечает и упорядочивает различные моменты; оно также измеряет расстояние от одного момента до другого.

Когда, нацепив на себя воображаемую мантию философа или ученого, мы пытаемся разобраться в сути какого-нибудь изощренного понятия, очень помогает взглянуть на вещи с практической точки зрения: какое применение эта идея находит в реальной жизни? Говоря о времени, мы обычно ссылаемся на значения, которые берем с циферблата часов. Если вы смотрите телевизионную передачу длительностью один час, то показания часов в конце передачи станут на час больше, чем были в ее начале. Именно это мы и подразумеваем, когда говорим, что за время вещания передачи прошел один час: в конце передачи часы показывают на час больше.

Однако что такое хорошие часы? Основной критерий хороших часов – постоянство; кому нужны часы, которые идут то слишком быстро, то, наоборот, слишком медленно? Возникает вопрос: слишком быстро или медленно по сравнению с чем? Очевидно, что по сравнению с другими часами. Во Вселенной есть определенные объекты, поведение которых отличается периодичностью – они делают одно и то же снова и снова. Существование таких объектов – эмпирический факт (а не некий логический вывод). Если поместить два таких объекта один рядом с другим, то мы сможем наблюдать в их поведении хорошо предсказуемый повторяющийся шаблон.

Вспомните планеты Солнечной системы. Земля вращается вокруг Солнца и ровно один раз в году оказывается в одном и том же положении по отношению к отдаленным звездам. Само по себе это мало что означает – это всего лишь известное всем определение «года». Однако выясняется, что Марс возвращается в одно и то же положение каждые 1,88 года. А вот в этом утверждении уже заложен огромный смысл; мы могли бы сказать, что Земля обращается вокруг Солнца 1,88 раза за то время, пока Марс совершает один оборот, не используя термин «год».[4] Аналогично, Венера обращается вокруг Солнца 1,63 раза за каждое прохождение Землей ее орбиты.

Ключ к измерению времени – это синхронизированное повторение: множество разнообразных процессов повторяются снова и снова, так что число повторений одного процесса за время, пока другой процесс возвращается к исходному состоянию, легко спрогнозировать. Земля вращается вокруг своей оси, и она совершает 365,25 таких оборота за один обход Солнца по орбите. Крохотный кристалл в кварцевых часах совершает 2 831 155 200 колебаний в течение одного оборота Земли вокруг своей оси (32 768 колебаний в секунду, умноженные на 3600 секунд в часе и на 24 часа в сутках[5]). Причина всемирно известной надежности кварцевых часов кроется в исключительной регулярности колебаний кристалла кварца. Даже если давление или температура изменятся, кристалл все равно будет совершать одно и то же количество колебаний за время одного оборота Земли вокруг своей оси.



Таким образом, когда мы называем часы хорошими, мы имеем в виду, что они демонстрируют предсказуемые повторения, согласованные с ходом всех остальных хороших часов. В действительности тот факт, что подобные часы существуют, – это заслуга Вселенной, и мы должны быть ей за это очень благодарны. В частности, на микроскопическом уровне, где все происходит по правилам квантовой механики и зависит от свойств индивидуальных элементарных частиц (таких, как масса и электрический заряд), обнаруживаются атомы и молекулы, колеблющиеся с абсолютно предсказуемой частотой и формирующие обширную коллекцию превосходных, идеально синхронизированных часов. Вселенная без хороших часов – без процессов, частоту повторения которых относительно других процессов мы могли бы уверенно предсказывать, – была бы невозможно пугающей.[6]

Тем не менее найти хорошие часы не так просто. Традиционные методы хронометража зачастую находятся в зависимости от небесных тел – положения Солнца или звезд на небе, потому что у нас, на Земле, вечно творится всяческая непредсказуемая кутерьма. Существует легенда, согласно которой в 1581 году молодой Галилео Галилей совершил выдающееся открытие прямо во время скучной церковной службы в Пизе. Люстра у него над головой медленно покачивалась туда и обратно, и создавалось впечатление, что она качалась быстрее, когда это происходило с бо́льшим размахом (например, после порыва ветра), и медленнее, когда ее отклонение от центрального положения было совсем невелико.

Заинтригованный процессом, Галилей решил замерить время, необходимое для совершения одного размаха, используя единственное примерно периодическое событие, к помощи которого можно было прибегнуть, не вставая с места: биение собственного пульса. Обнаружилась крайне занимательная закономерность: в промежутки между отдельными махами помещалось приблизительно одинаковое число сердцебиений, независимо от того, насколько велик был размах. Амплитуда колебаний – расстояние, на которое люстра отклонялась от центральной точки, – никак не влияла на их частоту. И это не уникальное свойство люстр пизанских соборов, а неотъемлемая характеристика маятников, которым физики дали название простых гармонических осцилляторов. Именно по этой причине маятник считается базовой деталью напольных часов и других устройств слежения за временем: его колебания отличаются высочайшим постоянством. Часовое мастерство – это, в том числе, непрерывный поиск еще более надежных форм колебаний – от вибрации кристаллов кварца до ядерных резонансов.

В действительности нас интересуют не столько хитрости конструирования часов, сколько сам смысл времени. Мы живем в мире, полном самых разных периодических процессов, повторяющихся предсказуемое число раз по сравнению с другими периодическими процессами. В этом и заключается процесс измерения продолжительности временных промежутков: мы подсчитываем число повторений процесса. Заявляя, что телевизионная передача идет ровно час, мы подразумеваем, что кристалл кварца в наших часах совершает 117 964 800 колебаний с момента начала передачи и до ее конца (32 768 колебаний в секунду, умноженные на 3600 секунд в часе).


Вечность. В поисках окончательной теории времени

Рис. 1.3. Хорошие часы демонстрируют синхронизированные повторения. За одни сутки Земля делает один оборот вокруг своей оси, маятник с периодом в одну секунду совершает 86 400 колебаний, а кристалл кварца – 2 831 155 200 колебаний


Обратите внимание на то, что в попытке дать точное определение времени мы полностью исключаем из формулировки само это понятие. Так и должно происходить, если мы ставим себе целью дать хорошее определение явлению: невозможно качественно описать нечто в терминах самого себя. Мы можем дать прекрасное определение течению времени, отталкиваясь от факта существования синхронизированных событий. Заявить «передача идет один час» – то же самое, что сказать «с момента начала передачи до момента, пока она не закончится, кристалл кварца в моих часах успевает совершить 117 964 800 колебаний» (плюс-минус пара рекламных пауз). При желании все фундаментальные физические определения можно было бы сформулировать заново, устранив любые отсылки к понятию «время». Нужно всего лишь заменить их сложными описаниями того, как одни явления происходят одновременно с другими.[7] Однако зачем нам это? Думать в терминах времени удобно; более того, такое мышление отражает простой базовый порядок существования вещей во Вселенной.

Замедление, остановка, искривление времени

Вооружившись отточенным пониманием того, что подразумевается под течением времени, мы можем ответить по крайней мере на один глобальный вопрос: что будет, если течение времени во всей Вселенной замедлится? Ответ таков: данный вопрос не имеет смысла. Замедлится относительно чего? Если под временем понимается то, что мы измеряем часами и все часы теперь идут настолько же «медленнее», насколько и все время по Вселенной, то нам попросту не удастся заметить никаких изменений. Для определения времени необходимо наблюдать синхронизированные повторения, но если частота одного колебания остается постоянной по отношению к какому-то другому колебанию, то все в порядке.

Мы, люди, чувствуем течение времени. Это происходит благодаря периодическим процессам, происходящим в нашем собственном организме: дыханию, сердцебиению, электрическим импульсам, пищеварению, ритмам центральной нервной системы. Человек представляет собой сложную взаимосвязанную систему разнообразных часов. Наши внутренние ритмы не так надежны, как маятник или кристалл кварца; они могут изменяться под воздействием внешних условий или нашего эмоционального состояния, из-за чего иногда возникает впечатление, что время то бежит, то еле тянется. Однако по-настоящему надежные часы, отсчитывающие мгновения внутри наших тел, – колеблющиеся молекулы, отдельные химические реакции – никогда не меняют скорости и не происходят быстрее или медленнее положенного.[8]

Подумаем теперь, а что же произойдет, если определенные физические процессы, которые мы считали «хорошими часами», рассинхронизируются: одни часы замедлятся или, наоборот, ускорятся по сравнению со всеми остальными. В такой ситуации разумно было бы обвинить в неточности эти конкретные часы, вместо того чтобы ставить под сомнение само время. Однако сделаем еще одно небольшое допущение: представим себе целый набор часов (включая молекулярные колебания и другие периодические процессы), одновременно изменивших скорость хода по сравнению со всем остальным миром. Тогда можно было бы начать сомневаться, не изменилась ли скорость течения времени исключительно внутри этого конкретного набора.

Рассмотрим крайний случай. В романе Николсона Бейкера «Фермата» рассказывается история человека по имени Арно Страйн, который обладает способностью «останавливать время» (правда, этот удивительный дар он использует в основном для наблюдения за обнаженными женщинами). Если бы время останавливалось повсеместно, это ровным счетом ничего бы не значило; суть в том, что Арно продолжает двигаться сквозь время даже тогда, когда вокруг него все замирает. Мы все понимаем, что это невозможно, однако поразмышлять о том, какими именно законами физики пренебрег автор, весьма поучительно. Описанный подход к остановке времени подразумевает, что все виды движения и ритмов в теле Арно продолжаются обычным образом, в то время как любое движение и ритмы во внешнем мире намертво застывают. Разумеется, следует предполагать, что время продолжает течь также и для воздуха и жидкостей, находящихся внутри тела Арно, иначе его ждала бы немедленная смерть. Однако если бы весь воздух в окружающем пространстве перестал испытывать влияние времени, то каждая молекула застыла бы в точности в одном положении; следовательно, Арно был бы не способен двигаться, будучи заключенным в невидимую тюрьму из жестко зафиксированных молекул воздуха. Хорошо, проявим щедрость и допустим, что время продолжает течь обычным образом для любых молекул воздуха, находящихся достаточно близко к коже Арно (в книге присутствуют намеки на нечто подобное). Тем не менее если продолжать следовать первоначальному предположению, то ничто более в окружении Арно меняться не может. В частности, никакие звуки и свет не в состоянии достичь нашего героя; следовательно, Арно был бы абсолютно глух и слеп. Внезапно такое положение вещей оказывается далеко не выигрышным для любопытной Варвары.[9]

Однако что если, несмотря на все физические и повествовательные препятствия, подобное явление могло бы произойти? Пусть остановить время вокруг себя невозможно, но вдруг существует способ замедления каких-то локальных часов? Если время действительно измеряется с помощью синхронизированных повторений и мы могли бы собрать группу часов, идущих слишком быстро по отношению к окружающему миру, но точно синхронизированных между собой? Можно ли в таком случае сказать, что внутри этой группы «время бежит быстрее»?

Ответ зависит от разных обстоятельств. Мы уже достаточно далеко отошли от реалий окружающего мира, так что давайте сформулируем несколько правил. Нам повезло родиться во Вселенной, которая предлагает множество очень надежных часов. Если бы таких часов не было, то при измерении длительности промежутков между разными событиями мы бы не могли полагаться на время. Что касается мира «Ферматы», то можно сказать, что время замедлилось для Вселенной, находящейся за пределами Арно Страйна, или – и это абсолютно то же самое – что время для него ускорилось, тогда как остальной мир продолжил жить в обычном темпе. Второй вариант даже удобнее для восприятия. Однако точно так же мы могли бы заявить, что «время» нисколько не изменилось, единственное, что изменилось, – это законы физики элементарных частиц (массы и заряды разнообразных частиц) в сфере влияния Арно. «Время» – это не то понятие, которое окружающий мир способен преподнести нам в готовом и не допускающем двойственного толкования виде. Люди сами изобретают подобные понятия в попытках осознать устройство Вселенной. Если бы свойства нашей Вселенной были другими, то, возможно, мы бы понимали под «временем» нечто совсем иное.

Между тем можно описать вполне реальную ситуацию, когда разные группы часов будут измерять время по-разному. Для этого им всего лишь нужно двигаться сквозь пространство – время по разным путям. Это полностью совместимо с нашим заявлением о том, что «хорошие часы» должны измерять время одинаково, и проблема только в том, что сравнить часы, не находящиеся в пространстве рядом друг с другом, невозможно. Значение времени, измеренное при прохождении каждой из таких траекторий, может быть разным, но это не говорит о наличии каких-либо противоречий. Тем не менее это подводит нас к разговору о еще одной важной теории – теории относительности.

Извилистые дорожки сквозь пространство – время

Время не просто упорядочивает различные мгновения истории благодаря чуду синхронизированного повторения. Оно также сообщает нам, насколько «далеки друг от друга» эти события (во времени). Мы не просто говорим, что «1776 год был до 2010 года», мы можем дать куда более точную информацию: «1776 год был за 234 года до 2010 года».

Необходимо особо подчеркнуть принципиальное отличие «деления Вселенной на отдельные мгновения» от «измерения времени, прошедшего между событиями». Когда мы доберемся до теории относительности, это отличие будет играть критически важную роль. Представим себе, что вы честолюбивый временной[10] инженер, и вам недостаточно видеть на наручных часах точное текущее время; вы хотели бы иметь возможность определять время любого другого события, случающегося в пространстве – времени. Логично задаться вопросом: нельзя ли (гипотетически) сконструировать координату времени, которая охватит Вселенную целиком? Например, построить бесконечное число часов, синхронизировав их между собой, и разбросать по всему пространству? Тогда путешествуя по пространству – времени, мы в каждой точке встретили бы часы, показывающие абсолютное время.

Как мы вскоре убедимся, реальный мир не позволяет создать абсолютную универсальную координату времени. Очень долго люди верили в обратное, причем эта вера поддерживалась такими авторитетами, как Исаак Ньютон. В ньютоновском представлении о Вселенной существует один-единственный правильный способ нарезания ее на «состояния пространства в конкретный момент времени». И действительно, хотя бы в качестве мысленного эксперимента мы могли бы расставить часы по всей Вселенной и, таким образом, сконструировать координату времени, уникальным образом определяющую время любого интересующего нас события.

Однако в 1905 году мир услышал о специальной теории относительности Эйнштейна.[11] Центральным концептуальным прорывом этой теории является тот факт, что наши два аспекта времени: «время отмечает различные моменты» и «время – это то, что измеряется часами» – не эквивалентны и даже не взаимозаменяемы. В частности, задумка с конструированием временной координаты путем разбрасывания часов по всей Вселенной не работает: если двое часов переместятся из одного и того же начального события в одно и то же конечное событие, но сделают это разными путями, то их путешествия продлятся разные периоды времени и, следовательно, часы рассинхронизируются. Это произойдет не потому, что мы недостаточно хорошо прочитали инструкции и выбрали «плохие» часы, а потому, что продолжительность периодов времени, необходимых для перемещения из одного события в пространстве – времени в другое по разным траекториям, может быть разной.

Если мыслить о времени как о еще одном виде пространства, то эта идея перестает казаться удивительной. Рассмотрим аналогичное заявление, но касающееся пространства, а не времени: длина двух путей, соединяющих одни и те же точки в пространстве, не обязательно будет одинаковой. Звучит абсолютно буднично, не так ли? Разумеется, мы можем соединить две точки в пространстве множеством путей самой разной длины: один путь будет прямым, а другой изогнутым, и длина изогнутого пути всегда будет больше. В то же время разница между координатами двух точек всегда остается постоянной, независимо от того, по какому пути мы приходим из первой точки во вторую. Причина этого в том – я не побоюсь повторить очевидный факт, – что пройденное расстояние далеко не всегда равно изменению координат. Вам когда-нибудь приходилось наблюдать за игрой в американский футбол? Вспомните, как игрок с мячом обычно бежит через поле: он снует туда и сюда, уклоняясь от игроков противоположной команды, и в результате пробегает расстояние от 30-ярдовой линии до 80-ярдовой (в действительности он финиширует на 20-ярдовой линии противника, но приведенная выше формулировка лучше иллюстрирует суть обсуждения). Изменение координат составляет 50 ярдов и не зависит от того, насколько длинным или коротким был полный пройденный игроком путь.


Вечность. В поисках окончательной теории времени

Рис. 1.4. Ярдовые линии служат координатами на поле для американского футбола. Координаты игрока, перебежавшего с мячом от 30-ярдовой линии к 80-ярдовой, изменяются на 50 ярдов, несмотря на то что длина фактически проделанного им пути может быть намного больше


Центральный элемент специальной теории относительности – это понимание того, что время именно такое. В соответствии со вторым нашим определением – «показатель, измеряемый часами» – время можно считать аналогией общей протяженности пути сквозь пространство; часы в этом случае играют роль одометра или иного инструмента, способного оценивать пройденное расстояние. Это совсем не то же самое, что понятие координаты, отмечающей различные срезы пространства – времени (аналогично ярдовым линиям на футбольном поле). При этом мы говорим не о какой-то технической проблеме, которую можно «исправить», построив лучшие часы или выбрав лучший путь через пространство – время; это неотъемлемое свойство Вселенной, она так работает, и нам необходимо научиться с этим жить.

Какой бы привлекательной и основательной ни выглядела идея рассматривать время как еще один вид пространства, между этими понятиями все же существуют принципиальные различия, и это не должно вызывать удивления. Два таких различия являются основополагающими элементами теории относительности. Во-первых, пространство характеризуется тремя измерениями, тогда как у времени измерение только одно; как нетрудно догадаться, этот суровый факт порождает важные последствия для физики. Во-вторых, в отличие от пространства, где прямая линия соответствует кратчайшему пути между двумя точками, прямая траектория между двумя событиями в пространстве – времени соответствует самому долгому времени движения.

Однако самое очевидное, явное и несомненное различие между временем и пространством состоит в том, что в отличие от пространства, где никаких ограничений на направления не существует, время всегда течет только в одну сторону. Время направлено из прошлого в будущее, а все направления в пространстве абсолютно равноправны (разумеется, если мы говорим о дальнем космосе, свободном от таких локальных искажений, как Земля). В пространстве мы можем поменять направление на обратное, не нарушая законов физики, однако любые реальные процессы способны происходить во времени только в одном направлении и никогда в обратном. И сейчас мы подробнее поговорим об этом кардинальном отличии.

3. Время – это среда, сквозь которую мы движемся

Социологический эксперимент, описанный в начале главы, в котором вы должны были предлагать незнакомцам дать собственное определение «времени», также служит отличным маркером, позволяющим отличить физиков от нефизиков. В десяти случаях из десяти определение физика будет так или иначе связано с первыми двумя аспектами из перечисленных выше: время – это координата или же время – это инструмент измерения продолжительности периодов. Нефизик, с другой стороны, настолько же часто будет ссылаться на третий аспект: время – это то, что течет из прошлого в будущее. Время проносится мимо, из «тогда» в «сейчас» и дальше в «потом».

Точно так же можно сказать, что не время летит, а мы движемся сквозь него, как будто время – это некая субстанция, внутри которой можно перемещаться. В послесловии к своей классической книге «Дзэн и искусство ухода за мотоциклом» Роберт Пёрсиг упоминает интересный вариант этой метафоры. Согласно Пёрсигу, древние греки «рассматривали будущее как нечто наступающее на них сзади, а прошлое отступало у них перед глазами».[12] Если подумать, то такой вариант выглядит достовернее, чем тот, в котором мы шагаем навстречу будущему и подальше от прошлого. Благодаря своему опыту мы что-то знаем о прошлом, тогда как о будущем мы можем лишь строить гипотезы.

Общее в этих представлениях о времени то, что время воспринимается как вещь, к тому же вещь, способная меняться – течь вокруг нас или проноситься мимо по мере того, как мы движемся вперед. Однако концептуализация времени как определенного вида динамичной субстанции, которая, возможно, даже может изменяться с разной скоростью в зависимости от обстоятельств, поднимает принципиальный вопрос.

Да что же это вообще должно означать?

Рассмотрим некий объект, который действительно течет в реальном мире, например реку. Мы можем смотреть на реку с пассивной или активной точки зрения: либо мы стоим на месте, а вода проносится мимо, либо мы в лодке плывем по реке, и тогда мимо нас по обеим сторонам проплывают берега.

Вода в реке действительно течет – это не вызывает сомнений. Это означает, что местоположение каждой конкретной капли воды меняется со временем – вот она здесь, а вот, спустя мгновение, уже там. Мы можем обоснованно говорить о скорости течения реки, подразумевая под этим скорость воды, – другими словами, расстояние, которое вода проходит за заданный период времени. Скорость можно измерять в милях в час или в километрах в секунду или в любых других единицах «расстояния, пройденного за интервал времени», которые вам больше нравятся. Скорость воды может в значительной степени изменяться в зависимости от места и момента: иногда течение реки ускоряется, а бывает, что замедляется. Когда мы говорим о реальном течении реальных рек, все эти термины звучат осмысленно.

Однако если попытаться препарировать заявление о «течении времени», то мы столкнемся с неразрешимой проблемой. Течение реки представляет собой изменение, происходящее с ходом времени. Но как понимать заявление о том, что «время меняется с ходом времени»? В буквальном толковании течение – это изменение местоположения со временем, однако у времени нет «местоположения». Так относительно чего время должно меняться?

Взглянем на этот вопрос с такой точки зрения: если время течет, то как мы могли бы описать его скорость? Нам пришлось бы использовать формулировку вроде «x часов в час» – интервал времени за единицу времени. И я могу точно сказать вам, чему будет равен x, – это единица, всегда только единица. Скорость времени составляет один час в час независимо от того, что там еще происходит во Вселенной.

Какой же урок мы должны извлечь из предыдущего обсуждения? Не совсем правильно представлять себе время как некий поток. Это соблазнительная метафора, которая, однако, не выдерживает критики. Для того чтобы изгнать из головы подобный стиль мышления, нужно прекратить представлять себя стоящими в некой точке Вселенной и омываемыми потоками времени. Вместо этого давайте думать о Вселенной – обо всем окружающем нас четырехмерном пространстве – времени – как об отдельной сущности, на которую мы смотрим извне, как внешние наблюдатели. Только в этом случае – перестав ставить себя в самый центр мироздания – мы сможем оценить истинную природу времени.

Взгляд из никогда

Невозможно на самом деле находиться за пределами Вселенной. Вселенная – это не какой-то объект, находящийся внутри еще более объемного пространства (насколько нам известно); под Вселенной понимается вообще все, что только существует вокруг нас, включая пространство и время. Таким образом, мы не пытаемся понять, как бы выглядела Вселенная при взгляде со стороны; посмотреть на нее извне попросту невозможно. В действительности мы пытаемся осознать неразрывную связь пространства и времени, существование пространства – времени как единой сущности. Философ Хью Прайс назвал это «взглядом из никогда» – видом на Вселенную, не привязанным ни к какому конкретному моменту времени.[13] Мы слишком хорошо знакомы с временем, ведь нам приходится иметь с ним дело каждый день в течение всей жизни. Вследствие этого мы находимся внутри времени, и у нас не получается относиться к нему отстраненно. Тем не менее полезно посмотреть на время и пространство как на взаимосвязанные составляющие одной общей картины.

Так что же мы видим, бросая взгляд вниз из «никогда»? Мы видим, что ничего не меняется со временем, ведь мы сами находимся вне времени. Вместо этого нашему взгляду предстает вся история целиком: все прошлое, настоящее и будущее. Такое представление о пространстве и времени можно сравнить с книгой, которую мы при желании могли бы начать читать с любого абзаца или даже разорвать на части и рассыпать страницы вокруг себя, в отличие от фильма, просмотр которого означает просмотр всех событий в определенной последовательности в предусмотренные моменты времени. Мы могли бы назвать это тральфамадорской точкой зрения в честь инопланетян из романа Курта Воннегута «Бойня номер пять». Как рассказывал главный герой книги, Билли Пилигрим:

Тральфамадорцы умеют видеть разные моменты совершенно так же, как мы можем видеть всю цепь Скалистых гор. Они видят, насколько все эти моменты постоянны, и могут рассматривать тот момент, который их интересует. Только у нас, на Земле, существует иллюзия, что моменты идут один за другим, как бусы на нитке, и что если мгновение прошло, оно прошло бесповоротно.[14]

Итак, мы забрались на этот величавый тральфамадорский насест и обозреваем окрестности. Как же нам реконструировать привычное представление о потоке времени? То, что мы видим, – это связанные события, выстроенные в последовательность. Мы видим часы, показывающие 6:45, и человека, стоящего на кухне со стаканом воды в одной руке и кубиком льда в другой. Вот другая сцена: на часах 6:46, и тот же человек все так же держит стакан воды, но кубик льда теперь плавает в стакане. И еще одна сцена: часы показывают 6:50, а в руках человека прохладный на ощупь стакан, ставший таким благодаря растаявшему в нем кубику льда.

В философской литературе это иногда называют «блочным временем» или «блочной Вселенной»: все пространство и все время рассматриваются как единый существующий блок пространства – времени. Для нашего обсуждения самое главное сейчас то, что мы можем думать о времени таким способом. Вместо того чтобы отталкиваться от представления о времени как о субстанции, текущей вокруг нас, или субстанции, через которую мы сами движемся, мы можем думать об упорядоченной последовательности связанных событий, совместно образующих всю Вселенную целиком. В таком случае понятие о времени восстанавливается на основании связей, существующих между событиями. Высказывание «этот кубик льда растаял за десять минут» эквивалентно утверждению, что «в момент, когда кубик льда закончил таять, часы показывали на десять минут больше, чем тогда, когда мы положили его в стакан». Мы не встаем в позу и не делаем громогласных заявлений о том, что неправильно думать о себе как об объекте, заключенном в поток времени. Просто когда пытаешься понять, почему время и Вселенная такие, какие они есть, а не какие-нибудь другие, намного полезнее и удобнее сделать шаг наружу и взглянуть на весь этот клубок событий из «никогда». Конечно, существуют и другие точки зрения. Попыткам разрешить загадку времени уже очень много лет, и немало копий сломано в спорах о том, что «реально» и что «полезно». Одним из самых влиятельных мыслителей, посвятивших свои работы изучению природы времени, считается Святой Августин – живший в V веке богослов и политик, Святой Отец, проповедовавший в Северной Африке. Вероятно, наибольшую известность Августину принесла разработка широко известного учения о первородном грехе, однако, будучи человеком широкого кругозора, он также нередко обращался к метафизическим вопросам. В Книге XI своей «Исповеди» он обсуждает природу времени.

Совершенно ясно теперь одно: ни будущего, ни прошлого нет, и неправильно говорить о существовании трех времен: прошедшего, настоящего и будущего. Правильнее было бы, пожалуй, говорить так: есть три времени – настоящее прошедшего, настоящее настоящего и настоящее будущего. Некие три времени эти существуют в нашей душе, и нигде в другом месте я их не вижу: настоящее прошедшего – это память; настоящее настоящего – его непосредственное созерцание; настоящее будущего – его ожидание.[15]

Августину не нравится идея с блочной Вселенной. Он презентист – человек, считающий, что реально лишь настоящее, а прошлое и будущее – это вещи, которые мы сейчас, в настоящем, пытаемся восстановить исходя из имеющихся у нас знаний и сведений. Та же точка зрения, о которой мы говорили выше, вполне ожидаемо носит название «этернализма», а ее последователи утверждают, что прошлое, настоящее и будущее одинаково реальны.[16]

Послушав споры между этерналистами и презентистами, типичный физик воскликнет: «Да какая разница?». Это может казаться странным, но физиков не слишком волнует, какие понятия «реальны», а какие нет. Им интересно разобраться, как работает реальный мир, но для них этот вопрос сводится к построению всеобъемлющих теоретических моделей и сравнению их с эмпирическими данными. При этом главную роль играют не характеристики отдельных понятий в каждой модели («прошлое», «будущее», «время»), а структура в целом. И действительно, часто оказывается, что одну и ту же модель можно описать двумя совершенно разными способами, применяя абсолютно непохожие наборы понятий.[17]

Таким образом, наша цель как ученых – сконструировать модель реальности, успешно учитывающую все существующие представления о времени: время измеряется часами, время как координата пространства – времени, а также наше субъективное ощущение течения времени вокруг нас. Понять первые два аспекта нам помогает общая теория относительности Эйнштейна, о которой мы подробно поговорим во второй части книги. Однако третий по-прежнему во многом остается для нас загадкой. Причина, почему я бесконечно твержу о необходимости поставить себя вне времени для того, чтобы узреть всю Вселенную как единую сущность, заключается в том, что нам необходимо отделять понятие о времени как таковом от бытового восприятия времени с точки зрения текущего момента. Наша основная задача сейчас – увязать друг с другом эти две совершенно разные перспективы.

Глава 2. Тяжелая рука энтропии

Есть – тоже довольно неприглядно. …В рот начинает поступать всякая всячина, и после искусной обработки языком и зубами я переправляю результат на тарелку для окончательной рихтовки ножом, вилкой и ложкой. Это, по крайней мере, имеет хоть какой-то терапевтический эффект, если только речь не идет о супе или еще чем-нибудь жидком, – вот уж настоящее наказание. Затем следует утомительная процедура замораживания, разборки и раскладывания по полкам, пока не придет пора отнести эти продукты в «Гастроном», где меня ждет, надо полагать, быстрое и щедрое вознаграждение за труды. Там я таскаюсь по проходам с тележкой или корзинкой, расставляя банки и пакеты по их законным местам.

Мартин Эмис. Стрела времени[18]

Забудьте о космических кораблях, пусковых установках и стычках с внеземными цивилизациями. Если вам нужна леденящая душу история, по-настоящему создающая впечатление пребывания в чужеродной среде, то вы должны повернуть время вспять.

Конечно, можно было бы взять обычный сюжет и рассказать его наоборот: он заключения к началу. Этот литературный прием известен под названием «обратной хронологии» и далеко не нов: еще Вергилий применял его в своей «Энеиде». Однако для того чтобы грубо вытряхнуть читателей из уютного гамака привычного представления о времени, ваши герои должны во всей красе продемонстрировать, что такое «жить назад». Причина дискомфорта, вызываемого подобными описаниями, заключается в том, что все мы – реальные люди – испытываем течение времени одинаково благодаря непрерывному увеличению энтропии во Вселенной. Увеличение энтропии и определяет стрелу времени.

В Зазеркалье

Френсис Скотт Фицджеральд в своей «Загадочной истории Бенджамина Баттона», по которой не так давно сняли фильм с Брэдом Питтом в главной роли, рассказывает о жизни человека, родившегося стариком и с течением времени теряющего годы. В клинике, где Бенджамин появляется на свет, нянечки вполне предсказуемо впадают в страшное недоумение.

Перед ним, запеленутый в огромное белое одеяло и кое-как втиснутый нижней частью туловища в колыбель, сидел старик, которому, вне сомнения, было под семьдесят. Его редкие волосы были седыми, длинная грязно-серая борода нелепо колыхалась под легким ветерком, тянувшим из окна. Он посмотрел на мистера Баттона тусклыми бесцветными глазами, в которых мелькнуло недоумение.

– В уме ли я? – рявкнул мистер Баттон, чей ужас внезапно сменился яростью. – Или у вас в клинике принято так подло шутить над людьми?

– Нам не до шуток, – сурово ответила сестра. – Не знаю, в уме вы или нет, но это ваш сын, можете не сомневаться.

Холодный пот снова выступил на лбу Баттона. Он зажмурился, помедлил и открыл глаза. Сомнений не оставалось: перед ним был семидесятилетний старик, семидесятилетний младенец, чьи длинные ноги свисали из колыбели.[19]

В рассказе нет упоминаний о том, как чувствовала себя при этом бедная миссис Баттон (хорошо, что хотя бы в киноверсии новорожденный Бенджамин размером с обычного младенца, пусть даже старого и покрытого морщинами).

Вследствие очевидной экстравагантности самой идеи течение времени в обратную сторону используется для создания комического эффекта. Алиса Льюиса Кэрролла, оказавшись в Зазеркалье, встречается с Белой Королевой и изумляется – оказывается, эта женщина умудряется жить одновременно вперед и назад во времени. Королева вдруг начинает вопить от боли и размахивать пальцем:

Алиса тут же спросила:

– Что случилось?

– Сейчас, сейчас случится! – снова завела Королева. – Я уколю палец булавкой, ой-ой-ой!

– И скоро вы собираетесь уколоться? – насмешливо спросила Алиса.

– Совсем скоро, – стонала Королева. – Начну прикалывать шаль булавкой и уколю-ууу! – заныла она.

И в это мгновение булавка расстегнулась, Королева протянула к ней руку, и…

– Осторожно! – крикнула Алиса. – Вы уколетесь!

Но было поздно – булавка впилась в палец.[20]

Кэрролл (не родственник[21]) играет на основополагающей характеристике времени – том факте, что причина всегда предшествует следствию. Описанная сценка заставляет нас улыбнуться, но в то же время служит напоминанием о том, какую важную роль стрела времени играет в формировании мироощущения.

Текущее вспять время может создавать не только комедийную картину, но и весьма трагичную. Роман Мартина Эмиса «Стрела времени» – классический пример описания жизни «в обратную сторону», даже с учетом того, что ассортимент произведений в данном стиле невелик.[22] Повествование идет от имени бестелесного создания, живущего внутри другого человека, Одило Унфердорбена. Хозяин тела проживает жизнь в привычном нам понимании – вперед во времени, однако для фантомного повествователя время течет в обратную сторону. Его первое воспоминание связано со смертью Унфердорбена. У него нет никакой власти над Унфердорбеном, и он не в состоянии контролировать его действия или обращаться к его воспоминаниям. Он всего лишь пассивно проживает жизнь в обратном порядке. В начале романа Унфердорбен предстает перед нами в роли врача, и на рассказчика его работа оказывает самое отталкивающее впечатление: пациенты забредают в пункт первой помощи, где сотрудники высасывают лекарства из их тел, срывают бинты и отправляют несчастных людей в ночь истекающими кровью и кричащими от боли. Однако ближе к концу книги мы узнаем, что Унфердорбен был ассистентом врача в Освенциме и занимался тем, что создавал жизнь из ничего, превращая химические вещества, электричество и мертвые тела в живых людей. Только теперь, думает рассказчик, все наконец-то встает на свои места.

Стрела времени

Существует веская причина, почему изменение относительного направления движения времени на обратное – такой эффективный художественный инструмент: в реальном, не воображаемом мире подобное, в принципе, невозможно. У времени есть направление, и направление времени одинаково для всех. Никому из нас не доводилось встречаться с персонажами, подобными Белой Королеве, которые помнят о том, что мы воспринимаем как «будущее», в противоположность (или в дополнение) к «прошлому».

Однако что же мы в действительности имеем в виду, когда говорим, что у времени есть направление, что стрела времени указывает из прошлого в будущее? Представьте себе воспроизведение фильма в обратную сторону. В целом довольно быстро становится понятно, что предстающее перед нами зрелище движется «не в ту сторону». Возьмем классический пример: ныряльщик в бассейне. Если после того, как человек нырнул, мы видим столб брызг и волны, расходящиеся по воде, значит, все нормально. Но если мы видим, что в бассейне внезапно появляются волны, а потом столб брызг выталкивает ныряльщика из толщи воды на трамплин, после чего волны сразу же успокаиваются, то нам становится понятно: видеозапись воспроизводится задом наперед.

Определенные события в реальном мире всегда происходят в одном и том же порядке. Порядок неизменен: нырок – всплеск – волны. Никогда мы не наблюдаем обратного процесса: волны – всплеск – выталкивание ныряльщика в воздух. Мы можем взять молоко и добавить его в чашку черного кофе; но невозможно взять кофе с молоком и разделить две жидкости. Подобные последовательности действий называются необратимыми процессами. Нам никто не мешает фантазировать о том, как такие процессы выглядели бы, поверни мы их вспять, но если нам вдруг действительно приведется увидеть что-то подобное, мы сразу же заподозрим в них кинематографические трюки и точно не воспримем их как достоверное отражение реальности.

Необратимые процессы – это самая суть стрелы времени. Одни последовательности событий возможны, другие нет. Важно также, что порядок событий – насколько мы можем судить об этом – един во всей наблюдаемой Вселенной. Возможно, когда-нибудь в какой-нибудь далекой солнечной системе мы найдем планету, населенную разумными существами, но мы не ожидаем, что для них будет обычным делом взять и разделить молоко и кофе (или их туземные аналоги) несколькими небрежными взмахами ложкой. Почему это нас не удивляет? Вселенная огромна; почему бы событиям не происходить в разных ее частях в разных последовательностях? Однако это невозможно. Для определенных типов процессов – грубо говоря, сложных действий, включающих множество индивидуальных движущихся частей, – существует некий допустимый порядок, каким-то образом встроенный в саму ткань бытия.

Стрела времени – центральная формирующая метафора пьесы Тома Стоппарда «Аркадия». Вот как Томасина, юное дарование, намного опередившее свое время, объясняет это понятие своему учителю:

Томасина. Септимус, представь, ты кладешь в рисовый пудинг ложку варенья и размешиваешь. Получаются такие розовые спирали, как след от метеора в атласе по астрономии. Но если помешать в обратном направлении, снова в варенье они не превратятся. Пудингу совершенно все равно, в какую сторону ты крутишь, он розовеет и розовеет – как ни в чем не бывало. Правда, странно?

Септимус. Ничуть.

Томасина. А по-моему, странно. РАЗмешать не значит РАЗделить. Наоборот, все смешивается.

Септимус. Так же и время – вспять его не повернуть. А коли так – надо двигаться вперед и вперед, смешивать и смешиваться, превращая старый хаос в новый, снова и снова, и так без конца. Чтобы пудинг стал абсолютно, неоспоримо и безвозвратно розовым. Вот и весь сказ. Это называют свободой воли или самоопределением.[23]

Таким образом, стрела времени в нашей Вселенной существует, и от этого никуда не деться. Возможно даже, что это основополагающая характеристика нашей Вселенной; тот факт, что вещи случаются в таком порядке, как мы привыкли их видеть, но не в обратном, неразрывно связан с тем, как мы привыкли жить в нашем мире. И все же, почему так? Почему мы живем во Вселенной, где X часто случается после Y, но Y никогда не происходит вслед за X?

Ответ лежит в концепции «энтропии», о которой я упоминал выше. Так же как энергия и температура, энтропия сообщает нам что-то о текущем состоянии физической системы, и в частности позволяет оценить, насколько система беспорядочна. У пачки аккуратно сложенных один на другой листов бумаги низкая энтропия; у той же пачки бумаги, хаотично разбросанной по столу, энтропия высокая. Энтропия чашки кофе, рядом с которой мы держим ложку молока, низкая, так как в данной системе существует четкое упорядоченное разделение молекул на «молоко» и «кофе». После смешивания энтропия этих двух жидкостей становится относительно высокой. Все необратимые процессы, позволяющие говорить о существовании стрелы времени, – мы можем превратить яйца в омлет, но невозможно собрать омлет обратно в яйца; духи распыляются по помещению, но не втягиваются обратно во флакон; кубики льда тают в воде, но в чашках с теплой водой не происходит спонтанного формирования кубиков льда, – обладают одним общим свойством: энтропия в них увеличивается, то есть система переходит из упорядоченного состояния в беспорядочное. Всякий раз, когда мы осмеливаемся побеспокоить Вселенную, мы увеличиваем ее энтропию.

Одной из основных задач этой книги является объяснение, как такое понятие, как энтропия, связывает в единое целое такой разнородный набор явлений. После этого мы углубимся в выяснение того, что же такое эта самая «энтропия» и почему она непрерывно увеличивается. Наша конечная цель – задать себе фундаментальный вопрос, стоящий перед современной физикой: почему в прошлом энтропия была так низка, что способна с тех пор постоянно увеличиваться?

Будущее и прошлое как верх и низ

Однако в первую очередь нам следует поразмышлять над более глобальным вопросом: действительно ли стоит удивляться тому, что определенные вещи происходят во времени в одном направлении, но не в противоположном? Кто вообще сказал, что порядок следования событий должен быть неизменным?

Давайте думать о времени как о некоторой метке, отмечающей события по мере того, как они происходят. В этом отношении время подобно пространству – они оба помогают нам находить вещи во Вселенной. Но между временем и пространством существует коренное различие: по своей природе все направления в пространстве равноправны, тогда как направления во времени (а именно «прошлое» и «будущее») совершенно непохожи. Здесь, на Земле, очень просто определять направления в пространстве: компас подсказывает, движемся мы на север, на юг, на восток или на запад, и ни у кого не возникает проблем с тем, чтобы сказать, где находится верх, а где низ. Но это не отражение каких-то глубоких базовых законов природы – все дело в том, что мы живем на гигантской планете и определяем различные направления относительно нее. Если бы вы парили в скафандре где-то в открытом космосе, вдалеке от любых планет, то все направления в пространстве были бы неразличимы: не было бы предпочтительных направлений «вверх» и «вниз».

Технически это означает, что законы природы характеризуются симметрией: все направления в пространстве абсолютно равноценны. «Перевернуть направление» в пространстве достаточно просто – сделайте фотографию и напечатайте снимок в зеркальном отражении или же просто-напросто посмотритесь в зеркало. Чаще всего отражение оказывается совершенно непримечательным. Сразу же напрашивается контрпример – письменный текст; в этом случае очень легко определить, смотрим мы на нормальное или на перевернутое изображение. Но для письма, как и для Земли, существует предпочтительное направление (вы читаете строчки в этой книге слева направо). Однако изображения большинства сцен, в которых отсутствуют человеческие творения, выглядят одинаково «естественно» как в исходном представлении, так и в зеркальном отражении.

Попробуем сравнить это со свойствами времени. Эквивалентом зеркального отражения картинки (изменения направления в пространстве на обратное) является «воспроизведение фильма задом наперед» (изменение направления времени на обратное). Во втором случае легко догадаться, что направление времени изменено: необратимые процессы, определяющие стрелу времени, происходят в другую сторону. Каково же происхождение этого коренного различия между пространством и временем? Хотя наличие Земли у нас под ногами определяет «стрелу пространства», указывая на «верх» и «низ», очевидно, что это локальное, ограниченное явление, а не отражение фундаментальных законов природы. Мы можем вообразить себя в космосе, где нет предпочтительных направлений. Однако фундаментальные законы природы не определяют предпочтительное направление и во времени тоже – в этом смысле оно ничем не отличается от пространства. Если мы ограничим наше рассмотрение очень простыми системами всего с несколькими движущимися частями, движение которых отражает базовые законы физики, а не наши запутанные локальные условия, то стрела времени исчезнет: мы не сможем сказать, воспроизводится фильм обычным способом или же его крутят задом наперед. Вспомните люстру Галилео, спокойно покачивающуюся вперед и назад. Если бы вам показали съемку этой люстры, то вы не смогли бы определить, в какую сторону прокручивается кинопленка – движение люстры настолько простое, что совершенно одинаково выглядит в обоих направлениях во времени.


Вечность. В поисках окончательной теории времени

Рис. 2.1. Земля определяет предпочтительное направление в пространстве, а Большой взрыв определяет предпочтительное направление во времени


Таким образом, по крайней мере насколько мы можем об этом судить, существование стрелы времени нельзя считать свойством фундаментальных законов физики. Скорее, аналогично ориентации вверх – вниз в пространстве, определяемой Землей, предпочтительное направление времени также иллюстрирует характеристики нашего окружения. Если речь идет о времени, то мы говорим не о пространственной близости к какому-то влиятельному объекту – нет, в этом случае важнейшую роль играет временна́я близость к влиятельному событию: зарождению Вселенной. Источник нашей обозримой Вселенной – горячее и плотное состояние, известное под названием Большой взрыв, – обладал крайне низкой энтропией. Влияние этого события ориентирует нас во времени, точно так же, как присутствие Земли ориентирует нас в пространстве.

Самый надежный закон природы

Принцип, определяющий существование необратимых процессов, сформулирован во втором начале термодинамики:

Энтропия изолированной системы либо остается постоянной, либо со временем увеличивается.

(Первое начало утверждает, что полная энергия остается постоянной.[24]) Многие считают второе начало самым надежным среди всех открытых человечеством физических законов. Если бы вас попросили спрогнозировать, какой из принятых в настоящее время физических принципов останется в силе и через тысячу лет, то вы с уверенностью могли бы поставить на второе начало термодинамики. Сэр Артур Эддингтон, ведущий астрофизик начала XX века, высказался об этом довольно категорично:

Если кто-то скажет, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла (законами, описывающими электричество и магнетизм), – тем хуже для уравнений Максвелла. Если обнаружится, что ее опровергают наблюдаемые явления, – ну что тут скажешь, эти экспериментаторы нередко запарывают свою работу. Но если ваша теория противоречит второму началу термодинамики, я не думаю, что у нее есть хоть какие-то шансы; ей остается лишь исчезнуть, потерпев унизительное поражение.[25]

Чарльз Перси Сноу, британский интеллектуал, физик и романист, вероятно, наиболее известен благодаря широкой пропаганде собственного убеждения, что «две культуры» естественных и гуманитарных наук отдалились друг от друга, но обе они должны быть частями нашего общего цивилизованного мира. Когда его спросили, какой основополагающий научный факт должен быть известен любому образованному человеку, он тоже выбрал второе начало термодинамики:

Множество раз мне приходилось бывать в обществе людей, которые по нормам традиционной культуры считаются высокообразованными. Обычно они с большим пылом возмущаются литературной безграмотностью ученых. Как-то раз я не выдержал и спросил, кто из них может объяснить, что такое второе начало термодинамики. Ответом было молчание или отказ. А ведь задать этот вопрос ученому значит примерно то же самое, что спросить у писателя: «Читали ли вы Шекспира?»[26]

Уверен, барон Сноу пользовался успехом на коктейльных вечеринках в Кембридже. (Справедливости ради замечу, что позднее он сам признался в том, что даже физики не до конца понимают второе начало термодинамики.)

Наше современное определение энтропии было предложено австрийским физиком Людвигом Больцманом в 1877 году. Однако понятие энтропии и ее использование во втором начале термодинамики отсылает нас к немецкому физику Рудольфу Клаузиусу в 1865 год. А само второе начало было сформулировано еще раньше – французским военным инженером Николя Леонаром Сади Карно в 1824 году. Но как Клаузиус умудрился использовать энтропию во втором начале, не зная определения, и как Карно сумел сформулировать второе начало, вообще не используя понятие энтропии?

Девятнадцатый век был выдающейся эпохой в истории развития термодинамики – учении о теплоте и ее свойствах. Пионеры термодинамики изучали взаимодействие температуры, давления, объема и энергии между собой. Их интерес ни в коем случае не был абстрактным – дело происходило при зарождении промышленной эры, и в немалой степени этих ученых вдохновляло желание построить лучшие паровые двигатели.

Сегодня ученые понимают, что теплота – это форма энергии и что температура объекта представляет собой всего лишь меру средней кинетической энергии (энергии движения) атомов объекта. Однако в XIX веке ученые не верили в атомы, и они не очень хорошо понимали, что такое энергия. Карно, чью гордость ранил тот факт, что технология паровых двигателей англичан намного превосходила то, что могли предложить французы, поставил себе целью понять, насколько эффективным может быть такой двигатель: сколько полезной работы он может произвести, сжигая определенный объем топлива. Он доказал, что у этой эффективности есть фундаментальный предел. Сделав интеллектуальный скачок от реальных машин к идеализированным «паровым двигателям», Карно продемонстрировал, что существует наилучший двигатель, умеющий производить больше всего работы на определенном количестве топлива, функционируя при определенной температуре. Его главной идеей, что неудивительно, стала минимизация потерь тепла. Для нас тепло полезно, оно обогревает наши дома в холодную зиму, однако оно не помогает выполнять то, что физики называют «работой», – перемещать что-нибудь вроде клапана или маховика с место на место. Карно понял, что даже самый эффективный из реально возможных двигателей все равно не будет идеальным; какое-то количество энергии будет теряться во время работы. Другими словами, работа парового двигателя – это необратимый процесс.

Таким образом, Карно осознал, что двигатели совершали что-то, что невозможно было отменить. И уже Клаузиус в 1850 году понял, что данный факт отражает закон природы. Он сформулировал свой закон так: «Теплота не может спонтанно начать течь от холодных тел к теплым». Наполните воздушный шар горячей водой и погрузите его в холодную воду. Каждый знает, что температуры начнут выравниваться: вода в воздушном шаре будет остывать, а вода в емкости, куда его погрузили, станет нагреваться. Противоположный процесс невозможен. Физическая система стремится к достижению равновесия – состоянию покоя, которое максимально однородно, а температуры всех его составляющих одинаковы. Благодаря этой догадке Клаузиус сумел заново получить те же результаты Карно для паровых двигателей.

Так каким же образом закон Клаузиуса (теплота не течет спонтанно от холодных тел к горячим) связан со вторым началом термодинамики (энтропия не уменьшается спонтанно)? Ответ прост: это один и тот же закон. В 1865 году Клаузиус переформулировал свой исходный принцип, используя новую величину, которой он дал название «энтропия». Рассмотрим постепенно остывающий объект, то есть объект, передающий тепло в окружающую среду. В каждый момент этого процесса возьмем количество потерянной теплоты и разделим на температуру объекта. Энтропия – это накопленное значение этой величины (количества теплоты, поделенного на температуру тела) за весь период действия процесса. Клаузиус доказал, что стремление теплоты покидать горячие объекты и перетекать к холодным в точности эквивалентно заявлению о том, что энтропия замкнутой системы может только увеличиваться и никогда не уменьшается. Состояние равновесия – это всего лишь такое состояние, в котором энтропия достигла максимального значения и ей некуда больше деваться; у всех соприкасающихся объектов одинаковая температура.

Если предыдущее объяснение вам кажется несколько абстрактным, то энтропию можно описать и гораздо более простыми словами: энтропия измеряет бесполезность определенного количества энергии.[27] У галлона бензина есть энергия, и она полезна, – мы можем заставить ее работать. Процесс сжигания бензина для обеспечения работы двигателя не меняет полную энергию; если тщательно отслеживать все происходящее, то будет понятно, что энергия остается постоянной.[28] Однако с течением времени эта энергия становится все более бесполезной. Она превращается в теплоту и шум, а также в движение транспортного средства, на котором установлен двигатель, и даже это движение в конечном счете замедляется из-за трения. Пока энергия превращается из полезной в бесполезную, энтропия увеличивается.

Второе начало термодинамики не подразумевает, что энтропия системы никогда не может уменьшаться. Например, мы могли бы изобрести машину, которая отделяла бы молоко от кофе. Но хитрость в том, что уменьшить энтропию одной вещи можно, лишь увеличив энтропию вокруг нее. У нас, людей, и у машин, которые мы могли бы применять для разделения молока и кофе, у еды и топлива, которые мы потребляем, – у всего этого есть энтропия, которая неизменно будет увеличиваться. Физики проводят различие между открытыми системами – объектами, которые взаимодействуют с внешним миром, обмениваясь энтропией и энергией, – и замкнутыми системами – объектами, которые, по сути, изолированы от внешнего влияния. В открытой системе, такой как кофе с молоком, которые мы помещаем в нашу машину, энтропия, несомненно, может уменьшиться. Однако в замкнутой системе, скажем, включающей кофе с молоком, а также машину, оператора машины, топливо и т. д., – энтропия всегда будет увеличиваться или, в крайнем случае, оставаться постоянной.

Возвышение атомов

Великолепные догадки Карно, Клаузиуса и их коллег о сути термодинамических явлений лежат все же в области «феноменологических» размышлений. Эти ученые видели общую картину, но не понимали механизмов, которыми она управляется. В частности, они не знали о существовании атомов, поэтому не могли рассматривать температуру, энергию и энтропию как свойства микроскопической среды; они мыслили о них как о реальных объектах, которые существуют сами по себе. В те дни, в частности, довольно распространено было представление об энергии как о некой жидкости, умеющей перетекать из одного тела в другое. У этой «энергии-жидкости» даже было свое название: «теплород». И такого уровня понимания было совершенно достаточно для формулировки законов термодинамики.

Однако в ходе XIX века физики постепенно убеждались, что многие виды материи, с которыми мы имеем дело в реальном мире, можно рассматривать как различные конфигурации фиксированного числа одних и тех же элементарных составляющих – атомов (на самом деле в вопросе принятия атомной теории физиков в то время опережали химики). Это не новая идея, о ней упоминал еще Демокрит и другие мыслители античной Греции, но именно в XIX веке она завоевала популярность и начала развиваться по одной простой причине: только существование атомов могло объяснить многие наблюдаемые свойства химических реакций, которые до этого приходилось принимать как данность. Ученым нравится, когда одна простая идея способна объяснить широкий диапазон наблюдаемых явлений.

Сегодня роль демокритовых атомов играют элементарные частицы, такие как кварки и лептоны, однако идея остается неизменной. То, что современный ученый называет атомом, – это самая маленькая частица материи, которая может выступать как отдельный химический элемент, такой как углерод или азот. Но теперь мы понимаем, что атомы – не неделимые частицы; они состоят из электронов, вращающихся вокруг атомного ядра, а ядро состоит из протонов и нейтронов, которые, в свою очередь, представляют собой различные комбинации кварков. Поиск правил, которым подчиняются эти элементарные строительные кирпичики материи, часто называют «фундаментальной» физикой, хотя более точным (и менее напыщенным) было бы название «элементарная» физика. Впредь я буду использовать термин «атом» в установившемся в XIX веке смысле – как определение химического элемента, а не согласно существовавшему в Древней Греции пониманию об элементарных частицах.

Фундаментальные законы физики обладают одной потрясающей особенностью: несмотря на то что они управляют поведением всей материи во Вселенной, вам не нужно знать их для того, чтобы жить обычной жизнью и справляться с повседневными задачами. Более того, вам было бы чрезвычайно затруднительно обнаружить их всего лишь на основе непосредственного опыта. Так происходит потому, что очень большие наборы частиц подчиняются отдельным, независимым правилам поведения, не привязанным к мелкомасштабным структурам, образующим окружающие нас объекты. Глубинные правила, действующие на эти структуры, называют микроскопическими, или просто фундаментальными, тогда как специальные правила, применимые только к большим системам, – это макроскопические, или эмергентные, правила. Без сомнения, поведение температуры, тепла и т. д. поддается описанию в терминах атомов; это предмет изучения особой дисциплины, называемой статистической механикой. Однако точно так же можно разобраться в поведении этих явлений, не зная об атомах абсолютно ничего. Именно этот феноменологический подход, называемый термодинамикой, мы обсуждаем в этой главе. В физике очень часто случается так, что в сложных макроскопических системах возникают динамические закономерности, являющиеся следствием из микроскопических правил. Несмотря на то что зачастую об этом говорят совсем иначе, никакой конкуренции между фундаментальной физикой и изучением эмергентных явлений нет; это две захватывающие области науки, и развитие обеих принципиально важно для понимания того, как устроен мир вокруг нас.

Одним из первых физиков, поддержавших атомную теорию, был шотландец Джеймс Клерк Максвелл, которому мы также должны быть благодарны за окончательную формулировку современной теории электричества и магнетизма. Максвелл совместно с Больцманом в Австрии (и продолжая работу многих других ученых) использовал идею атомов для объяснения поведения газов в рамках того, что было в то время известно под названием кинетической теории. Максвеллу и Больцману удалось установить, что атомы газа, заключенного в контейнер и содержащегося при определенной температуре, характеризуются определенным распределением скоростей: столько-то атомов двигаются быстро, столько-то медленно и т. д. Конечно же, эти атомы ударяются о стенки контейнера, каждый раз оказывая на нее крошечное воздействие. У суммарного влияния этих крошечных сил есть название: это всего-навсего давление газа. Таким образом, кинетическая теория объяснила свойства газов с помощью более простых правил.

Энтропия и беспорядок

Величайшим триумфом кинетической теории стало ее применение Больцманом для толкования энтропии на микроскопическом уровне. Больцман заметил, что при рассмотрении какой-то макроскопической системы мы не обращаем особого внимания на конкретные свойства каждого отдельного атома. Предположим, перед нами стоит стакан с водой, и кто-то украдкой заменяет несколько молекул воды, не изменяя при этом общие температуру, плотность и другие свойства системы. В таком случае мы не заметим подмены. Множество различных конфигураций атомов неразличимы с нашей, макроскопической точки зрения. Однако также Больцман обратил внимание на то, что объекты с низкой энтропией намного более чувствительны к изменению этих конфигураций. Если вы возьмете яйцо и начнете менять местами кусочки желтка и белка, то очень скоро изменения станут заметны. Системы, обладающие низкой энтропией, гораздо проще изменить путем перестановки атомов, в то время как системы с высокой энтропией устойчивы к подобным воздействиям.

Таким образом, Больцман взял понятие энтропии, которую Клаузиус и другие называли мерилом бесполезности энергии, и переформулировал ее в терминах атомов:

Энтропия – это мера количества индивидуальных микроскопических расстановок атомов, которые для макроскопического наблюдателя неразличимы.[29]


Вечность. В поисках окончательной теории времени

Рис. 2.2. Памятник на могиле Людвига Больцмана на центральном кладбище Вены. Высеченное на могильном камне уравнение:[30] S = k log W – это формула Больцмана, связывающая энтропию с количеством перестановок микроскопических частей системы, которые можно совершить без изменения ее макроскопического состояния (подробнее об этом – в главе 8)


Трудно переоценить важность этой догадки. До Больцмана энтропию рассматривали как феноменологическую термодинамическую величину, которая живет по собственным правилам (например, подчиняется второму началу термодинамики). Благодаря Больцману стало возможно вывести свойства энтропии из более глубоких базовых принципов. В частности, внезапно становится совершенно ясно, почему энтропия увеличивается:

Энтропия изолированной системы увеличивается, потому что существует гораздо больше способов создать высокую энтропию, чем низкую.

По крайней мере, эта формулировка сразу расставляет все по местам. Тем не менее она основана на принципиально важном допущении о том, что вначале у системы энтропия низкая. Если мы возьмем в качестве примера систему с высокой энтропией, то она будет находиться в равновесии – в ней вообще ничего не будет происходить. Слово «вначале» подразумевает асимметрию направлений времени, давая прошлому преимущество перед будущим. Эта цепочка рассуждений отсылает нас в самое начало времен, к низкой энтропии Большого взрыва. По какой-то причине из великого множества способов скомпоновать все составляющие Вселенной в самом начале был выбран только один – Вселенная находилась в особой, исключительной конфигурации с низкой энтропией.

Если отбросить эту оговорку, то не остается сомнений в том, что определение понятия энтропии, предложенное Больцманом, стало огромным скачком вперед в понимании стрелы времени. Однако и у этого скачка была своя цена. До открытий Больцмана второе начало термодинамики не вызывало сомнений – это был безусловный закон природы. Но у определения энтропии в терминах атомов есть важное следствие: энтропия не обязательно возрастает даже в замкнутой системе; она всего лишь с большой вероятностью будет увеличиваться (даже с подавляющей вероятностью, как мы видим, но все же). Предположим, у нас есть контейнер с газом, равномерно распределенным по нему и имеющим состояние с высокой энтропией. Если мы подождем достаточно долго, хаотичное движение атомов в конечном итоге приведет к тому, что все они – всего лишь на мгновение – окажутся вплотную к одной из стенок контейнера. Это называется статистической флуктуацией. Однако если вплотную заняться цифрами, то подсчеты покажут, что время, в течение которого имеет смысл ожидать такого статистического колебания, намного превышает возраст Вселенной. На практике мы вряд ли когда-нибудь застанем подобное событие. Тем не менее оно вероятно.

Некоторым людям это не нравилось. Они хотели, чтобы второе начало термодинамики было совершенно и абсолютно нерушимым, им претил тот факт, что это всего лишь утверждение, которое «истинно большую часть времени». Предположение Больцмана повлекло за собой массу споров и разногласий, однако в наши дни оно общепризнано.

Энтропия и жизнь

Все это очень увлекательно, по крайней мере для физиков. Однако следствия этих идей выходят далеко за пределы паровых двигателей и чашек кофе. Стрела времени заявляет о своем существовании самыми разными способами: наши тела с возрастом меняются, мы помним прошлое, а не будущее, следствие всегда появляется после причины. Оказывается, все эти явления можно отнести на счет второго начала термодинамики. Энтропия в буквальном смысле обеспечивает возможность существования жизни.

Основной источник энергии для жизни на Земле – это солнечный свет. Как объяснил нам Клаузиус, теплота естественным образом переносится от горячего объекта (Солнца) к более холодному (Земле). Однако если бы этим все и заканчивалось, то довольно скоро два объекта пришли бы в состояние равновесия друг относительно друга – достигли бы одинаковой температуры. В действительности так бы и произошло, если бы Солнце занимало все небо, а не было бы для нас небольшим диском с угловым диаметром около одного градуса. Да, в этом случае мы бы увидели очень грустный мир. Он был бы абсолютно непригоден для существования жизни – и не только из-за чрезвычайно высокой температуры, а потому что этот мир был бы статичным. Ничто никогда не менялось бы в мире, достигшем равновесия.

В реальной Вселенной наша планета не нагревается до температуры Солнца, потому что Земля непрерывно теряет тепло, излучая его в окружающее космическое пространство. При этом единственная причина, почему это возможно, как не преминул бы отметить Клаузиус, заключается в том, что космическое пространство намного холоднее Земли.[31] Таким образом, именно благодаря тому, что Солнце – это всего лишь горячее пятно на холодном небе, Земля не нагревается без перерыва, а вместо этого впитывает энергию Солнца, преобразует ее и излучает в космос. В ходе этого процесса, разумеется, энтропия увеличивается; у фиксированного объема энергии в форме солнечного излучения энтропия намного меньше, чем у того же объема энергии в форме излучения Земли.

Этот процесс, в свою очередь, объясняет, почему биосфера Земли – далеко не статичное место.[32] Мы получаем энергию от Солнца, но это не означает, что она нагревает и нагревает нас, пока мы не достигнем равновесия; солнечная энергия – это излучение с очень низкой энтропией, поэтому мы можем использовать ее для своих нужд, а затем высвобождать, уже в форме излучения с высокой энтропией. Все это возможно исключительно потому, что у Вселенной в целом и у Солнечной системы в частности в настоящее время относительно низкая энтропия (а раньше она была еще ниже). Если бы Вселенная была близка к температурному равновесию, в ней не происходили бы никакие процессы.

Ничто хорошее не вечно. Наша Вселенная является таким оживленным местом как раз потому, что энтропии есть куда увеличиваться – до тех пор, пока не будет достигнуто состояние равновесия, в котором все застопорится. Однако и это нельзя считать неизбежным. Возможно, энтропия Вселенной будет возрастать бесконечно. Или, наоборот, в какой-то момент энтропия достигнет максимального значения и остановится. Последний сценарий известен под названием тепловой смерти Вселенной, и предположение о таком конце возникло достаточно давно, в 1850-х годах, наряду с другими поразительными открытиями в термодинамике. Например, Уильям Томсон, лорд Кельвин – британский физик и инженер, сыгравший важную роль в прокладке первого трансатлантического телеграфного кабеля, в моменты рефлексии размышлял о будущем Вселенной:

Если бы Вселенная была конечной и обязана была подчиняться существующим законам, результатом неизбежно стало бы состояние всеобщего успокоения и смерти. Однако невозможно вообразить пределы распространения материи во Вселенной, и в силу этого наука свидетельствует о бесконечном продолжении в бесконечном пространстве процесса трансформации потенциальной энергии в осязаемое движение и, следовательно, в теплоту, но не о существовании одного ограниченного механизма, работающего по инерции, как часы, и останавливающегося навечно.[33]

Здесь лорд Кельвин, можно сказать, предвосхитил будущее, указав на центральный вопрос всех дискуссий подобного рода, к которому мы также будем возвращаться на протяжении всей книги: способность Вселенной расширяться – конечна или бесконечна? Если конечна, то однажды, когда вся полезная энергия будет преобразована в бесполезные формы энергии, обладающие высокой энтропией, Вселенную ждет тепловая смерть. Но если энтропия может увеличиваться бесконечно, мы можем, по крайней мере, предположить возможность бесконечного роста и развития Вселенной в том или ином виде.

В своем знаменитом рассказе «Энтропия» Томас Пинчон заставил своих героев применить уроки термодинамики к социальному окружению.

– Тем не менее, – продолжал Каллисто, – он обнаружил в энтропии, то есть в степени беспорядка, характеризующей замкнутую систему, подходящую метафору для некоторых явлений его собственного мира. Он увидел, например, что молодое поколение взирает на Мэдисон-авеню с той же тоской, какую некогда его собственное приберегало для Уолл-стрит; и в американском «обществе потребления» он обнаружил тенденции ко все тем же изменениям: от наименее вероятного состояния к наиболее вероятному, от дифференциализации к однообразию, от упорядоченной индивидуальности к подобию хаоса. Короче говоря, он обнаружил, что переформулирует предсказания Гиббса в социальных терминах и предвидит тепловую смерть собственной культуры, когда идеи, подобно тепловой энергии, не смогут уже больше передаваться, поскольку энергия всех точек системы в конце концов выровняется, и интеллектуальное движение, таким образом, прекратится навсегда.[34]

До сих пор ученым не удалось подтвердить правоту ни одной из существующих точек зрения; будет ли Вселенная расширяться вечно или однажды она все же успокоится в безмятежном состоянии равновесия – сказать невозможно.

Почему мы не помним будущее?

Итак, стрела времени описывает не только простые механические процессы; это неотъемлемое свойство самой жизни. Кроме того, от стрелы времени зависит важнейшее качество сознания человека – тот факт, что мы помним прошлое, но не будущее. Согласно фундаментальным законам физики, прошлое и будущее абсолютно равнозначны, однако с точки зрения обычного человека, смотрящего на жизнь обычным взглядом, более непохожих вещей не найти. Образы прошлого хранятся у нас в голове в форме воспоминаний. Что же касается будущего, мы можем лишь что-то прогнозировать, однако никакие прогнозы не могут быть настолько же достоверными, как воспоминания о прошлом.

В конечном счете причина, почему у нас в голове формируется надежная память о прошлом, заключается в том, что в прошлом энтропия была ниже. В сложной системе, такой как Вселенная, базовые компоненты могут сложиться в несметное множество конфигураций вида «вы, с определенными воспоминаниями о прошлом, плюс вся остальная Вселенная». Если все, что вам известно, – это то, что вы существуете прямо сейчас и что у вас есть воспоминание о походе на пляж летом между шестым и седьмым классами, то у вас просто-напросто недостаточно информации, чтобы сделать достоверное заключение о том, что тем летом вы действительно ходили на пляж. Гораздо более вероятно, что ваше воспоминание об этом – всего лишь случайная флуктуация, как комната, в которой весь воздух скопился у одной стены. Для того чтобы воспоминания имели смысл, необходимо предположить, что Вселенная также была упорядочена определенным образом – что энтропия была ниже в прошлом.

Представьте, что вы идете по улице и замечаете на тротуаре разбитое яйцо. По виду растекшегося содержимого понятно, что яйцо лежит здесь совсем недолго. Предположение о том, что раньше энтропия была ниже, позволяет нам с уверенностью заявить, что буквально несколько минут назад яйцо было целым, но кто-то уронил его и разбил. Если говорить о будущем, то у нас нет никаких причин предполагать, что энтропия будет уменьшаться, и, таким образом, мы не можем предсказать судьбу этого яйца – слишком уж много вариантов развития событий. Возможно, оно останется на асфальте и покроется плесенью, возможно, кто-то смоет его с тротуара, а может быть, пробежит собака и съест его (маловероятно, что оно вдруг спонтанно пересоберется обратно в неразбитое яйцо, но, строго говоря, и такой исход тоже вероятен). Яйцо на тротуаре – как воспоминание в вашем мозге; это летопись события, случившегося ранее, но лишь в предположении, что и энтропия тогда была ниже.

Успешно отделять прошлое от будущего нам также позволяет связь «причина – следствие». В частности, причины случаются первыми (раньше по времени), а следствия происходят вслед за ними. Именно поэтому Белая Королева кажется нам такой нелепой дамой: как она может кричать от боли еще до того, как уколет палец? И снова виной всему энтропия. Представьте себе ныряльщика, прыгающего в бассейн, – всплеск воды всегда следует за прыжком. Согласно микроскопическим законам физики, можно перегруппировать молекулы воды (а также окружающего воздуха, в котором распространяется звук) таким образом, чтобы произошел «антивсплеск» и вода вытолкнула бы ныряльщика из бассейна. Точность выбора позиции и скорости каждого отдельного атома при этом должна быть невообразимо высокой: если выбрать случайную конфигурацию всплеска, то вероятность того, что микроскопические силы при этом объединятся правильным образом и вытолкнут ныряльщика, будет близка к нулю.

Другими словами, одно из различий между «следствиями» и «причинами» – то, что «следствия» обычно подразумевают увеличение энтропии. Если два бильярдных шара столкнутся и раскатятся в разные стороны, энтропия не изменится и мы не сможем указать ни на один из шаров как на явную причину взаимодействия. Однако если в начале игры вы ударите кием по битку, чтобы разбить пирамиду (и тем самым вызвать заметное увеличение энтропии), то смело сможете сказать, что именно биток заставил шары раскатиться, несмотря на то что перед законами физики все шары равны.

Искусство возможного

В предыдущей главе мы сравнивали блочное представление о времени, в котором вся четырехмерная история мира, прошлое, настоящее и будущее одинаково реальны, с точкой зрения презентистов, что только текущий момент по-настоящему реален. Однако существует еще одна концепция, которую иногда называют поссибилизмом: текущий момент существует, и прошлое существует, но будущее (еще) не существует.

Идея о том, что прошлое существует – в противоположность несуществующему будущему, великолепно согласуется с нашим неформальным пониманием того, что такое время и как оно работает. Прошлое уже произошло, в то время как будущее нам еще предстоит испытать: мы можем прикинуть возможные варианты будущих событий, но не знаем, какой в итоге окажется реальность. Конкретнее, когда мы говорим о прошлом, у нас есть возможность обратиться к собственным воспоминаниям или записям, описывающим прошедшие события. Какие-то записи будут более надежными, какие-то менее, но в целом они фиксируют реальность прошлого в форме, которая для будущего попросту недоступна.

Попробуйте вообразить такую картинку: ваш супруг или супруга говорит: «Давай поменяем планы на отпуск в следующем году? Вместо того чтобы лететь в Канкун, давай бросим все и рванем в Рио!» Вы можете согласиться или не согласиться с этим предложением, но если вы все же решите поменять планы, то стратегия реализации этого решения будет очень простой: вы забронируете новые авиабилеты, закажете номер в другом отеле и т. д. Но если вы услышите: «Давай поменяем планы на отпуск в прошлом году! Как будто мы не ездили в Париж, а бросили все и рванули в Стамбул»? В этом случае ваша стратегия будет совершенно иной: вы подумаете о том, как аккуратно намекнуть на необходимость похода к врачу, а не о том, как изменить уже реализованные отпускные планы. Прошлое прошло, оно осталось в летописях, и не в наших силах изменить его. Таким образом, совершенно логично относиться к прошлому и будущему по-разному. Философы говорят о различии между Бытием – существованием в мире – и Становлением – динамическом процессе изменения, привносящем реальность в существование.

Нигде в известных нам физических законах вы не найдете упоминаний о том, что прошлое и будущее – разные вещи, что прошлое фиксировано, а будущее пластично. Глубинные микроскопические правила природы абсолютно одинаково работают вперед и назад во времени, в какой бы ситуации мы их ни применили. Если вам известно точное состояние Вселенной и все законы физики, то будущее, так же как и прошлое, для вас предрешено строже, чем в самых смелых снах Жана Кальвина о безусловном предопределении.

Попытки увязать между собой всевозможные убеждения, – что прошлое фиксировано и неизменно, будущее может меняться, а фундаментальные законы физики обратимы, – неизменно возвращают нас к понятию энтропии. Если бы мы знали точное состояние каждой частицы во Вселенной, мы могли бы с успехом как предсказывать будущее, так и узнавать прошлое. Однако это нам недоступно; мы располагаем лишь знаниями о некоторых макроскопических характеристиках Вселенной да крохами подробностей о частных состояниях. Обладая такой информацией, мы в состоянии предсказать лишь определенные широкомасштабные явления (солнце завтра взойдет), хотя наши знания также совместимы с огромным диапазоном отдельно взятых будущих событий. Что же касается прошлого, в нашем распоряжении имеется как знание о текущем макроскопическом состоянии Вселенной, так и понимание того факта, что в самом начале Вселенная находилась в состоянии с очень низкой энтропией. Этот крошечный фрагмент информации, называемый просто гипотезой о прошлом, превращается в огромное подспорье в деле реконструкции событий прошлого из настоящего.

Какой вывод мы должны сделать из всего этого? Наша свободная воля – возможность менять будущее путем принятия тех или иных решений, не распространяющаяся на события прошлого, доступна нам только потому, что у прошлого была низкая энтропия, а у будущего энтропия высокая. Будущее выглядит для нас чистой страницей, тогда как прошлое зафиксировано, несмотря на то что законы физики описывают их одинаково.

Поскольку мы живем во Вселенной с четко обозначенной стрелой времени, мы смотрим на прошлое и будущее по-разному не только с практической, повседневной точки зрения – в наших глазах эти вещи фундаментально отличаются. Прошлое записано в книгах, а на будущее мы можем повлиять своими действиями. Для космологии же наибольшее значение имеет то, что люди склонны объединять два направления исследований – «объяснение истории Вселенной» и «объяснение состояния Вселенной в начале времен», а будущее пусть само с собой разбирается. Наше неравноценное отношение к прошлому и будущему можно назвать временным шовинизмом; он крепко вжился в наш образ мыслей, и его крайне непросто искоренить. Однако законы природы никоим образом не поддерживают и не оправдывают ни временной, ни другие виды шовинизма. Размышляя о важных свойствах Вселенной, выясняя, что «реально», а что нет и почему в самом начале у Вселенной была низкая энтропия, нельзя ограничивать широту суждений, помещая прошлое и будущее по разные стороны баррикад. Объяснения, которые мы так стремимся найти, в конечном итоге никоим образом не должны зависеть от направления времени.

Главный урок, который мы должны извлечь из этого краткого экскурса в понятия энтропии и стрелы времени, прост: существование стрелы времени – одновременно важнейшая характеристика физической Вселенной и всепроникающая составляющая нашей повседневной жизни. Если честно, то даже неловко, что, несмотря на огромнейший прогресс, достигнутый современной физикой и космологией, мы все еще не получили окончательного ответа на вопрос, почему же Вселенная демонстрирует такую принципиальную асимметрию времени. Лично я нахожусь в замешательстве, но, так или иначе, любые трудности открывают новые возможности, и, размышляя об энтропии, мы можем узнать что-то новое о нашей Вселенной.

Глава 3. Начало и конец времени

Какое тебе дело до Вселенной? Ты в Бруклине! Бруклин не расширяется!

Мама Элви Сингера. Энни Холл

Представьте себе, что вы бродите по книжному магазину ближайшего университета и зашли в раздел учебной литературы. Подойдя к полке, на которой выставлены книги по физике, вы решаете пролистать несколько томов по термодинамике и статистической механике. Вам интересно: что же там говорится об энтропии и стреле времени? К вашему безмерному удивлению (а вы ведь уже ознакомились с первыми двумя главами этой книги и краткой аннотацией на обложке), в учебниках нет ни слова о космологии. В них не упоминается Большой взрыв и не рассказывается о том, что концепция стрелы времени объясняется граничным условием, существовавшим в начале обозримой Вселенной, – ее крайне низкой энтропией.

На самом деле здесь нет никакого замалчивания важнейшей роли космологии, никаких тайных заговоров и никакого противоречия. Студентов, изучающих статистическую механику, в основном интересуют эксперименты, воспроизводимые в лабораториях или на кухнях здесь, на Земле. Проводя эксперимент, мы сами контролируем его условия; в частности, мы можем понизить энтропию изучаемых систем и посмотреть, что произойдет. Для того чтобы понять, как это работает, не нужно знать ничего о космологии и огромной Вселенной вокруг нас.

Однако наши цели куда грандиознее. Стрела времени – это намного больше, чем просто один из элементов каких-то конкретных лабораторных опытов; это неотъемлемая составляющая нашего мира. Традиционная статистическая механика успешно объясняет, почему яйцо легко превратить в яичницу, но яичницу превратить обратно в яйцо практически невозможно. Что она не в состоянии объяснить, так это почему, открывая холодильник, мы, в принципе, можем там обнаружить яйцо. Почему мы окружены идеально упорядоченными, законченными объектами, такими как яйца, и пианино, и научные книги, а не бесформенным хаосом?

Часть ответа на этот вопрос очевидна: объекты, окружающие нас в повседневной жизни, не относятся к замкнутым системам. Очевидно, что яйцо – это не случайная конфигурация атомов, а тщательно сконструированная система, для построения которой требуется определенный набор ресурсов и доступная энергия, не говоря уж о курице. Однако мы могли бы задать аналогичный вопрос относительно Солнечной системы или галактики Млечный Путь. В каждом из этих случаев мы имеем дело с изолированными – с практической точки зрения – системами, энтропия которых тем не менее очень низка – намного ниже, чем могла бы быть.

Ответ, как известно, заключается в том, что Солнечная система не всегда была замкнутой системой; она появилась из межзвездного облака с более низкой, чем у нее, энтропией. А это облако сформировалось в существовавшей ранее галактике, энтропия которой была еще ниже. А эта галактика сформировалась из изначальной плазмы с еще более низкой энтропией. А эта плазма была порождена самой ранней Вселенной, у которой энтропия была самой низкой.

Ранняя Вселенная появилась в результате Большого взрыва. В действительности нам не очень много известно о ранней Вселенной – почему у нее была именно такая конфигурация, а не какая-то другая; это одна из загадок, с которыми мы пытаемся разобраться в этой книге. Однако именно чрезвычайно низкая энтропия ранней Вселенной лежит в корне окончательного объяснения стрелы времени в том виде, в каком она проявляет себя на наших кухнях, в лабораториях и воспоминаниях.

В обычных учебниках по статистической механике вы не найдете обсуждения этой увлекательной истории. Их авторы исходят из предположения, что нас интересуют системы, у которых в исходном состоянии относительно низкая энтропия, и начинают рассуждения с этой точки. Однако нам нужно больше: мы хотим знать, почему на одном конце времени у нашей Вселенной была такая низкая энтропия, породившая и задавшая направление стреле времени. Полагаю, для начала имеет смысл вспомнить, что нам известно о Вселенной в целом и как она развивалась от момента зарождения и до сегодняшнего дня.

Видимая Вселенная

Наша Вселенная расширяется, и она наполнена галактиками, постепенно отдаляющимися друг от друга. Мы напрямую взаимодействуем лишь с небольшой частью Вселенной и в попытке осознать общую картину неизбежно прибегаем к помощи аналогий. Мы сравниваем Вселенную с поверхностью воздушного шарика, на которой нарисованы маленькие точки, представляющие отдельные галактики. Или же мы говорим, что Вселенная похожа на поднимающийся в духовке кекс с изюмом, в котором галактики – это изюминки.

Все эти аналогии просто ужасны. И не только потому, что как-то унизительно сравнивать нечто настолько величественное, как галактика, с крошечной сморщенной изюминкой. Настоящая проблема заключается в том, что любая подобная аналогия вызывает ассоциации, не применимые к реальной Вселенной. У воздушного шарика, например, есть внутренняя и внешняя поверхности, а также большое пространство снаружи, в которое он, собственно, и расширяется; у Вселенной ничего этого нет. У кекса есть края, а сам он находится внутри духовки и вкусно пахнет; для Вселенной вы не найдете аналогичных понятий.

Поэтому давайте попробуем зайти с другой стороны. Для того чтобы понять Вселенную вокруг нас, представим себе реальную ситуацию. Вообразите, что вы находитесь на природе в ясную безоблачную ночь и городских огней не заметно даже на горизонте. Что вы увидите, если взглянете на небо? В целях этого мысленного эксперимента давайте наградим себя идеальным зрением, бесконечно чувствительным ко всем разнообразным формам электромагнитного излучения.

Разумеется, вы увидите звезды. Для невооруженного глаза звезды – всего лишь точечные источники света, однако человечество уже давно выяснило, что каждая звезда – это огромный шар плазмы, сияющий за счет энергии внутренних ядерных реакций, и что Солнце – тоже самая настоящая звезда. Наша единственная проблема заключается в отсутствии ощущения глубины: невозможно сказать, насколько далеко от нас находится каждая из видимых звезд. Тем не менее астрономы изобрели хитрые способы измерения расстояния до близлежащих звезд, и оказалось, что нас разделяют просто невообразимые дистанции. Расстояние до ближайшей звезды, Проксима Центавра, составляет около 40 триллионов километров; даже путешествуя со скоростью света, мы добрались бы до нее примерно через четыре года.

Звезды распределены по небу неравномерно. Находясь на улице в нашу гипотетическую ясную ночь, мы обязательно заметили бы Млечный Путь – размытую белую полосу, протянувшуюся от горизонта до горизонта. В действительности то, что мы видим, – это не сплошная полоса, а множество близко расположенных звезд. Еще древние греки подозревали о таком устройстве Млечного Пути, а Галилео подтвердил их догадку, когда направил на небеса свой телескоп. Сегодня нам известно, что Млечный Путь – это гигантская спиральная галактика, сотни миллиардов звезд, формирующие диск с утолщением в центре. Наша Солнечная система находится в далекой провинции на самом краю диска.

Долгое время астрономы полагали, что «галактика» и «вселенная» – это одно и то же. Бытовало мнение, что Млечный Путь представляет собой изолированную группу звезд, парящую в пространстве, где кроме нее ничего больше нет. Однако сегодня мы знаем, что, помимо точечных звезд, на ночном небе также есть расплывчатые пятна, называемые туманностями; кто-то считал их отдельными гигантскими собраниями звезд. В начале XX века между астрономами разгорелись нешуточные споры на эту тему,[35] однако в конце концов Эдвин Хаббл сумел измерить расстояние до туманности М33 (тридцать третий объект в каталоге расплывчатых небесных объектов Шарля Мессье, предназначенном в помощь искателям комет) и обнаружил, что она гораздо дальше от нас, чем любая звезда. Оказалось, что М33, Галактика Треугольника – это группа звезд, по размеру сопоставимая с галактикой Млечный Путь.

Дальнейшие исследования показали, что Вселенная буквально кишит галактиками. Как сотни миллиардов звезд составляют Млечный Путь, так и обозримую Вселенную составляют сотни миллиардов галактик. Некоторые галактики (включая нашу) входят в скопления, или кластеры, которые в свою очередь образуют пласты и нити еще более крупномасштабной структуры. В среднем, однако, галактики распределены по пространству достаточно равномерно. В каком бы направлении мы ни смотрели, на любом расстоянии от Земли число галактик будет примерно одинаковым. В обозримой Вселенной везде все достаточно однообразно.

Большая и всё больше


Вечность. В поисках окончательной теории времени

Рис. 3.1. Эдвин Хаббл, исследователь Вселенной, курящий трубку


Несомненно, Хаббл был одним из величайших астрономов в истории, но так получилось, потому что он оказался в правильном месте в правильное время. После окончания колледжа он некоторое время искал себя: был стипендиатом Родса, работал преподавателем, юристом, побывал в качестве солдата на Первой мировой войне и даже тренировал бейсбольную команду. Однако в конечном итоге он стал астрономом, получил в 1917 году степень доктора наук в Университете Чикаго и переехал в Калифорнию, чтобы занять должность в обсерватории Маунт-Вилсон недалеко от Лос-Анджелеса. По прибытии он обнаружил там новенький телескоп Хукера со 100-дюймовым зеркалом, самым большим в мире на тот момент. Именно благодаря этому 100-дюймовому рефлектору Хаббл получил возможность наблюдать разнообразные звезды в других галактиках и узнал, какие огромные расстояния отделяют их от Млечного Пути.

Тем временем другие астрономы во главе с Весто Слайфером занимались определением скорости спиральных туманностей, используя эффект Доплера.[36] Если объект по отношению к нам находится в движении, то когда он приближается, любая излучаемая им волна (например, световая или звуковая) сжимается, а если он движется прочь, то растягивается. Когда объект приближается к нам, вследствие эффекта Доплера тон издаваемых им звуков кажется выше, а когда он отдаляется, тон понижается. Аналогичным образом свет от движущихся к нам объектов оказывается синее (длина волны меньше), чем можно было бы ожидать, а свет от удаляющихся объектов – краснее (длина волны больше). Таким образом, для приближающихся объектов наблюдается синее смещение, а для удаляющихся – красное.

Слайфер обнаружил, что для абсолютного большинства туманностей наблюдается красное смещение. Такое открытие стало неожиданностью, ведь если бы эти объекты случайным образом двигались во Вселенной, то логично было бы ожидать равного количества туманностей с синим и красным смещением. Если бы туманности были небольшими облаками газа и пыли, мы бы сделали вывод о том, что какой-то неизвестный механизм выталкивает их из нашей галактики. Однако полученный Хабблом результат, о котором стало известно в 1925 году, исключил такую возможность. То, что мы наблюдаем, – это группа галактик, по размеру сравнимых с нашей, и все они убегают от нас, словно их что-то напугало.

Следующее открытие Хаббла расставило все по своим местам. В 1929 году он совместно со своим коллегой Милтоном Хьюмасоном сравнил красные смещения галактик с измеренным расстоянием до них и обнаружил поразительную закономерность: чем дальше находились галактики, тем быстрее они удалялись. Сегодня этот факт известен под названием закона Хаббла: кажущаяся скорость удаления галактики прямо пропорциональна расстоянию до нее, а коэффициент пропорциональности носит название постоянной Хаббла.[37]

Казалось бы, такой простой факт: чем дальше друг от друга вещи находятся, тем быстрее они разбегаются, но он скрывает важнейшее последствие: у нас нет никаких оснований считать себя центром исполинской космической миграции. У вас может возникнуть впечатление, что мы особенные и что все эти галактики убегают именно от нас. Однако попробуйте поставить себя на место инопланетного астронома, живущего в одной из других галактик. Если он посмотрит на нас, то, разумеется, увидит, что Млечный Путь убегает прочь от его галактики. А если он посмотрит на небо в противоположном направлении, то увидит другие галактики, и они тоже будут удаляться, потому что с нашей точки зрения эти более далекие галактики движутся еще быстрее. Это потрясающее свойство Вселенной, в которой мы живем. Не существует никакого специального места или центральной точки, от которой всё разбегается в стороны. Каждая галактика отдаляется от всех остальных галактик, и относительно каждой из них поведение остальных объектов Вселенной одинаково. Словно галактики вообще не двигаются, а расширяется лишь пространство, разделяющее прикованные к своим местам галактики.

Это, собственно, и происходит с современной точки зрения. В полном соответствии с общей теорией относительности Эйнштейна мы говорим, что пространство – это не абсолютно фиксированная сцена, на которой развертывается действие – происходит движение материи, а что это еще одна динамическая сущность, живущая собственной и весьма насыщенной жизнью. Утверждая, что пространство расширяется, мы имеем в виду, что между галактиками возникает все больше и больше нового пространства. Сами галактики не расширяются, и вы не расширяетесь, и отдельные атомы тоже не расширяются; все, что сохраняет форму благодаря неким локальным силам, остается одного и того же размера даже в расширяющейся Вселенной (хотя, возможно, вы как раз расширяетесь, но Вселенную в этом винить нельзя). Световая волна, которую не удерживают в неизменной жесткой форме никакие силы, будет растягиваться, испытывая космологическое красное смещение. И разумеется, галактики, находящиеся друг от друга достаточно далеко, чтобы на них не действовало взаимное гравитационное притяжение, также будут отдаляться.

Это – величественная и интригующая картина Вселенной. Последующие наблюдения подтвердили идею о том, что на очень больших масштабах Вселенная однородна: куда ни посмотри, везде более или менее одно и то же. Очевидно, что в более мелком масштабе она все же «комковатая» (вот галактика, а вот тут рядом с ней пустое пространство), но если рассматривать достаточно большие объемы пространства, то число галактик и количество вещества всегда будут примерно одинаковыми, и неважно, в каком месте Вселенной вы будете производить замеры. При этом она постепенно становится все больше, и примерно через 14 миллиардов лет любая отдаленная галактика из тех, что мы наблюдаем сейчас, окажется вдвое дальше.

Мы обнаруживаем себя посреди довольно гладкого распределения галактик, пространство между которыми расширяется, заставляя галактики отдаляться друг от друга.[38] Но если Вселенная расширяется, то куда она расширяется? Никуда. Мы говорим о Вселенной, поэтому нет нужды придумывать новые понятия в попытке осознать, куда именно она расширяется. Это Вселенная! Она не должна быть ни во что вложена, возможно, кроме нее вообще ничего не существует. Мы не привыкли мыслить подобным образом, потому что все объекты, с которыми мы сталкиваемся в повседневной жизни, находятся в пространстве. Однако Вселенная – это и есть пространство, так что нет никакой причины полагать, что «снаружи» может быть еще что-то.

Аналогично, у Вселенной вовсе не обязательно где-то должен быть край – она может простираться в космос на бесконечное расстояние. Или, если уж на то пошло, она может быть конечной и замыкаться на саму себя, как поверхность сферы. Есть все основания полагать, что непосредственные наблюдения никогда не позволят нам узнать истину. Скорость света конечна (один световой год в год, или 300 000 километров в секунду), и с момента Большого взрыва прошло конечное время. Глядя в космос, мы всматриваемся в прошлое. Так как Большой взрыв случился около 14 миллиардов лет тому назад, существует абсолютный предел того, насколько далеко назад нам удастся взглянуть.[39] И что же мы видим? Относительно однородный набор галактик (в общей сложности около 100 миллиардов штук), неуклонно расширяющийся, в котором галактики стабильно отдаляются друг от друга. Однако за пределами нашей зоны видимости дела могут обстоять совсем по-другому.

Большой взрыв

Вы заметили, что я несколько раз небрежно упомянул некий Большой взрыв. Этот термин из профессионального жаргона физиков уже давно вошел в обыденную речь. Но из всех сложных и запутанных аспектов современной космологии именно с Большим взрывом связано наибольшее число вводящих в заблуждение или попросту недостоверных утверждений, в том числе высказываемых серьезными специалистами по космологии, которые, казалось бы, должны разбираться в этом вопросе лучше всех. Давайте остановимся на мгновение и посмотрим, что же нам в действительности известно, а что нет.

На больших масштабах Вселенная однородна, и она расширяется; пространство, разделяющее галактики, растет. Если предполагать, что число атомов во Вселенной остается неизменным,[40] то с течением времени вещество должно становиться все более разреженным. Тем временем фотоны испытывают красное смещение, увеличивающее их длину волны и понижающее энергию, что означает постепенное понижение температуры Вселенной. Нашу Вселенную ожидает разреженное, холодное и одинокое будущее.

Однако давайте прокрутим пленку назад. Если сейчас Вселенная расширяется и охлаждается, значит, в прошлом она была плотнее и горячее. Вообще говоря (если не учитывать некоторые тонкости, связанные с темной энергией, о которой мы поговорим чуть позже), гравитационная сила заставляет объекты притягиваться друг к другу. Таким образом, ожидается, что мы сможем проэкстраполировать Вселенную назад во времени до более плотного состояния, и эта экстраполяция будет надежной. Другими словами, нет оснований ожидать какого-либо вида «отскока». Вселенная в «обратной перемотке» будет становиться только плотнее. Тогда логично предположить, что через какой-то конечный промежуток времени мы доберемся до момента, когда Вселенная была бесконечно плотной, то есть пребывала в состоянии сингулярности. Именно эту гипотетическую сингулярность мы и называем Большим взрывом.[41]

Обратите внимание на то, что Большой взрыв – это именно момент в истории Вселенной, а не место в пространстве. Точно так же, как в современной Вселенной не существует какой-то особой точки, определяющей центр расширения, вы не найдете и специально обозначенного места «здесь был Большой взрыв». Общая теория относительности утверждает, что размер Вселенной в момент сингулярности мог быть нулевым, а в любой момент после сингулярности – бесконечно большим.

Так что происходило до Большого взрыва? Многие обсуждения современной космологии на этом вопросе начинают буксовать. Вам будут часто встречаться заявления вроде: «До Большого взрыва время и пространство не существовали. Нельзя говорить, что Вселенная появилась в какой-то момент времени, потому что самого времени до тех пор не существовало. Задаваться вопросом, что происходило до Большого взрыва, – то же самое, что спрашивать, что находится к северу от Северного полюса».

Это все звучит весьма основательно и может даже быть правдой. Но может и не быть. Истина в том, что мы этого не знаем. Правила общей теории относительности позволяют сделать однозначный вывод: если во Вселенной существуют начинка определенного типа, значит, в прошлом точно случилась сингулярность. Однако в данном утверждении скрыто внутреннее противоречие. Сингулярность сама по себе должна быть моментом, когда искривление пространства – времени и плотность вещества бесконечны; следовательно, правила общей теории относительности к ней неприменимы. Корректнее было бы говорить, что общая теория относительности предполагает не существование сингулярности, а то, что Вселенная в своем развитии стремится к конфигурации, в которой сама теория относительности теряет смысл. Это представление далеко от идеала; что-то происходит там, где общая теория относительности предполагает сингулярности, но мы не знаем что.

Возможно, общая теория относительности неправильно описывает гравитационные взаимодействия, по крайней мере в контексте самого начала Вселенной. Многие физики предполагают, что окончательно объяснить происходившее при зарождении Вселенной сможет только квантовая теория гравитации, примиряющая положения квантовой механики с идеями Эйнштейна об искривлении пространства – времени. Получается, что единственным честным ответом на вопрос, что же в действительности происходило в момент предполагаемого Большого взрыва, будет «не знаю». Мы сумеем найти ответ, когда у нас появится надежная теоретическая основа, позволяющая описывать экстремальные условия существования ранней Вселенной, однако пока что мы такой теорией не располагаем.

Возможно, Вселенная до Большого взрыва действительно не существовала, как и предполагает традиционная общая теория относительности. Но также вполне вероятно (и мне эта точка зрения близка по причинам, о которых мы поговорим чуть дальше), что пространство и время существовали до Большого взрыва; просто то, что мы называем «взрывом», в действительности было своеобразным переходом от одной фазы к другой. В своих изысканиях с целью понять стрелу времени, завязанных на низкую энтропию ранней Вселенной, мы неизменно будем возвращаться к этому вопросу. В этой книге я продолжу использовать термин «Большой взрыв» в смысле «момента в истории ранней Вселенной, случившегося прямо перед тем, как начали действовать правила традиционной космологии», вне зависимости от того, как этот момент описывался бы в более полной теории, и без учета наличия или отсутствия у Вселенной каких-либо границ или сингулярностей.

Горячее однородное начало

Хоть нам и неизвестно, что происходило со Вселенной в самом начале ее жизни, мы обладаем чрезвычайно обширными познаниями о том, что происходило потом. В момент зарождения Вселенная находилась в невероятно горячем и плотном состоянии. Затем пространство расширилось, а вещество рассредоточилось и охладилось, пройдя целую череду превращений. Данные, полученные в ходе множества наблюдений, подтверждают, что от момента Большого взрыва нас отделяет около 14 миллиардов лет. Даже если мы не знаем в деталях, как происходило образование Вселенной, нам известно, что это случилось за очень короткий промежуток времени: практически всю историю Вселенной образуют события, произошедшие уже после мистического зарождения. Следовательно, вполне допустимо говорить, что с момента Большого взрыва прошло столько-то лет. Такое глобальное представление о Вселенной носит название модели Большого взрыва; она хорошо изучена с теоретической точки зрения и поддерживается горами эмпирических данных в противоположность гипотетической сингулярности Большого взрыва, которая для нас пока что остается загадкой.

Наше представление о ранней Вселенной базируется не только на теоретической экстраполяции; мы можем применять существующие теории для формулировки предсказаний, поддающихся реальной проверке. Например, когда Вселенной было всего около 1 минуты, она представляла собой ядерный реактор, синтезирующий из протонов и нейтронов гелий и другие легкие элементы; это был процесс, называемый первичным нуклеосинтезом. Сегодня мы наблюдаем распространенность подобных элементов, и это превосходно согласуется с предсказаниями модели Большого взрыва.

Мы также наблюдаем космический микроволновый фон – реликтовое излучение. Ранняя Вселенная была не только плотной, но и очень горячей, а горячие объекты – источники излучения. Благодаря излучению мы можем видеть в темноте: люди (а также другие теплые объекты) испускают инфракрасные лучи, которые можно обнаружить, если воспользоваться подходящим датчиком; в этом заключается принцип работы очков ночного видения. Чем теплее объект, тем более энергичным является его излучение (длина волны короче, а частота выше). Поскольку ранняя Вселенная была чрезвычайно горячей, она испускала огромное количество высокоэнергичного излучения.

Более того, ранняя Вселенная была еще и непрозрачной. Она была настолько горячей, что связи между электронами и атомными ядрами не могли сформироваться; электроны свободно летали в пространстве. Фотоны часто сталкивались с ними и отскакивали от свободных электронов, поэтому окажись вы там, вы не смогли бы разглядеть пальцы на своей руке. Однако в конечном итоге температура понизилась настолько, что электроны сумели привязаться к ядрам, да так там и остались, – этот процесс называется рекомбинацией, и он произошел примерно через 400 000 лет после Большого взрыва. Когда это случилось, Вселенная стала прозрачной, и свет получил возможность распространяться практически беспрепятственно, чем он до сих пор и занимается. Разумеется, на него распространяется эффект красного смещения, порождаемый космологическим расширением, поэтому горячее излучение периода рекомбинации в результате оказалось растянутым до микроволн (с длиной волны около одного сантиметра), а температура Вселенной понизилась до 2,7 кельвинов (–270,4 градуса Цельсия).

Таким образом, история эволюции Вселенной согласно модели Большого взрыва (которую, как вы помните, не следует путать с самим загадочным моментом Большого взрыва) позволяет сделать надежное предсказание: наша Вселенная должна быть заполнена микроволновым излучением, распространяющимся во всех направлениях, – наследием тех времен, когда Вселенная была горячей и плотной. И действительно, реликтовое излучение было обнаружено Арно Пензиасом и Робертом Уилсоном в 1965 году в лаборатории Белла в Холмделе, штат Нью-Джерси. Самое интересное, что они его даже не искали – оба были радиоастрономами, которых раздражало это непонятное фоновое излучение, от которого никак не удавалось избавиться. Раздражение, надо сказать, несколько поутихло, когда в 1978 году им присудили Нобелевскую премию.[42] Именно открытие микроволнового фона заставило последних приверженцев теории стационарной Вселенной (которая утверждает, что температура Вселенной не меняется со временем, но постоянно появляется новая материя) сменить точку зрения и окончательно принять модель Большого взрыва.

Подкрутим контраст во Вселенной

Вселенная – очень простое место. Да, она действительно содержит сложные вещи, такие как галактики, выдры и федеральные правительства, однако если исключить всевозможные локальные особенности, то на очень больших масштабах Вселенная практически везде одинакова. Ничто не иллюстрирует этот факт лучше космического реликтового излучения. В каком бы направлении мы ни посмотрели на небо, мы увидим микроволновое фоновое излучение, которое выглядит абсолютно так же, как излучение объекта, невозмутимо сияющего при некоторой фиксированной температуре – физики называют это излучением абсолютно черного тела. Однако в разных точках неба температура немного различается; в зависимости от направления разница может составлять до 0,001 %. Такие изменения температуры называются анизотропиями – это крохотные отклонения от температуры фонового излучения, которая в целом почти одинакова по всем направлениям.

Эти отклонения температуры от среднего значения отражают небольшие различия в плотности материи в разных местах ранней Вселенной. Заявление о том, что ранняя Вселенная была однородной, – это не просто упрощающее допущение; это поддающаяся проверке гипотеза, правильность которой подтверждается реальными данными. В крупном масштабе Вселенная и сегодня однородна. Однако для того чтобы утверждать это, необходимо взять действительно очень большой масштаб – 300 миллионов световых лет или около того. На более мелких масштабах, таких как размер галактики, или Солнечной системы, или вашей кухни, Вселенная, конечно же, состоит из сплошных неровностей. Но так было не всегда. В начале времен даже на самых мелких масштабах наблюдалась поразительная однородность. Куда же она делась?


Вечность. В поисках окончательной теории времени

Рис. 3.2. Температурные анизотропии реликтового излучения, измеренные космическим аппаратом NASA под названием Wilkinson Microwave Anisotropy Probe («Детектор анизотропии реликтового излучения Вилкинсона»). В темных областях температура чуть ниже средней, а в светлых – чуть выше. Для того чтобы разница была более очевидной, контрастность этого рисунка пришлось сильно повысить


Ответ кроется в гравитационной силе, которая выкручивает ручку регулировки контраста нашей Вселенной. В областях, где материи чуть больше, чем в среднем по Вселенной, действуют силы гравитации, притягивающие объекты друг к другу; из более разреженных областей материя растекается, стремясь к более плотным. Благодаря этому процессу – эволюции структур во Вселенной – крохотные изначальные флуктуации в реликтовом излучении превращаются в галактики и структуры, которые мы наблюдаем сегодня.

Представьте себе, что мы живем во Вселенной, очень похожей на нашу и с таким же распределением галактик и кластеров, только эта Вселенная не расширяется, а, наоборот, сжимается. Можно ли утверждать, что по ходу сжатия этой воображаемой Вселенной галактики в ней станут сглаживаться, создавая однородную плазму, которую можно наблюдать в прошлом нашей настоящей (расширяющейся) Вселенной? Вовсе нет. Ручка регулировки контраста все равно будет поворачиваться в сторону увеличения, несмотря на сжатие Вселенной, а черные дыры и другие массивные объекты будут втягивать в себя вещество из окружающих регионов. Рост структур – это необратимый процесс, который естественным образом происходит по мере того, как мы двигаемся в будущее, и не зависит от того, расширяется Вселенная или сжимается; он соответствует увеличению энтропии. Таким образом, относительная однородность ранней Вселенной, которую превосходно иллюстрирует изображение реликтового излучения, отражает низкую энтропию тех далеких времен.

Вселенная не стационарна

Как только вы соглашаетесь с идеей о том, что наша Вселенная, по сути, однородна и расширяется с течением времени, модель Большого взрыва начинает казаться вполне достоверным отражением реальности. Всего лишь отведите стрелки часов назад, и вы вернетесь к горячему плотному началу. Принципиальную основу концепции расширяющейся Вселенной сформулировал в конце 1920-х годов Джордж Леметр, бельгийский католический священник, который, до того как получить степень доктора наук в Массачусетском технологическом институте, обучался в Кембридже и Гарварде.[43] (Кстати, несмотря на очевидный соблазн, Леметр, окрестивший начало Вселенной «первоатомом», не стал делать никаких теологических выводов из сформулированной им космологической модели.)

Однако модель Большого взрыва демонстрирует любопытную асимметрию, которая, впрочем, теперь уже не должна нас удивлять: кардинальное отличие времени от пространства. Идею о том, что материя на крупных масштабах однообразна, можно развить до «космологического принципа»: во Вселенной нет никаких «особенных» мест. Однако очевидно, что особенное время во Вселенной все же имеется: это момент Большого взрыва.

Некоторые специалисты по космологии, работавшие в середине прошлого столетия, считали такое явное неравенство – пространство однообразно, а время неоднородно – серьезным недостатком модели Большого взрыва и поставили себе целью разработать альтернативную модель. В 1948 году три ведущих астрофизика – Германн Бонди, Томас Голд и Фрейд Хойл – предложили модель стационарной Вселенной.[44] Их теория базировалась на «идеальном космологическом принципе» – утверждении, что во Вселенной нет ни особенных мест, ни особенного времени. В частности, они утверждали, что Вселенная в прошлом не была ни горячее, ни плотнее, чем сегодня.

Пионеры теории стационарной Вселенной (в отличие от некоторых более поздних последователей) не были дремучими чудаками. Они знали, что Хаббл установил факт расширения Вселенной, и учитывали полученные им данные. Так каким образом Вселенная может расширяться, не разрежаясь и не остывая? Согласно теории стационарной Вселенной, в пространстве между галактиками происходит непрерывное рождение новой материи ровно в таком количестве, чтобы компенсировать расширение Вселенной (на самом деле много и не надо: примерно один атом водорода на кубический метр каждый миллиард лет, так что не стоит опасаться, что ваша гостиная может внезапно переполниться материей). Рождение вещества происходит не само по себе; Хойл изобрел новый тип поля – C-поле, которое, как он надеялся, объяснит фокус с новым веществом, однако его идея так никогда и не завоевала популярности среди физиков.

С нашей пресыщенной современной точки зрения модель стационарной Вселенной производит впечатление некой сверхструктуры, базирующейся на весьма хрупких философских допущениях. Но точно так же выглядели многие великие теории до того, как столкнуться с суровой действительностью реальных данных. Формулируя общую теорию относительности, Эйнштейн определенно опирался на собственные философские предпочтения. Однако в отличие от общей теории относительности модель стационарной Вселенной не выдержала проверки фактическими данными.[45] Последнее, чего можно ожидать от модели, в которой температура Вселенной остается постоянной, – это объяснения реликтового излучения, явно указывающее на горячее начало. После того как Пензиас и Уилсон обнаружили фоновое микроволновое излучение, поддержка теории стационарной Вселенной быстро сошла на нет, хотя небольшая гвардия убежденных последователей по сей день продолжает изобретать самые замысловатые способы избежать наиболее логичных и очевидных способов интерпретации данных.

Как бы то ни было, размышления о модели стационарной Вселенной заставляют по-настоящему прочувствовать ошеломляющую природу времени в модели Большого взрыва. Несомненно, в космологии стационарной Вселенной точно так же существует стрела времени: энтропия безгранично увеличивается в одном и том же направлении, сейчас и во веки веков. Однако если взяться за дело серьезно, то станет очевидно, что проблема объяснения низкой начальной энтропии в стационарной Вселенной бесконечно тяжела. Какими бы ни были начальные данные, они должны быть наложены бесконечно давно в прошлом, и энтропия любой системы конечного размера на сегодняшний день была бы бесконечно велика. Задайся космологи целью достоверно объяснить низкую энтропию ранней Вселенной, модель стационарной Вселенной моментально потерпела бы крах.

В картине, рисуемой моделью Большого взрыва, дела обстоят более оптимистично. Мы все еще не знаем, почему у ранней Вселенной была низкая энтропия, однако, по крайней мере, нам известно, о каком именно периоде идет речь. В интересующем нас состоянии Вселенная находилась 14 миллиардов лет тому назад, и ее энтропия была мала, но не равна нулю. В отличие от модели стационарной Вселенной в контексте Большого взрыва мы можем точно указать, где (хотя в действительности когда) находится проблема. К сожалению, до тех пор пока у нас на руках не будет универсальной космологической теории, объясняющей все на свете, мы не сможем утверждать, действительно ли это огромный шаг вперед по сравнению с моделью стабильного состояния.

Она ускоряется

Мы очень много знаем об эволюции Вселенной за последние 14 миллиардов лет. А что же будет дальше?

Прямо сейчас Вселенная расширяется, становясь все более холодной и разреженной. Многие годы проблемы космологии концентрировались вокруг одного главного вопроса: «Будет ли расширение продолжаться вечно или однажды Вселенная достигнет максимального размера и примется сжиматься навстречу к Большому коллапсу и концу времен?» Споры вокруг относительных достоинств каждой из альтернатив стали любимой игрой космологов практически с того самого момента, как мир узнал об общей теории относительности. Сам Эйнштейн склонялся к мнению, что Вселенная конечна как с точки зрения пространства, так и с точки зрения времени, и поддерживал идею о неизбежном коллапсе. Леметр же, наоборот, отдавал предпочтение идее бесконечной Вселенной, в которой процессы охлаждения и расширения будут вечными: лед, а не пламя.

Провести измерения, которые позволили бы эмпирическим способом выбрать из двух теорий единственно верную, оказалось неожиданно сложно. Общая теория относительности позволяет с определенностью заявить: в то время как Вселенная расширяется, гравитационная сила притягивает галактики друг к другу, замедляя расширение. Вопрос, по сути, заключался в том, достаточно ли во Вселенной материи для того, чтобы сжатие на самом деле случилось, или же Вселенная будет вечно потихоньку расширяться? Долгие годы этот вопрос оставался без ответа: наблюдения показывали, что материи во Вселенной почти достаточно для того, чтобы обратить процесс и заменить расширение сжатием, – почти, но все же не совсем.

Прорыв случился в 1998 году, причем благодаря совершенно иному методу. Казалось бы, вместо того чтобы измерять общую массу вещества во Вселенной и сравнивать результат с теоретическими прогнозами – хватит ли ее, чтобы обратить расширение Вселенной, можно измерить, насколько быстро расширение замедляется. Однако, как всегда, гораздо проще сказать, чем сделать. По сути, нужно было повторить исследования Хаббла – измерить расстояния и видимые скорости галактик, а затем установить взаимосвязь между этими величинами, но с гораздо большей точностью и для огромнейших дистанций. В конечном итоге была выбрана техника, основанная на поиске сверхновых типа Ia – взрывающихся звезд, примечательных не только чрезвычайной яркостью (и потому заметных на космологических расстояниях), но и тем, что яркость этих звезд всегда одинакова (за счет чего видимую яркость можно использовать для оценки расстояния до сверхновой).[46]

Этот нелегкий труд взяли на себя две команды: одна под управлением Сола Перлмуттера из Национальной лаборатории имени Лоуренса в Беркли, а вторая во главе с Брайаном Шмидтом из австралийской обсерватории Маунт-Стромло. Группа Перлмуттера, которую составляли ученые, занимающиеся физикой элементарных частиц и увлекшиеся исследованием вопросов космологии, начала работу раньше и первой успешно применила технику поиска сверхновых, несмотря на изрядный скептицизм публики. В группе Шмидта были эксперты по астрономии сверхновых; она стартовала чуть позже, но сумела наверстать упущенное. Команды трудились в духе дружеского (а иногда не очень) соперничества, внеся каждая со своей стороны неоценимый вклад в исследование, и слава авторов одного из величайших достижений в области исследования космоса по праву принадлежит обеим.

Между прочим, с Брайаном Шмидтом мы вместе учились в аспирантуре Гарварда в начале 1990-х годов. Я был теоретиком-идеалистом, а он – прагматичным наблюдателем. В те дни, когда технология крупномасштабных исследований космоса находилась в зачаточном состоянии, принято было считать, что измерение космологических параметров – мартышкин труд. Считалось, что эта бесплодная затея заранее обречена на провал из-за огромного количества неопределенностей, которые не позволят определить размер и форму Вселенной с точностью, хотя бы немного приближенной к желаемой. Мы с Брайаном поспорили, удастся ли ученым точно оценить общую плотность вещества во Вселенной в ближайшие двадцать лет. Я сказал, что это реально; Брайан утверждал, что ничего не получится. В то время мы были аспирантами без цента в кармане, однако все же скинулись и купили маленькую бутылочку марочного портвейна, договорившись спрятать его в секретном месте и хранить там двадцать лет, пока не станет ясно, кто победил. К счастью для нас обоих, мы узнали правильный ответ задолго до назначенного срока; я выиграл пари, и в немалой степени благодаря труду самого Брайана. Мы распили бутылку портвейна на крыше гарвардского Куинси Хауса в 2005 году.

Результат оказался шокирующим: Вселенная вообще не замедляется. На самом деле она ускоряется. Если бы вы измерили видимую скорость разбегания галактик, а затем (гипотетически) вернулись через миллиард лет, чтобы повторить измерения, вы бы обнаружили, что скорость увеличилась.[47] Как это может быть согласовано с предсказаниями общей теории относительности о том, что Вселенная должна замедляться? Как и в большинстве других подобных предсказаний, здесь играют большую роль неявные допущения. В данном случае мы предполагали, что основной источник энергии во Вселенной – вещество.


Вечность. В поисках окончательной теории времени

Рис. 3.3. Ускоряющаяся Вселенная


Для космолога вещество – это «любая группа частиц, каждая из которых движется со скоростью, намного меньшей скорости света» (если скорость частиц близка к скорости света, то космологи называют их излучением, независимо от того, идет речь об электромагнитном излучении в привычном понимании или нет). Эйнштейн уже давно открыл нам глаза на то, что частицы обладают энергией, даже когда совсем не движутся: формула E = mc2 означает, что энергия абсолютно неподвижной, но обладающей массой частицы равна ее массе, умноженной на скорость света в квадрате. Для нашего текущего обсуждения важнее всего то, что по мере расширения Вселенной вещество разреживается.[48] Общая теория относительности в действительности утверждает, что процесс расширения должен замедляться лишь в том случае, если энергия рассредоточивается. Если это не так – если плотность энергии, то есть величина энергии в каждом кубическом сантиметре или кубическом световом году пространства остается примерно постоянной, тогда эта энергия придает постоянный импульс расширению Вселенной, и, следовательно, Вселенная ускоряется.

В действительности, конечно же, возможно, что общая теория относительности неправильно описывает гравитацию на космологических масштабах, и физики очень серьезно рассматривают такую возможность. Однако куда более вероятно, что общая теория относительности верна, а наблюдения свидетельствуют о том, что большая часть энергии во Вселенной существует вообще не в форме «вещества», а в форме какого-то поразительно упрямого неизвестно чего, которое не разреживается, даже когда пространство расширяется. Мы дали этому загадочному «неизвестно чему» название «темная энергия», и природа темной энергии – одна из любимейших тем исследования современных космологов, как теоретиков, так и экспериментаторов.

О темной энергии нам известно не очень много, однако мы знаем две главные вещи: она почти постоянна в пространстве (один и тот же объем энергии в любом произвольном месте) и также имеет постоянную по времени плотность (одинаковый объем энергии на кубический сантиметр в любой момент времени). Таким образом, простейшая из возможных моделей темной энергии включает абсолютно постоянную плотность энергии в любой точке пространства и времени. В действительности эта идея не нова, ее высказывал еще Эйнштейн. Он называл эту величину космологической постоянной, а сегодня мы зачастую используем термин «энергия вакуума». (Некоторые люди могут заявлять, что энергия вакуума и космологическая постоянная – это разные вещи. Не верьте им. Единственное различие заключается в том, в какую часть уравнения ее поставить, а это не играет никакой роли.)

Итак, о чем мы говорим? Мы предполагаем, что в каждом кубическом сантиметре пространства – в безлюдном неприветливом космосе, или в центре Солнца, или прямо перед вашим носом – содержится определенная энергия в дополнение к энергии частиц, фотонов и других вещей, реально присутствующих в этом маленьком кубике. Она называется энергией вакуума, потому что присутствует даже в вакууме, в совершенно пустом пространстве. Это минимальный объем энергии, присущий полотну самого пространства – времени.[49] Энергию вакуума невозможно почувствовать, ее невозможно увидеть, с ней нельзя ничего сделать, и все же она есть. И мы знаем о ее существовании, потому что она оказывает решающее воздействие на Вселенную, заставляя далекие галактики убегать от нас все быстрее и быстрее.

В отличие от силы притяжения, создаваемой обычным веществом, энергия вакуума не притягивает, а отталкивает вещи друг от друга. Эйнштейн, впервые предложивший идею космологической постоянной в 1917 году, в действительности стремился объяснить существование статической Вселенной, в которой ни расширения, ни сжатия не происходит. И это не было необоснованным философским позерством – ничего другого для понимания устройства Вселенной астрономия тех дней предложить не могла, а Хаббл открыл расширение Вселенной только в 1929 году. Таким образом, Эйнштейн представлял себе Вселенную как место, где притяжение галактик и отталкивание, связанное с космологической постоянной, находятся в хрупком равновесии. Услышав об открытии Хаббла, он пожалел, что вообще придумал эту космологическую постоянную: не поддайся он искушению, Эйнштейн мог бы предсказать расширение Вселенной задолго до фактического обнаружения этого явления.

Загадка энергии вакуума

В теоретической физике, если уж какое-то понятие было обнаружено, закрыть его обратно совсем непросто. Космологическая постоянная – это то же самое, что энергия вакуума, энергия пустого пространства самого по себе. Вопрос не в том, можно ли считать энергию вакуума хорошо определенным понятием, а в том, насколько большой должна быть энергия вакуума.

Современная квантовая механика описывает вакуум вовсе не как пустое скучное пространство; оно бурлит жизнью – его населяют виртуальные частицы. Одним из фундаментальных принципов квантовой механики является принцип неопределенности Вернера Гейзенберга: ни в какой системе невозможно зафиксировать наблюдаемые характеристики с идеальной точностью в одном-единственном уникальном состоянии, и к пустому пространству это тоже относится. Если пристально вглядеться в пустое пространство, мы увидим то и дело появляющиеся и исчезающие частицы, представляющие собой квантовые флуктуации самого вакуума. Никакой особенной загадки в виртуальных частицах не кроется, это не гипотетические частицы – они действительно существуют, и они оказывают поддающееся измерению воздействие, которое много раз наблюдали ученые, занимающиеся физикой элементарных частиц.

Виртуальные частицы обладают энергией, которая вносит свой вклад в космологическую постоянную. Для того чтобы приблизительно понять, чему должна быть равна космологическая постоянная, можно просуммировать вклады всех подобных частиц. Однако было бы неправильно учитывать вклады частиц с произвольно высокой энергией. Нашего традиционного понимания физики элементарных частиц недостаточно для описания высокоэнергетических событий: в какой-то момент приходится принимать во внимание эффекты квантовой гравитации, объединяющей положения общей теории относительности и квантовой механики, а эта теория на сегодняшний день пока еще разработана не до конца.

Итак, вместо того чтобы апеллировать к правильной теории квантовой гравитации, которой у нас пока что нет, мы можем просто посмотреть, какой вклад в энергию вакуума вносят виртуальные частицы с энергией меньше порогового значения, за которым важную роль начинает играть квантовая гравитация. Этот порог носит название энергии Планка в честь немецкого физика Макса Планка, одного из пионеров квантовой теории, и равен приблизительно двум миллиардам джоулей (обычная единица измерения энергии).[50] Попробуем суммировать энергию всех виртуальных частиц, энергия которых лежит в диапазоне от нуля до энергии Планка, а затем скрестим пальцы и проверим, совпадет ли полученное значение с фактически наблюдаемой энергией вакуума. Нас ждет абсолютное фиаско. Наша тривиальная прикидка значения энергии вакуума дает приблизительно 10105 джоулей на кубический сантиметр. Это очень много энергии вакуума. Результаты наблюдений показывают, что энергия одного кубического сантиметра – около 10–15 джоулей. Таким образом, наша оценка превышает экспериментальное значение в 10120 раз – это единица со 120 нулями. Вряд ли такое можно списать на ошибку эксперимента. Эту разницу называют величайшим расхождением между теоретическими ожиданиями и экспериментальной реальностью за всю историю науки. Для сравнения: общее число частиц в наблюдаемой Вселенной – около 1088; число песчинок на всех пляжах Земли – примерно 1020.

Тот факт, что энергия вакуума оказывается намного меньше ожидаемой, представляет серьезную проблему – «проблему космологической постоянной». Однако существует и другая проблема: «проблема совпадения». Вспомните, что энергия вакуума по мере расширения Вселенной сохраняет постоянную плотность (то есть объем энергии в одном кубическом сантиметре не меняется), хотя плотность вещества уменьшается. Сегодня они не сильно различаются: на долю вещества приходится около 25 % энергии Вселенной, а энергия вакуума составляет оставшиеся 75 %. Однако соотношение существенно меняется, так как с расширением Вселенной плотность вещества уменьшается, а энергия вакуума нет. Во времена рекомбинации, например, плотность энергии вещества в миллиард раз превышала плотность энергии вакуума. Таким образом, тот факт, что сегодня эти величины находятся на сравнимом уровне – уникальный момент в истории! – действительно создает впечатление незаурядного совпадения. Никто не знает, почему так произошло.

В нашем теоретическом понимании энергии вакуума есть огромный пробел. Если отбросить в сторону переживания на тему того, почему энергия вакуума так мала, а ее плотность сравнима с плотностью энергии вещества, то на руках у нас останется феноменологическая модель, прекрасно объясняющая экспериментальные данные. (Точно так же, как Карно и Клаузиусу не нужно было ничего знать об атомах, чтобы делать полезные выводы об энтропии, нам не обязательно понимать происхождение энергии вакуума, чтобы увидеть, как она влияет на расширение Вселенной.) Первые непосредственные свидетельства существования темной энергии были получены при наблюдении сверхновых в 1998 году, и с тех пор суть картины была независимо подтверждена множеством разнообразных методов. Либо Вселенная ускоряется от легкого воздействия энергии вакуума, либо происходит нечто еще более драматичное и загадочное.

Глубочайшее будущее

Насколько мы можем судить, плотность энергии вакуума по мере расширения Вселенной не меняется (возможно, меняется, но чрезвычайно медленно, и мы пока не смогли измерить изменения – это важнейшая цель современной эмпирической космологии). Мы недостаточно хорошо изучили энергию вакуума, чтобы судить, как она будет вести себя в безгранично далеком будущем, однако очевидное первое предположение состоит в том, что она просто-напросто навсегда останется на текущем уровне.

Если это и правда так, и энергия вакуума будет нашим вечным спутником, то предсказать даже самое далекое будущее нашей Вселенной несложно. В деталях возможны интересные неожиданности, но общая картина относительно проста.[51] Вселенная продолжит расширяться, охлаждаться и становиться все более и более разреженной. Далекие галактики будут убегать от нас все быстрее, а их красное смещение будет только увеличиваться. Промежутки времени между фотонами, прилетевшими к нам оттуда, будет становиться все больше, и в конце концов галактики исчезнут из виду. Во всей обозримой Вселенной не останется ничего, кроме нашей локальной группы галактик, связанных силой притяжения.

Галактики не вечны. Принадлежащие им звезды выжигают свои запасы ядерного топлива и умирают. Оставшиеся газ и пыль могут дать жизнь новым звездам, но рано или поздно будет достигнута точка убывающего плодородия, после чего все звезды в галактике умрут. Останутся только белые карлики (звезды, которые когда-то сияли, но теперь у них не осталось топлива), коричневые карлики (звезды, которые вообще никогда не сияли) и нейтронные звезды (которые раньше были белыми карликами, но под воздействием гравитации сколлапсировали). Эти объекты сами по себе могут быть стабильными или нет; наши текущие теоретические догадки говорят о том, что составляющие их протоны и нейтроны не могут быть идеально стабильными и в конечном итоге распадутся на более легкие частицы. Если это так (а надо признаться, что уверенности в этом нет), то разнообразные формы мертвых звезд со временем рассеются, превратившись в разреженный газ из частиц, разбегающихся в никуда. Это произойдет нескоро; считается, что от описанных событий нас отделяет примерно 1040 лет. Для сравнения: возраст текущей Вселенной – около 1010 лет.

Помимо звезд, существуют также черные дыры. У большинства крупных галактик, включая нашу, в центре находятся гигантские черные дыры. В галактике, сравнимой по размеру с Млечным Путем и состоящей приблизительно из 100 миллиардов звезд, масса черной дыры может превышать массу Солнца в несколько миллионов раз – невероятно много по сравнению с любой обычной звездой. По сравнению же с целой галактикой черная дыра невелика, но все же она продолжит расти, проглатывая любые горемычные звезды, которым не посчастливится в нее упасть. В конце концов звезд не останется. К этому моменту сама черная дыра начнет испаряться, испуская в пространство элементарные частицы. Это – потрясающее открытие Стивена Хокинга, которое он сделал в 1976 году. Мы подробнее поговорим об этом в главе 12: черные дыры совсем не такие черные. Они постоянно испускают частицы в окружающее их пространство, в процессе медленно теряя энергию, – благодаря квантовым флуктуациям, от которых никуда не деться. Если подождать достаточно долго – я имею в виду 10100 лет или около того, – то даже сверхмассивные черные дыры в центрах галактик испарятся, не оставив после себя и следа.

Как я уже говорил выше, в деталях могут быть определенные расхождения, но в целом картина долговременного прогноза остается неизменной. Прочие галактики убегают от нас и исчезают; наша галактика развивается и проходит через несколько различных стадий. В любом случае итог предопределен: жидкая кашица частиц, растворяющихся и исчезающих навсегда. В очень отдаленном будущем Вселенная снова станет чрезвычайно простым местом: она будет абсолютно пустой, настолько пустой, насколько вообще может быть пустым пространство. Это диаметральная противоположность горячему и плотному изначальному состоянию Вселенной; яркое космологическое проявление стрелы времени.

Энтропия Вселенной

Немало часов напряженных размышлений теоретические физики посвятили вопросу о том, почему Вселенная развивается именно так, как она это делает, а не по-другому. Определенно нельзя исключать возможность, что ответа на этот вопрос вовсе не существует; Вселенная такая, какая она есть, и, кроме как смириться с этим, ничего поделать невозможно. И все же мы безо всяких на то оснований продолжаем надеяться, что сможем добиться большего, чем просто принять ее как данность, – что мы сможем объяснить ее.

Если предположить идеальное знание законов физики, то вопрос «Почему Вселенная развивалась именно так?» сводится к вопросу «Почему начальные условия Вселенной оказались именно такими?». Однако вторая формулировка опять неявно подразумевает, что время несимметрично и у прошлого есть определенное превосходство над будущим. Если наше представление о фундаментальных микроскопических законах природы верно, то мы можем взять состояние Вселенной в любой момент времени и, отталкиваясь от него, описать как прошлое, так и будущее. Таким образом, правильнее будет говорить, что наша задача заключается в том, чтобы разобраться, что же считать естественной историей Вселенной в целом.[52] Космологи традиционно недооценивают значимость стрелы времени, и здесь скрывается определенная ирония, так как это, возможно, самый явный и очевидный факт, относящийся к эволюции Вселенной. Больцман отстаивал (и был совершенно прав) существование в прошлом граничного условия с низкой энтропией. При этом он ничего не знал об общей теории относительности, квантовой механике и даже существовании других галактик. Серьезный подход к вопросу энтропии помогает нам взглянуть на космологию в новом свете, благодаря чему мы можем сложить несколько головоломок, над которыми человечество бьется уже очень давно.

Однако для начала нужно более четко определиться, что же мы подразумеваем под энтропией Вселенной. В главе 13 мы во всех подробностях обсудим эволюцию энтропии обозримой Вселенной, однако на простейшем уровне дело обстоит следующим образом.

1. В ранней Вселенной, до того как произошло формирование структур, гравитация почти не влияла на энтропию. Вселенная была похожа на контейнер с газом, и для вычисления ее энтропии можно было применять привычные формулы термодинамики. Общая энтропия в пространстве, соответствующем обозримой Вселенной, составляла около 1088 в ранние моменты времени.

2. К моменту, когда мы достигли текущей стадии эволюции, роль гравитации значительно возросла. Для этого режима в нашем арсенале нет точной формулы, однако мы можем получить неплохую оценку для полной энтропии, всего лишь сложив вклады черных дыр (которые обладают громадной энтропией). Энтропия одной сверхмассивной черной дыры порядка 1090, а в наблюдаемой Вселенной примерно 1011 подобных черных дыр; полная энтропия на сегодняшний день, таким образом, составляет приблизительно 10101.

3. Однако на этом история далеко не заканчивается. Если взять все вещество в наблюдаемой Вселенной и поместить его в одну черную дыру, ее энтропия составит 10120. Можно считать эту величину максимально возможным значением энтропии, которого можно добиться путем перестановки вещества во Вселенной, и именно в этом направлении все и развивается.[53]

Задача, стоящая перед нами, – объяснить эту историю, и в частности почему энтропия раннего состояния (1088) настолько ниже максимально возможной энтропии (10120)? Обратите внимание на то, что первое число во много-много раз меньше второго; впечатление, что они почти одинаковы, создается исключительно благодаря магии краткой записи больших чисел.

Хорошие новости заключаются в том, что модель Большого взрыва по крайней мере предоставляет контекст, в котором возможно разумно подойти к поиску ответа на данный вопрос. Во времена Больцмана, до того как люди узнали об общей теории относительности и расширении Вселенной, загадка энтропии была куда сложнее хотя бы потому, что не существовало такого события, как «начало Вселенной» (или хотя бы «начало обозримой Вселенной»). В противоположность этому сейчас мы в состоянии точно указать на время, когда энтропия была наименьшей, а также на конкретную форму того состояния, когда наблюдалась низкая энтропия. Это решающий шаг в попытке объяснить, почему все было так, а не иначе.

Возможно, конечно, что фундаментальные законы физики необратимы (хотя чуть позже мы приведем аргументы против). Однако если они все-таки обратимы, то низкая энтропия нашей Вселенной в момент Большого взрыва и около того оставляет нам, по сути, два основных варианта.

1. Большой взрыв действительно был началом Вселенной, моментом, когда появилось время. Это объясняется тем, что истинные законы физики разрешают существование границы пространства – времени, или тем, что «время» в нашем понимании – на самом деле всего лишь приближение, теряющее достоверность в окрестности Большого взрыва. В любом случае в самом начале у Вселенной была низкая энтропия по причинам, лежащим далеко за пределами динамических законов природы. И тогда нам требуется новый, независимый принцип, чтобы объяснить начальное состояние.

2. Такой вещи, как «изначальное состояние», не существует, потому что время вечно. При таком допущении то, что мы представляем себе как Большой взрыв, – это не начало Вселенной, хотя, несомненно, данное событие сыграло важную роль в истории нашей локальной области. Наблюдаемый нами отрезок пространства – времени должен быть каким-то образом вложен в большую картину. И способ этого вложения должен объяснить, почему энтропия была так низка на одном краю времени, не накладывая при этом никаких специальных условий на глобальное описание.

Какой из двух вариантов точнее описывает реальный мир, мы пока не знаем. Признаюсь честно, мне больше по душе второй вариант, ведь гораздо элегантнее выглядит история, в котором мир становится практически неизбежным результатом действия целой группы динамических законов и не требует дополнительного принципа, разъясняющего, почему он появился именно в таком виде. Для того чтобы превратить этот призрачный сценарий в достоверную космологическую модель, нам придется использовать в своих интересах загадочную энергию вакуума, которая господствует в нашей Вселенной. Однако мы не сможем этого сделать, пока не разберемся окончательно в искривлении пространства – времени и теории относительности. Пожалуй, этим стоит заняться прямо сейчас.

Часть II. Время во Вселенной Эйнштейна

Глава 4. Время – штука личная

Время идет различным шагом с различными людьми.

Уильям Шекспир. Как вам это понравится

Скажите «ученый» – и большинство людей сразу же вспомнят Эйнштейна. Альберт Эйнштейн – фигура культовая; многим ли физикам-теоретикам удавалось достичь такой степени известности, что их лица начинали печатать на футболках? Однако Эйнштейн – знаменитость далекая, пугающая. Большинство из тех, кто считает это имя знакомым, затрудняются назвать его конкретные достижения,[54] в отличие, например, от успехов Тайгера Вудса.[55] Нам всем знаком образ Эйнштейна как неуклюжего рассеянного профессора в мешковатом свитере и с всклокоченными волосами – образ человека, полностью посвятившего себя науке и равнодушного ко всему земному. А его работы – рассуждения об эквивалентности массы и энергии, искривлении пространства и времени и поиске окончательной теории – являют для нас вершину абстракции, бесконечно удаленную от каждодневных бытовых проблем.


Вечность. В поисках окончательной теории времени

Рис. 4.1. Альберт Эйнштейн в 1912 году. «Удивительным годом» для него стал 1905 год, а исследования по общей теории относительности дали первые ощутимые результаты в 1915 году


Настоящий Эйнштейн куда интереснее этого устоявшегося образа. Во-первых, всклокоченный вид и прическа, как у Дона Кинга, стали фирменным стилем Эйнштейна уже в более позднем возрасте – вы вряд ли узнали бы знаменитого ученого в опрятном и ухоженном молодом человеке с пронзительным взором, не раз перевернувшем физику с ног на голову в начале XX века.[56] Во-вторых, теория относительности родилась не из пустых рассуждений о природе пространства и времени; ее источники кроются в абсолютно практичных задачах доставки людей и груза в правильное место в правильное время.

Специальная теория относительности, объясняющая, каким образом скорость света может быть одной и той же для любых наблюдателей, появилась в самом начале XX века благодаря усилиям сразу нескольких исследователей. (Авторство общей теории относительности, которая интерпретирует гравитацию как результат искривления пространства – времени, практически всецело принадлежит Эйнштейну.) Крупнейший вклад в развитие специальной теории относительности внес французский математик и физик Анри Пуанкаре. Несмотря на то что именно Эйнштейн поставил окончательную точку, приняв, что «время», измеряемое любым движущимся наблюдателем, ничем не хуже «времени», измеряемого любым другим наблюдателем, оба ученых в своих исследованиях относительности пришли к очень похожим формальным выводам.[57]

Историк Питер Галисон в своей книге «Часы Эйнштейна, карты Пуанкаре: империя времени» («Einstein’s Clocks, Poincaré’s Maps: Empires of Time») излагает доводы в пользу того, что и на исследования Эйнштейна, и на исследования Пуанкаре одинаково повлияли как эзотерические размышления об архитектуре физики, так и обычные земные профессии ученых.[58] Эйнштейн в то время работал патентным клерком в Швейцарии, в Берне, где основной задачей считалось создание точных часов. Между европейскими городами вырастала сеть железных дорог, и решение проблемы синхронизации часов на больших расстояниях представляло огромный коммерческий интерес. Пуанкаре, будучи на два десятилетия старше, служил президентом французского Бюро долгот. Развитие морских перевозок и водных торговых путей требовало более точных методов определения долготы при нахождении в открытых водах – как для ориентирования отдельных кораблей, так и для составления точных карт.

И вот мы имеем то, что имеем: карты и часы. Пространство и время. В частности, теперь мы знаем, что важные вопросы – вовсе не «Где мы в действительности находимся?» или «Сколько сейчас в действительности времени?», а «Где мы находимся по отношению к другим объектам?» и «Какое время показывают наши часы?». Жесткое, абсолютное пространство и время ньютоновской механики превосходно согласуются с нашим интуитивным пониманием мира; теория относительности же требует перейти на совершенно иной уровень абстракции. Физикам, работавшим в начале прошлого столетия, удалось сделать этот критически важный шаг. Они поняли, что не следует пытаться запихнуть мир в рамки, навязываемые нашей интуицией, а нужно серьезно отнестись к тому, что поддается измерению реальными приборами.

Специальная теория относительности и общая теория относительности формируют основу современного представления о пространстве и времени, и в этой главе мы попробуем разобраться, что же скрывается за составляющей «время» в «пространстве – времени».[59] Мы постараемся ненадолго забыть и об энтропии, и о втором начале термодинамики, и о стреле времени, найдя прибежище в чистом, точном мире фундаментально обратимых законов физики. И все же без уверенного понимания теории относительности и понятия пространства – времени нам не удастся найти окончательное объяснение такого явления, как стрела времени.

Потерянные в пространстве

В дзэн-буддизме существует такая концепция, как «сознание начинающего»: состояние, в котором человек свободен от любых предрассудков и готов принимать мир таким, какой он есть. Можно долго спорить, реально ли достичь такого состояния и есть ли вообще смысл пытаться, однако сама концепция может оказаться весьма полезной при знакомстве с теорией относительности. Так что давайте забудем все, что, как нам кажется, мы знаем о времени во Вселенной, и проведем несколько мысленных экспериментов (о результатах которых нам известно на основании реальных опытов). Наша цель – понять, что нового теория относительности может сказать про время.

Для этого представьте себе, что мы находимся внутри космического корабля, свободно парящего в космическом пространстве и не подверженного влиянию никаких звезд или планет. Мы обеспечены всеми необходимыми запасами: у нас есть вода, воздух и предметы первой необходимости. Кроме того, на борту имеется простейшее оборудование для проведения научных экспериментов в виде блоков, весов и т. п. Единственное ограничение – мы не можем выглянуть наружу и посмотреть на вещи, находящиеся за пределами корабля. В нашем эксперименте мы будем считать, что корабль оборудован различными датчиками, расположенными внутри и снаружи корабля.

Прежде всего, давайте подумаем, что мы можем узнать, находясь внутри корабля. У нас есть пульт управления, и мы можем вращать судно вокруг любой оси. Также мы можем запустить двигатели и переместиться в любом желаемом направлении. Итак, мы проводим время, вращая корабль в разные стороны и перемещаясь туда-сюда, не зная и не особо беспокоясь о том, в каком направлении мы движемся, и проводя заодно разнообразные эксперименты.


Вечность. В поисках окончательной теории времени

Рис. 4.2. Изолированный космический корабль. Слева направо: свободное падение, ускорение, вращение


Что мы можем узнать? Очевидно, что нам не составляет труда заметить ускорение корабля. Когда он движется без ускорения, наша любимая обеденная вилка невесома и свободно парит в воздухе. Однако как только мы запускаем двигатели, она падает вниз, где под «низом» понимается «направление, противоположное тому, в котором корабль ускоряется».[60] Если мы еще поэкспериментируем, то сможем даже научиться распознавать вращение космического корабля. В этом случае предмет сервировки, расположенный точно на оси вращения, продолжает свободно парить на одном месте; однако любые предметы, находящиеся на периферии, «притягиваются» к корпусу корабля и остаются там.

Таким образом, определенные сведения о состоянии корабля мы можем узнавать экспериментально, с помощью несложных опытов внутри судна. Тем не менее есть также вещи, которые мы понять попросту не можем. Например, мы не знаем, где находимся. Скажем, мы проводим несколько экспериментов внутри нашего неускоряющегося, невращающегося корабля. Затем мы включаем двигатели, куда-то стремительно переносимся и снова выключаем, – и вот мы опять в неускоряющемся и невращающемся корабле и можем повторить предыдущие эксперименты. При условии, что у нас есть хоть малейшие навыки проведения физических экспериментов, мы получим точно такие же результаты. Если мы потрудились записать величину ускорения и продолжительность работы двигателей, то, возможно, сумеем вычислить расстояние, на которое переместился корабль; однако, прибегая исключительно к локальным экспериментам, мы при всем желании не сможем отличить одно местоположение от другого.

Аналогично, нам не под силу отличить одну скорость от другой. Как только мы выключаем двигатели, корабль снова начинает свободно парить в пространстве, и совершенно неважно, какую скорость он успел набрать; необходимости замедляться нет. И ориентацию корабля мы тоже определить не можем – в пустынных бескрайних просторах межзвездного пространства все направления одинаковы. Можно понять, вращается судно или нет; однако если включить подходящие направляющие двигатели (или использовать соответствующие бортовые гироскопы) и прекратить вращение, то никакой локальный эксперимент не позволит нам определить угол, на который успел повернуться корабль.

Эти простые выводы открывают нам сокровенные тайны процессов, происходящих в реальном мире. Любые манипуляции, которые мы совершаем с нашим аппаратом, при условии, что они не влияют на результаты экспериментов, – мы меняем его местоположение, поворачиваем, заставляем двигаться с постоянной скоростью, – отражают симметрию законов природы. Принципы симметрии в физике играют важнейшую роль: именно они накладывают строгие ограничения на то, какую форму могут принимать законы природы и какого типа экспериментальные результаты мы можем получать.

Разумеется, у обнаруженных нами видов симметрии есть свои названия. Изменение местоположения объекта в пространстве называется «переносом», изменение ориентации в пространстве – это «поворот», а изменение скорости движения сквозь пространство – «буст». В контексте специальной теории относительности набор поворотов и бустов называется преобразованиями Лоренца, а полный комплект, включающий переносы, – преобразованиями Пуанкаре.

Главная идея, лежащая в основе этих преобразований симметрии, высказывалась учеными задолго до появления специальной теории относительности. Еще Галилео утверждал, что законы природы должны быть инвариантными относительно того, что мы сегодня называем переносами, поворотами и бустами. Даже без теории относительности, если бы Галилео и Ньютон оказались правы в своих утверждениях о законах механики, мы все равно были бы не в состоянии определять положение, ориентацию и скорость, находясь в изолированном свободно движущемся космическом корабле. Различие между теорией относительности и представлениями Галилео лежит лишь в области того, что происходит, когда мы перемещаемся в систему координат движущегося наблюдателя. Волшебство относительности заключается в том, что у изменения скорости много общего с изменением пространственной ориентации; буст – всего лишь пространственно-временная версия поворота.

Прежде чем начинать разбираться с этим, давайте остановимся на мгновение и спросим себя: а могли бы законы физики работать по-другому? Например, выше мы утверждаем, что абсолютное положение объекта не поддается определению – и абсолютная скорость тоже, однако абсолютное ускорение вполне измеримо.[61] Можно ли вообразить мир с такими физическими законами, в котором невозможно оценить абсолютное положение, однако абсолютная скорость поддается объективному измерению?[62]

Это совсем несложно. Представьте себе, что вы движетесь сквозь неподвижную среду, такую как воздух или вода. Если бы мы жили в бескрайнем водоеме, то нам не к чему было бы привязать свое местоположение, однако мы могли бы без труда измерять свою скорость по отношению к воде. Можно было бы даже предположить, что окружающее пространство тоже напитано подобной средой.[63] В конце концов, еще Максвелл в своих работах по изучению электромагнетизма доказал, что свет – это всего лишь тип волны. А если есть волна, вполне естественно думать, что есть и среда для ее распространения. Например, чтобы распространялся звук, нужен воздух – в космосе никто не услышит ваш крик. Однако свет успешно распространяется в безвоздушном пространстве, значит (следуя этой логике, которая окажется в итоге ошибочной), и там существует какая-то среда, сквозь которую он перемещается.

Таким образом, физики конца XIX века считали, что электромагнитные волны распространяются сквозь невидимую, но играющую невообразимо важную роль среду, которой они дали название «эфир». И ученые-экспериментаторы поставили себе целью найти доказательства существования этой субстанции. Однако они потерпели поражение, а их неудача подготовила почву для специальной теории относительности.

Ключ к относительности

Представьте, что мы снова вернулись в космическое пространство, но на этот раз взяли с собой более изощренное оборудование для проведения экспериментов. В частности, у нас есть впечатляющая штуковина, сделанная по последнему слову лазерной техники и умеющая измерять скорость света. Для того чтобы откалибровать устройство, мы в свободном падении (без ускорения) проверяем, будет ли скорость света всегда одной и той же независимо от направления. Все правильно, это действительно так. Инвариантность относительно выбора направления – неотъемлемое свойство распространения света, как мы и подозревали.

Теперь пробуем измерить скорость света при движении с разными скоростями. Для этого мы проведем один тест, затем ненадолго включим двигатели и снова выключим их, чтобы набрать постоянную скорость относительно первоначального движения, и после этого повторим эксперимент. Поразительно – какую бы скорость мы ни набрали, значение скорости света, получаемое в результате измерений, всегда остается одинаковым. Если бы действительно существовала эфирная среда, сквозь которую свет распространялся бы так же, как звук распространяется по воздуху, то в зависимости от того, с какой скоростью по отношению к эфиру мы движемся, мы бы получали разные результаты. Однако этого не происходит. Можно было бы предположить, что свет получает какой-то толчок вследствие того, что источник его находится внутри движущегося космического судна. Для того чтобы проверить это, мы поднимем шторки на окнах и позволим проникнуть внутрь свету из внешнего мира. Однако измерение скорости света, источник которого находится снаружи, снова дает тот же результат: скорость света не зависит от скорости нашего космического корабля.

На практике этот эксперимент был выполнен в 1887 году Альбертом Майкельсоном и Эдвардом Морли. За неимением космического корабля с мощным двигателем они воспользовались лучшим, что у них было: движением Земли вокруг Солнца. Орбитальная скорость Земли составляет около 30 километров в секунду, так что зимой ее полная скорость примерно на 60 километров в секунду отличается от ее скорости летом, когда Земля движется в обратном направлении. Не так много по сравнению со скоростью света, которая равна примерно 300 000 километров в секунду, однако Майкельсон сконструировал хитроумное устройство, известное под названием интерферометра, чрезвычайно чувствительное к малейшим изменениям скорости в разных направлениях. Ученые получили тот же самый ответ, к которому пришли мы в своем мысленном эксперименте: скорость света всегда одна и та же, независимо от того, насколько быстро мы движемся.

Научные достижения редко бывают простыми и однозначными, и как правильно интерпретировать результат эксперимента Майкельсона – Морли, ученые также догадались не сразу. А вдруг Земля тянет за собой эфир, из-за чего наша относительная скорость оказывается совсем небольшой? После некоторого неистового теоретизирования с метанием от одной идеи к другой физики все же пришли к выводу, который сегодня считается единственно верным: скорость света представляет собой универсальную константу. Для любого наблюдателя скорость света всегда одна и та же, независимо от того, с какой скоростью он сам двигался при проведении измерений.[64] Всю суть специальной теории относительности можно свести к двум основным принципам:

• никакие локальные эксперименты не позволяют отличить наблюдателей, движущихся с постоянными скоростями;

• скорость света одинакова для всех наблюдателей.

Используя выражение «скорость света», мы неявно подразумеваем, что речь идет о скорости, с которой свет движется через пустое пространство. Ничуть не сложно заставить свет двигаться с другой скоростью – нужно всего лишь поместить на его пути прозрачную среду. Сквозь стакан с водой свет проходит медленнее, чем сквозь пустое пространство, однако это ничего особенного о законах физики не говорит. Действительно, в этой пьесе главную роль играет не свет как таковой. Для нас важнее всего то, что в пространстве – времени существует некоторая специальная скорость – просто так получилось, что свет распространяется с этой скоростью в пустом пространстве. Ключевой момент – это существование предела скорости, а не способность света двигаться настолько быстро.

Необходимо остановиться и осознать, насколько это все удивительно. Предположим, вы находитесь в космическом корабле, а ваш друг, также путешествующий в космосе, сигналит вам фонариком из иллюминатора своего космического судна. Вы измеряете скорость света от фонарика и видите, что она равна 300 000 километров в секунду. Затем включаете двигатели и начинаете ускоряться навстречу другу, пока не достигаете скорости 200 000 километров в секунду. Вы снова измеряете скорость света, излучаемого фонариком, и снова получаете тот же результат: 300 000 километров в секунду. Безумие какое-то! Любой человек в здравом уме ожидал бы, что результат будет равен 500 000 километров в секунду. Что же происходит?

Ответ, согласно специальной теории относительности, заключается в том, что от системы отсчета зависит не скорость света, а то, что мы понимаем под «километром» и «секундой». Когда мимо нас на большой скорости проносится линейка, мы наблюдаем эффект «сокращения длины» – кажется, что она короче такой же линейки, находящейся в покое относительно нашей системы координат. Аналогичным образом, если мимо нас на большой скорости проносятся часы, для них происходит «растяжение времени» – кажется, что они идут медленнее часов, находящихся в покое. Действуя совместно, эти явления точно компенсируют любое относительное движение, поэтому для любого наблюдателя скорость света всегда остается одной и той же.[65]

Существует важное следствие инвариантности скорости света: ничто не может двигаться быстрее света. Доказать это довольно просто; представьте, что вы в ракете пытаетесь перегнать свет, излучаемый фонариком. В начальный момент времени ракета неподвижна (в нашей системе координат), а свет движется со скоростью 300 000 километров в секунду. Затем ракета изо всех сил ускоряется, набирая колоссальную скорость. Когда команда ракеты измеряет скорость света от фонарика (теперь находящегося на большом удалении), они убеждаются, что свет все так же распространяется со скоростью 300 000 километров в секунду. Что бы они ни делали, как бы сильно и долго ни ускорялись, свет все равно движется быстрее, и его относительная скорость всегда одна и та же.[66] (В их системе отсчета, конечно. С точки зрения внешнего наблюдателя скорость ракеты постепенно приближается к скорости света, но никогда не достигает ее.)

Несмотря на то что сокращение длины и растяжение времени прекрасно согласуются со специальной теорией относительности, обычных людей эти явления могут ввести в заблуждение. Когда мы говорим о «длине» какого-то физического объекта, мы имеем в виду, что объект надо измерить от одного конца до другого. Но при этом мы подразумеваем, что измерение должно производиться одномоментно. (Если вы отметите на стене уровень пола, а затем вскарабкаетесь на стремянку и сделаете вторую отметку на уровне головы, то не сможете утверждать, что расстояние между двумя метками отражает ваш реальный рост.) Однако дух специальной теории относительности говорит нам, что не следует делать никаких заявлений относительно удаленных друг от друга событий, происходящих одновременно. Значит, давайте подойдем к проблеме с другой стороны и разложим по полочкам все, что знаем о таком понятии, как пространство – время.

Пространство – время

Снова возвращаемся на космический корабль. На этот раз, однако, мы не ограничены экспериментами внутри изолированного корабля – у нас есть небольшой флот автоматических исследовательских аппаратов, оснащенных собственными двигателями и навигационными компьютерами. Мы можем программировать эти зонды, для того чтобы отправлять их наружу в полет и возвращать обратно. На каждом зонде также установлены очень точные атомные часы. Мы начинаем с того, что тщательно синхронизируем часы на всех исследовательских аппаратах с часами на нашем главном бортовом компьютере и проверяем, что все часы идут синхронно, не отставая и не забегая вперед.

Затем мы отправляем несколько зондов в окружающее пространство. Они должны полетать некоторое время и вернуться на борт. Когда машины возвращаются, мы сразу же замечаем, что показания установленных на них часов расходятся с данными бортового компьютера. Поскольку это мысленный эксперимент, мы уверены, что рассинхронизация произошла не из-за космических лучей, ошибки в программе или проделок шаловливых инопланетян, – для зондов действительно прошел другой период времени.

К счастью, это необычное явление легко объясняется. Время, которое показывают часы, – это не какая-то абсолютная величина, единая для всей Вселенной. Его нельзя измерить раз и навсегда, как расстояние между ярдовыми линиями на поле для американского футбола. Измеряемое часами время зависит от конкретной траектории перемещения этих часов – точно так же игрок может пересечь поле разными способами по траекториям разной длины. Вместо того чтобы засылать исследовательские аппараты, оборудованные часами, в космос, мы могли бы с наземной базы отправить колесных роботов покататься по округе. Во втором случае никто не удивится, увидев по возвращении на одометрах разных роботов разные значения. Суть в том, что часы похожи на одометры. Оба типа устройств предназначены для измерения пройденного пути (сквозь время или сквозь пространство) по определенной траектории.

Если часы – это аналог одометра, то время должно быть аналогом пространства. Вспомните, что до формулировки специальной теории относительности, если мы верили в абсолютное пространство и время а-ля Исаак Ньютон, ничто не мешало нам объединить их в единую сущность под названием «пространство – время». И для того чтобы обозначить любое событие во Вселенной, нам, как и сегодня, требовалось охарактеризовать его четырьмя числами (три из них задают положение в пространстве, а четвертое – во времени). Однако в ньютоновском мире пространство и время считались независимыми. Имея два индивидуальных события, например «выход из дома в понедельник утром» и «приход на работу чуть позднее тем же утром», мы могли совершенно независимо (и однозначно, не боясь двусмысленности) обсуждать расстояние между этими двумя событиями и время, прошедшее между ними. Специальная теория относительности утверждает, что это неправильно. Нельзя считать отдельными и независимыми такие вещи, как «расстояние в пространстве», измеряемое одометром, и «продолжительность во времени», измеряемую часами. Правильно говорить лишь об интервале в пространстве – времени, разделяющем два события. Он соответствует обычному расстоянию, если события разделены в основном пространственно, и продолжительности, измеряемой часами, если события разнесены в основном по времени.


Вечность. В поисках окончательной теории времени

Рис. 4.3. Время, измеренное зондами, которые покинули корабль и вернулись на него по разным траекториям, меньше, чем время, измеренное бортовыми часами космического корабля


Однако чем определяется это «в основном»? Скоростью света. Скорость измеряется в километрах в секунду или в любых других единицах расстояния в единицу времени; следовательно, существование особой скорости, зависящей исключительно от законов природы, помогает связать пространство и время. Когда вы перемещаетесь со скоростью, не превышающей скорость света, вы движетесь в основном сквозь время; если бы вы могли превысить скорость света (что у вас вряд ли получится), то вы двигались бы в основном сквозь пространство.

Давайте конкретизируем некоторые детали. Изучая показания часов на исследовательских аппаратах, мы замечаем, что, несмотря на разницу в показаниях, у всех у них есть одна общая особенность: они показываю время меньшее, чем время на стационарных часах с главного космического корабля. Это поразительно! Ведь только что мы говорили, что время аналогично пространству, а часы отражают путь, проделанный сквозь пространство – время. В старом добром пространстве произвольные перемещения туда-сюда всегда делают путь длиннее; кратчайшее расстояние между двумя точками в пространстве – это всегда прямая линия. Если наши часы говорят правду (а они не врут), то получается, что движение без ускорения (если угодно, прямая линия сквозь пространство – время) соответствует самому долгому периоду времени между двумя событиями.

А чего вы ожидали? Время во многом похоже на пространство, однако очевидно, что оно не повторяет его во всех мелочах (можно не опасаться, что какой-нибудь автомобильный навигатор попросит вас выполнить левый поворот во вчера). Даже не учитывая вопросы энтропии и стрелы времени, мы сумели открыть фундаментальную особенность, отличающую время от пространства: лишнее движение уменьшает время, проведенное между двумя событиями в пространстве – времени, но увеличивает расстояние, пройденное между двумя точками в пространстве.

Если перед нами стоит задача переместиться в пространстве из одной точки в другую, то мы можем сделать фактический путь до цели сколь угодно длинным, всего лишь описав кучу произвольных петель (или сделав несколько кругов, прежде чем выдвигаться к точке назначения). Однако рассмотрим случай перемещения между двумя событиями в пространстве – времени конкретными точками в пространстве в конкретные моменты времени. Если двигаться по «прямой линии» – все время перемещаться с постоянной скоростью без ускорения, то мы затратим на путешествие максимально возможное время. Но если заняться прямо противоположным – начать носиться туда-сюда со всей возможной скоростью, не забыв, однако, прибыть в точку назначения в строго определенное время, то продолжительность нашего путешествия окажется гораздо меньше. Если мы научимся перемещаться со скоростью, в точности равной скорости света, то какие бы петли мы ни выписывали, у нас это не будет занимать вообще никакого времени. Разумеется, это недостижимо, однако в наших силах подойти к этому рубежу бесконечно близко.[67]

Как раз в этом смысле время и похоже на пространство: пространство – время является обобщением понятия пространства с еще одним, временным, измерением, свойства которого слегка отличаются от свойств пространственных измерений. В повседневной жизни мы с этим не сталкиваемся, так как передвигаемся со скоростью намного ниже скорости света. А двигаясь с низкой – намного меньше скорости света – скоростью, мы ведем себя как защитник в американском футболе, который шагает строго вдоль футбольного поля, никогда не отклоняясь от прямой линии влево или вправо. Для такого игрока «пройденный путь» идентичен «набранному количеству ярдов», без всяких двусмысленностей. Именно так время проявляет себя в нашей повседневной жизни: поскольку мы и все наши друзья перемещаемся со скоростью, даже близко не приближающейся к скорости света, мы естественным образом считаем время универсальной характеристикой Вселенной, не задумываясь о том, что это всего лишь способ оценки длины пространственно-временного интервала вдоль конкретных траекторий.

Оставаясь в своем световом конусе

В качестве одного из приемов, помогающих понять, как работает пространство – время согласно специальной теории относительности, можно использовать карту. Изобразите пространство и время и укажите, куда у вас есть возможность переместиться. Давайте для разминки начертим схему ньютоновского пространства – времени. Поскольку ньютоновские пространство и время абсолютны, мы на своей карте уникальным образом определим «моменты постоянного времени». Возьмем четыре измерения пространства и времени и порежем их на уникальные трехмерные экземпляры пространства в определенные моменты времени, как показано на рис. 4.4. (На странице книги мы можем рисовать лишь двумерные картинки; используйте свое воображение и представьте себе на каждом срезе мгновенный снимок трехмерного пространства.) Принципиально то, что ни у кого не возникает возражений относительно различий между пространством и временем; здесь нет никакого произвола.

Каждый ньютоновский объект (человек, атом, космический корабль) определяет мировую линию – путь, по которому этот объект движется сквозь пространство – время (даже когда вы сидите абсолютно неподвижно, вы все равно путешествуете через пространство – время, ведь вы непрерывно стареете, не так ли?[68]). И эти мировые линии подчиняются строгому правилу: пройдя через какой-то момент во времени, они не могут сделать пол-оборота назад и пройти через тот же самый момент второй раз. Ваша скорость может быть сколь угодно высокой – сейчас вы здесь, а секунду спустя уже на расстоянии миллиарда световых лет, но вы обязаны двигаться во времени только вперед, и ваша мировая линия пересекает каждый момент в точности один раз.


Вечность. В поисках окончательной теории времени

Рис. 4.4. Ньютоновские пространство и время. Вселенная нарезана на моменты постоянного времени, однозначно разделяющие время на прошлое и будущее. Мировые линии реальных объектов никогда не смогут вернуться назад по своим следам и пережить какой-то момент времени более одного раза


В теории относительности все совсем не так. На смену ньютоновскому правилу «вы обязаны двигаться вперед во времени» приходит новое правило: вы обязаны двигаться со скоростью меньше скорости света. (Если только вы не фотон или другая безмассовая частица; в таком случае ваша скорость в пустом пространстве всегда в точности совпадает со скоростью света.) А структура, в которую мы выше облекли ньютоновское пространство – время (набор слоев, представляющих уникальные моменты времени), заменяется структурой нового вида: световыми конусами.

Концептуально световые конусы довольно просты. Возьмите событие – одиночную точку в пространстве – времени – и вообразите всевозможные пути, которыми свет мог добраться до этого события или покинуть его; эти пути и образуют световой конус, связанный с данным событием. Гипотетические лучи света, исходящие из события, определяют световой конус будущего, а лучи, приходящие к событию, соответствуют световому конусу прошлого. Говоря «световой конус», мы имеем в виду оба этих конуса. Правило, гласящее, что вы не можете двигаться со скоростью, превышающей скорость света, – эквивалентно заявлению о том, что ваша мировая линия не должна выходить за пределы световых конусов тех событий, через которые она проходит. Мировые линии, подчиняющиеся этому правилу и описывающие объекты со скоростями, не превышающими скорость света, называются времениподобными. Если каким-то образом вам удалось бы превысить скорость света, то ваша мировая линия стала бы «пространственноподобной», так как располагалась бы больше вдоль пространства, чем времени. Мировую линию объекта, движущегося в точности со скоростью света, можно назвать «светоподобной».


Вечность. В поисках окончательной теории времени

Рис. 4.5. Пространство – время вблизи определенного события x. Согласно теории относительности, у каждого события есть световой конус, объединяющий все возможные пути, по которым свет мог бы прийти к этой точке или покинуть ее. События за пределами такого конуса невозможно однозначно отнести к «прошлому» или к «будущему»


В ньютоновском пространстве – времени можно, начиная с одиночного события, определить поверхность постоянного времени, однозначно рассекающую Вселенную на две части. Для этого необходимо набор всех событий разделить на события в прошлом и в будущем (плюс «одновременные» события, расположенные точно на поверхности). В мире, подчиняющемся теории относительности, это невозможно. Световой конус, связанный с событием, разделяет пространство – время на прошлое данного события (события внутри светового конуса прошлого), будущее данного события (события внутри светового конуса будущего), сам световой конус и набор точек за его пределами, не относящихся ни к прошлому, ни к будущему.

Обычно окончательно запутывает людей именно этот, последний фрагмент. Подсознательно основываясь на ньютоновском способе мышления о мире, мы считаем, что события либо случились в прошлом, либо произойдут в будущем, либо происходят одновременно по отношению к некоторому событию на нашей собственной мировой линии. В мире теории относительности события, разделенные пространственноподобным интервалом (то есть находящиеся за пределами световых конусов друг друга) невозможно отнести ни к одной из перечисленных категорий. При желании мы могли бы по своему усмотрению начертить несколько поверхностей, рассечь ими пространство – время и обозначить их как поверхности постоянного времени. Это позволило бы использовать время как координаты в пространстве – времени (вспомните обсуждение в главе 1). Однако результат отражал бы наш личный выбор, а не реальные особенности Вселенной. В теории относительности понятие «одновременных удаленных событий» просто не имеет смысла.[69]


Вечность. В поисках окончательной теории времени

Рис. 4.6. Световые конусы приходят на замену моментам постоянного времени из ньютоновского пространства – времени. Мировые линии массивных частиц должны приходить в событие через световой конус прошлого, а покидать его через световой конус будущего – это времениподобный путь. Пространственноподобные пути соответствуют движению быстрее света и, следовательно, недопустимы


Когда вы рисуете карту пространства – времени, аналогичную изображенной на рис. 4.6, кажется естественным добавить на чертеж вертикальную ось, обозначенную «время», и горизонтальную (или даже две), обозначенную «пространство». Свою версию мы умышленно нарисовали без обозначения каких-либо осей. Смысл пространства – времени в общей теории относительности в том и заключается, что в нем отсутствует фундаментальное разделение на «время» и «пространство». Световые конусы, устанавливающие границы возможного прошлого и будущего для каждого события, не появляются дополнительно к ньютоновскому разделению пространства – времени на время и пространство; они полностью заменяют собой эту структуру. Время можно измерять вдоль каждой отдельной мировой линии, но недопустимо считать его неотъемлемым свойством всего пространства – времени.

С нашей стороны было бы безответственно продолжать обсуждение, не уделив особого внимания еще одному различию между временем и пространством: у времени только одно измерение, тогда как пространство трехмерно.[70] Мы не можем точно сказать, почему это так. Я имею в виду, что мы еще недостаточно глубоко понимаем фундаментальные законы физики, для того чтобы с уверенностью говорить о существовании причин, по которым у времени не может быть более одного измерения или, если уж на то пошло, почему их не может быть ноль. Мы знаем только, что жизнь была бы совсем другой, если бы у времени было несколько измерений. При наличии единственного измерения физическим объектам (движущимся по времениподобным путям) не остается ничего другого, кроме как перемещаться в единственно возможном направлении. Если бы измерений было несколько, не было бы ничего, что заставило бы нас двигаться вперед во времени; мы могли бы, например, ходить кругами. Остается открытым вопрос, можно ли в этом случае построить согласованную физическую теорию, но наша жизнь точно была бы совершенно иной.

Самое знаменитое уравнение Эйнштейна

Опубликованная в 1905 году основная статья Эйнштейна «К электродинамике движущихся тел», в которой он изложил принципы специальной теории относительности, заняла тридцать страниц в Annalen der Physik, ведущем немецком научном журнале того времени. Вскоре после этого ученый опубликовал двухстраничную статью под заголовком «Зависит ли инерция тела от содержащейся в нем энергии?»,[71] в которой указывал на очевидный, но интересный вывод из первой, более длинной работы: энергия объекта, находящегося в покое, пропорциональна его массе. (Понятия «масса» и «инерция» здесь взаимозаменяемы.) По сути, в этом и состоит идея, несомненно, самого знаменитого уравнения в истории:

E = mc2.

Постараемся как следует осмыслить это уравнение, ведь зачастую его понимают не совсем верно. Множитель c2 – это, разумеется, скорость света в квадрате. Заметив в уравнении скорость света, физики сразу подумают: «Ага! Значит, здесь не обошлось без теории относительности». Множитель m – это масса рассматриваемого объекта. В некоторых источниках вы можете прочитать о «релятивистской массе», которая увеличивается, когда объект находится в движении, но это не самая удобная характеристика. Лучше считать m единственной и постоянной массой объекта, которой тот обладает в состоянии покоя. Наконец, E – это не совсем «энергия». В данном уравнении эта величина обозначает энергию покоящегося объекта. Если объект начнет движение, его энергия, конечно же, возрастет.

Таким образом, знаменитое уравнение Эйнштейна утверждает, что энергия объекта, находящегося в покое, равна произведению массы данного объекта на квадрат скорости света. Обратите внимание на, казалось бы, безобидный термин «объект». В мире есть не только объекты. Например, мы уже упоминали темную энергию, ответственную за ускорение Вселенной. Непохоже, чтобы она представляла собой множество частиц или других объектов; темная энергия равномерно наполняет пространство – время. Поэтому если речь идет именно о темной энергии, уравнение E=mc2 неприменимо. Аналогично, некоторые объекты (такие, как фотоны) попросту не могут находиться в состоянии покоя, так как они всегда перемещаются со скоростью света. В таких случаях уравнение Эйнштейна также неприменимо.

Каждому известен практический смысл данного уравнения: даже небольшой объем вещества, обладающего массой, эквивалентен огромному запасу энергии (по сравнению со значениями, с которыми мы имеем дело в обычной жизни, скорость света – огромное число). Существует много разных форм энергии, и специальная теория относительности утверждает, что масса – это одна из форм, которую может принимать энергия. Энергия может переходить из одной формы в другую и обратно, и это происходит постоянно. Область применения формулы E = mc2 не ограничивается покрытыми тайнами сферами ядерной физики и космологии; она распространяется на все типы покоящихся объектов – хоть на Марсе, хоть в вашей гостиной. Если взять лист бумаги и сжечь его, позволив получившимся фотонам улететь вместе со своим запасом энергии, то оставшийся пепел вместе с другими продуктами горения будет весить чуть меньше (как бы мы ни старались собрать их все), чем исходный лист бумаги плюс участвовавший в горении кислород. E = mc2 – это не только атомные бомбы, это важнейшая характеристика круговорота энергии в окружающем мире.

Глава 5. Время гибкое

Вселенная вечна потому, что она живет не для себя; преображаясь, она дает жизнь другим.

Лао-цзы. Дао дэ цзин

Основным стимулом к разработке специальной теории относительности стали не труднообъяснимые результаты экспериментов (хотя эксперимент Майкельсона – Морли, определенно, относится к этой категории), а очевидный конфликт между двумя существовавшими теоретическими подходами.[72] С одной стороны, у нас была ньютоновская механика – основа всего, что мы знали о физических законах, на базе которой строились последующие теории, с другой – предложенная в середине XIX века Джеймсом Клерком Максвеллом теория, объединяющая электричество и магнетизм, которая объяснила впечатляющий диапазон экспериментальных явлений. Проблема заключалась лишь в том, что эти две удивительно успешные теории не сочетались друг с другом. Ньютоновская механика подразумевала, что относительная скорость двух объектов, движущихся мимо друг друга, всегда равна векторной сумме их скоростей; максвелловский электромагнетизм утверждал, что скорость света – исключение из этого правила. Специальная теория относительности сумела объединить эти две теории в единое целое, предоставив новый формализм для механики, где скорость света действительно занимает особое место, а медленные частицы все так же подчиняются правилам ньютоновской модели.

Триумф специальной теории относительности, как и многих других идей, кардинально поменявших актуальную картину мира, имел свою цену. В данном случае теория тяготения, безупречно объяснявшая движение планет, – величайший успех ньютоновской физики – оказалась выброшенной на обочину. Поскольку гравитация, как и электромагнетизм, – самая очевидная сила во Вселенной, Эйнштейн поставил себе целью описать ее на языке теории относительности. Казалось бы, это должно было означать модификацию пары-тройки уравнений, для того чтобы согласовать формулу Ньютона с инвариантностью относительно буста, однако попытки проследовать по этому пути печальнейшим образом провалились.

В конечном итоге Эйнштейна, конечно же, осенила блестящая догадка. По сути, это произошло благодаря тому же эксперименту с космическим кораблем, который мы рассматривали в предыдущей главе (он придумал его первым). Описывая наше путешествие в этом гипотетическом изолированном корабле, я специально несколько раз упомянул, что мы находимся вдалеке от любых гравитационных полей, поэтому нам не приходится беспокоиться о возможности падения на звезду или о том, что наши зонды притянет к себе ближайшая планета. Однако как изменились бы условия задачи, если бы мы находились поблизости от сильного гравитационного поля? Представьте себе, что наш корабль кружит по околоземной орбите. Как бы это повлияло на эксперименты, проводимые внутри космического судна?

Ответ Эйнштейна был таким: гравитационное поле никак не повлияло бы на результаты экспериментов при условии, что мы ограничимся относительно небольшими областями пространства и короткими интервалами времени. Мы можем проводить любые эксперименты, какие только нам заблагорассудится: измерять скорости химических реакций, ронять мячи и смотреть, как они будут падать, наблюдать за поведением весов на пружинах – и при этом получать на околоземной орбите в точности такие же результаты, как если бы мы улетели далеко в межзвездное пространство. Разумеется, если подождать достаточно долго, мы могли бы догадаться, что движемся по орбите. Предположим, мы позволили вилке и ложке свободно парить по кабине, причем из двух предметов чуть ближе к Земле оказалась вилка. Следовательно, гравитационное притяжение на вилку действует чуть сильнее, чем на ложку. Таким образом, вилка будет постепенно отдаляться от ложки, но для того, чтобы заметить это, необходимо, чтобы прошло достаточно много времени. Если же ограничиться достаточно маленькими областями пространства и времени, то какие бы эксперименты мы ни проводили, ни один не укажет на действие силы тяжести, не дающей кораблю покинуть околоземную орбиту.

Сравните сложность обнаружения гравитационного поля с легкостью обнаружения, например, электрического поля. Последнее сделать проще простого: возьмите те же самые вилку и ложку, но придайте вилке положительный заряд, а ложке – отрицательный. Электрическое поле будет толкать противоположно заряженные предметы в противоположные стороны – благодаря этому совсем несложно проверить, есть ли поблизости какие-нибудь электрические поля.

В случае гравитации отличие заключается в том, что не существует такого понятия, как отрицательный гравитационный заряд. Гравитация универсальна – все во Вселенной реагирует на ее воздействие одинаково. Следовательно, ее невозможно обнаружить в небольшой области пространства – времени только по различиям в ее воздействии на объекты в разных событиях пространства – времени. Эйнштейн поднял это наблюдение до статуса закона природы, принципа эквивалентности: никакие локальные эксперименты не позволяют обнаружить существование гравитационного поля.


Вечность. В поисках окончательной теории времени

Рис. 5.1. Гравитационное поле планеты локально неотличимо от результата ускорения ракеты


Я знаю, о чем вы думаете: «Да у меня нет никаких проблем с обнаружением силы тяготения. Я сижу в своем кресле, а не парю по комнате только благодаря гравитации». Но откуда вы знаете, что это гравитация? Проверить это можно, лишь выглянув в окно и убедившись, что вы все еще на поверхности Земли. Если бы вы находились внутри ускоряющегося космического корабля, вас точно так же вдавливало бы в кресло. Как свободное падение в межзвездном пространстве ничем не отличается от свободного падения на околоземной орбите, постоянное ускорение в космическом корабле абсолютно аналогично сидению в кресле в гравитационном поле Земли. Именно об этой «эквивалентности» и идет речь в эйнштейновском принципе: видимое воздействие силы притяжения эквивалентно нахождению в ускоряющейся системе координат. То, что вы чувствуете, сидя в кресле, – это не сила притяжения; это сила реакции кресла подталкивает вас в мягкое место. Согласно общей теории относительности, свободное падение – это естественное, непринудительное состояние движения, и лишь реакция поверхности Земли сбивает нас с пути, не позволяя следовать в заданном направлении.

Искривляя прямые линии

Вы или я, догадавшись в результате долгих размышлений о природе гравитации до великолепного принципа эквивалентности, просто кивнули бы с чувством выполненного долга и продолжили жить дальше. Однако Эйнштейн был куда умнее – он в полной мере осознал, какое важное открытие в действительности сделал. Если силу притяжения невозможно обнаружить с помощью локальных экспериментов, то это на самом деле вовсе никакая и не «сила» – в том смысле, в каком мы считаем силами электричество и магнетизм. Поскольку сила притяжения универсальна, гораздо логичнее думать о ней как о некотором свойстве самого пространства – времени, а не представлять себе гравитацию как силовое поле, растянувшееся на все пространство – время.

В частности, догадался Эйнштейн, гравитацию можно считать проявлением искривления пространства – времени. Мы уже много раз обсуждали роль пространства – времени как обобщения понятия пространства и говорили о том, что время, прошедшее вдоль определенной траектории, – это мера пройденного расстояния в пространстве – времени. Однако пространство не обязательно должно быть жестким, плоским и прямолинейным; оно может искривляться, растягиваться и деформироваться. Эйнштейн утверждает, что то же самое может происходить и с пространством – временем.

Проще всего визуализировать двумерное пространство с помощью модели, например, выполненной из листа бумаги. Плоский лист бумаги не искривлен, и причина, по которой мы в этом уверены, заключается в том, что он подчиняется принципам старой доброй евклидовой геометрии. Две параллельные линии, например, никогда не пересекутся, и расстояние между ними никогда не увеличится и не уменьшится.

И наоборот, рассмотрим двумерную поверхность сферы. В первую очередь нам необходимо обобщить понятие прямой линии, поскольку для сферы данное понятие совсем не так очевидно. В евклидовой геометрии, которую мы изучали в школе, прямая линия соответствует кратчайшему расстоянию между двумя точками. Поэтому давайте сформулируем аналогичное определение: «прямой линией» в искривленной геометрии мы будем называть самую короткую кривую, соединяющую две точки. Такая кривая на сфере представлена дугой большой окружности. Если взять на сфере два исходно параллельных пути, идущих вдоль больших окружностей, то они в итоге пересекутся. Это доказывает, что принципы евклидовой геометрии более не имеют силы, и это один из способов проверить, что геометрия на поверхности сферы действительно искривлена.

Эйнштейн предположил, что четырехмерное пространство – время может быть искривлено, – в точности как поверхность двумерной сферы. Однако в отличие от сферы кривизна пространства – времени не обязательно везде одинакова, величина и форма кривизны могут меняться от точки к точке. Но самая соль вот в чем: даже когда мы видим, что планета «отклоняется от прямого направления силой притяжения», Эйнштейн заявляет, что в действительности эта планета движется по прямой линии. По крайней мере, настолько прямой, насколько это возможно в кривом пространстве – времени, сквозь которое путешествует планета. Так как траектория прямолинейного равномерного движения соответствует максимальному времени, которое часы могут замерить между двумя событиями, можно сказать, что прямая линия сквозь пространство – время – та, которая максимизирует показания на часах, точно так же, как прямая линия в пространстве минимизирует показания одометра.


Вечность. В поисках окончательной теории времени

Рис. 5.2. Плоская геометрия, где параллельные прямые никогда не пересекаются, и геометрия искривленной поверхности, на которой первоначально параллельные прямые в конце концов пересекаются


Давайте, если можно так выразиться, опустимся на Землю. Рассмотрим спутник, движущийся по орбите и оборудованный часами. Также возьмем другие часы и установим их на вершине башни такой же высоты, как и вращающийся спутник. В момент, когда спутник проходит мимо башни, часы синхронизируются. Какие показания мы увидим на обоих часах, когда спутник совершит один оборот? (В целях этого абсолютно нереального мысленного эксперимента мы проигнорируем вращение Земли.) С точки зрения общей теории относительности часы на спутнике движутся без ускорения; они находятся в состоянии свободного падения, и их траектория сквозь пространство – время максимально приближена к прямой линии. В то же время часы, установленные на башне, движутся с ускорением: сила, с которой на них действует башня, не дает им перейти в состояние свободного падения. Следовательно, при следующей встрече спутника с башней часы на спутнике покажут больше времени, чем часы на башне. Таким образом, часы на свободно падающем спутнике идут быстрее, чем часы на набирающей ускорение башне.

Не существует башен, способных вершиной коснуться спутника на околоземной орбите. Однако здесь, на поверхности Земли, есть много часов, которые регулярно обмениваются сигналами с часами на спутниках. Это – основной механизм системы глобального позиционирования (Global Positioning System, GPS), позволяющей в режиме реального времени оказывать помощь в навигации водителям автомобилей. Ваш личный GPS-приемник получает сигналы сразу с нескольких спутников, вращающихся вокруг Земли, и определяет свое местоположение, сравнивая время в разных сигналах. Если бы в расчетах не учитывалось гравитационное растяжение времени, обусловленное общей теорией относительности, то они бы потеряли всякую связь с реальностью. Для GPS-спутника на околоземной орбите продолжительность дня приблизительно на 38 микросекунд больше, чем для предметов на поверхности Земли. Чтобы не обучать приемники уравнениям общей теории относительности, инженеры придумали намного более простое решение: они настраивают часы на спутниках так, чтобы те шли чуть-чуть медленнее, обеспечивая, таким образом, согласованность времени на спутниках и на Земле.


Вечность. В поисках окончательной теории времени

Рис. 5.3. Для часов на башне пройдет меньше времени, чем для часов на спутнике, так как траектория первых соответствует движению с ускорением


Главное уравнение Эйнштейна

Говорят, каждая формула в книге вдвое сокращает объем ее продажи. Надеюсь, эта страница запрятана достаточно глубоко, и никто не обратит на нее внимания до покупки, потому что я все же поддамся искушению и добавлю одно уравнение, а именно уравнение Эйнштейна для гравитационного поля в общей теории относительности:


Вечность. В поисках окончательной теории времени

Именно это уравнение сразу приходит на ум любому физику, когда речь заходит об уравнении Эйнштейна; знакомое всем соотношение E = mc2 – всего лишь частная форма другого глобального закона. Вышеприведенное уравнение выражает основополагающий закон физики – оно показывает, как под воздействием материи во Вселенной пространство – время искривляется, создавая, таким образом, гравитацию. Как слева, так и справа от знака равенства в данном уравнении стоят не простые числа, а тензоры – геометрические объекты, объединяющие сразу несколько величин (если представлять их себе как массивы чисел размером 4 × 4, вы будете недалеки от истины). Левая часть уравнения характеризует кривизну пространства – времени. Правая часть включает всевозможные величины, заставляющие пространство – время искривляться: энергию, импульс, давление и т. п. Одним махом уравнение Эйнштейна объясняет, как любой отдельно взятый набор частиц и полей во Вселенной создает кривизну пространства – времени определенного типа.

Согласно Исааку Ньютону, источником гравитации является масса; более тяжелые объекты порождают более сильные гравитационные поля. Во Вселенной Эйнштейна дело обстоит несколько сложнее. Центральное место занимает не масса, а энергия, а также важную роль в искривлении пространства – времени играют другие величины. Энергия вакуума, например, характеризуется не только энергией, но и натяжением – чем-то вроде отрицательного давления. В растянутой струне или резиновой ленте возникает натяжение, которое не расталкивает объект, а, наоборот, стягивает его обратно в исходное состояние. Именно комбинированное воздействие энергии и натяжения заставляет Вселенную ускоряться в присутствии энергии вакуума.[73]

Взаимодействие энергии с искривлением пространства – времени порождает удивительное следствие: в общей теории относительности энергия не сохраняется. Не каждый эксперт согласится с данным утверждением, и вовсе не потому, что это противоречит прогнозам теории, а потому, что мнения людей относительно того, как определять «энергию» и «сохранение», в значительной степени расходятся. В ньютоновском абсолютном пространстве – времени существует хорошо определенное понятие энергии отдельных объектов, которую мы можем суммировать для получения полной энергии Вселенной, и эта величина никогда не меняется (остается одной и той же в каждый момент времени). Однако в общей теории относительности, которая рассматривает пространство – время динамически, при движении пространства – времени энергия может закачиваться в вещество или высасываться из него. Например, при расширении Вселенной плотность энергии вакуума остается абсолютно постоянной. Это означает, что энергия кубического сантиметра постоянна, а количество кубических сантиметров увеличивается, – следовательно, энергия растет. И наоборот, во Вселенной, где преобладает излучение, полная энергия уменьшается, так как каждый фотон теряет энергию вследствие космологического красного смещения.

Казалось бы, уйти от вывода, что энергия не сохраняется, совсем несложно – нужно просто учесть «энергию гравитационного поля». Однако не все так просто. Оказывается, что однозначного локального определения энергии в гравитационном поле не существует (и неудивительно, ведь гравитационное поле не поддается локальному обнаружению). Приходится стиснув зубы признать, что в общей теории относительности энергия действительно не сохраняется, за исключением некоторых особых случаев.[74] Однако не следует думать, что, признавая это, мы смиряемся с погружением мира во тьму хаоса; зная искривление пространства – времени, можно точно предсказать видоизменение любого интересующего нас источника энергии.

Дыры в пространстве – времени

Вероятно, самое занимательное и впечатляющее предсказание общей теории относительности – существование черных дыр. Им часто дают довольно приземленное определение: «Объекты, гравитационное поле которых настолько сильно, что покинуть их не могут даже кванты света». В действительности все намного интереснее.

Даже в ньютоновской теории гравитации ничто не мешает нам рассматривать настолько массивные и плотные объекты, что скорость убегания от них будет выше скорости света, – это, по сути, «черные» тела. Данная идея не нова – ее рассматривали, в частности, британский геолог Джон Митчелл в 1783 году и Пьер-Симон Лаплас в 1796-м.[75] В то время ее жизнеспособность вызывала определенные сомнения, ведь никто не мог однозначно сказать, влияет ли гравитация на свет, а скорость света еще не приобрела ту фундаментальную значимость, которая ей приписывается в теории относительности. Однако еще важнее то, что, казалось бы, незначительно отличающиеся формулировки «скорость убегания выше скорости света» и «кванты света не могут покинуть» на самом деле скрывают огромные различия в базовых понятиях. Скорость убегания – это скорость, с которой объект должен начать двигаться вверх, для того чтобы вырваться из гравитационного поля тела без какого-либо дополнительного ускорения. Если я захочу запустить бейсбольный мяч в космическое пространство, мне придется бросить его в воздух со скоростью, превышающей скорость убегания. Но почему бы мне, с другой стороны, не поместить тот же самый мячик в ракету и не отправить в космос путем постепенного ускорения? В таком случае мне даже не придется заботиться о том, чтобы достичь скорости убегания. Другими словами, не обязательно достигать скорости убегания для того, чтобы фактически покинуть гравитационное поле тела; если у вас достаточно топлива, вы можете перемещаться с той скоростью, которая вам удобна, даже если она будет намного ниже.

Однако настоящая черная дыра, согласно общей теории относительности, – штука куда более суровая. Это настоящая область невозврата: оказавшись в черной дыре, вы уже не сможете ее покинуть, какие бы технологические диковинки ни находились в вашем распоряжении. Причина в том, что общая теория относительности, в отличие от ньютоновской гравитации и специальной теории относительности, допускает искривление пространства – времени. В каждой точке пространства – времени присутствуют световые конусы, делящие пространство на прошлое, будущее и области, достичь которых невозможно. Однако, в отличие от специальной теории относительности, в общей теории относительности световые конусы не закреплены и не выстроены; они могут наклоняться и растягиваться, а пространство – время искривляется под действием вещества и энергии. Световые конусы, находящиеся вблизи тяжелого объекта, наклоняются в его сторону в полном соответствии с утверждением о том, что объекты притягиваются гравитационными полями. Черная дыра – это область пространства – времени, в которой световые конусы наклонились так сильно, что покинуть ее соответствующие объекты смогли бы, только превысив скорость света. Несмотря на сходство формулировок, это намного более серьезное заявление, чем «скорость убегания больше скорости света». Граница, определяющая область черной дыры и отделяющая области, из которых у вас еще есть шанс сбежать, от областей, где вам ничего не остается, кроме как продолжать погружаться в глубь неизвестности, называется горизонтом событий.

В реальном мире черные дыры могут образовываться разными способами, но стандартным сценарием считается коллапс достаточно массивной звезды. В конце 1960-х годов Роджер Пенроуз и Стивен Хокинг доказали одно поразительное свойство общей теории относительности: когда гравитационное поле становится достаточно сильным, обязательно образуется сингулярность.[76] Возможно, вам это кажется само собой разумеющимся, ведь сила притяжения становится все больше и больше и в итоге стягивает вещество в одну точку. Однако в ньютоновской гравитационной теории все происходит совсем не так. Если очень сильно постараться, то добиться сингулярности, конечно, можно, но в общем случае вещество при сжатии всего лишь достигает максимальной плотности, и больше ничего не происходит. В противоположность этому, в общей теории относительности плотность и кривизна пространства – времени возрастают неограниченно до тех пор, пока не образуют сингулярность бесконечной кривизны. Подобную сингулярность можно найти в любой черной дыре.


Вечность. В поисках окончательной теории времени

Рис. 5.4. Световые конусы наклоняются вблизи черной дыры. Горизонт событий, определяющий границу черной дыры, – это место, где конусы наклоняются так сильно, что единственной надеждой на побег становится движение со скоростью, превышающей скорость света


Было бы неверно считать, что сингулярность находится в «центре» черной дыры. Если внимательно рассмотреть схему на рис. 5.4, иллюстрирующую пространство – время вблизи черной дыры, то мы увидим, что световые конусы внутри горизонта событий продолжают наклоняться в сторону сингулярности. Нам уже известно, что световые конусы определяют то, что наблюдатель в данном событии называет «будущим». Таким образом, как и сингулярность Большого взрыва в прошлом, сингулярность черной дыры в будущем – это момент во времени, а не место в пространстве. И оказавшись за горизонтом событий, вы не сможете повернуть назад: сингулярность станет вашей суровой, но неизбежной судьбой, потому что она находится впереди во времени, а не по какому-то направлению в пространстве. Уклониться от попадания в сингулярность так же нереально, как уклониться от попадания в завтра.

Пересекая горизонт событий, вы вряд ли заметите что-то необычное. Это не какой-то силовой барьер, не энергетическая стена, проходя сквозь которую вы понимаете, что попали в черную дыру.[77] Это всего лишь уменьшение числа вариантов развития событий; вариант «возвращение во внешнюю Вселенную» становится невозможным, а единственно доступным остается «нырок в сингулярность». Вообще, зная массу черной дыры, вы могли бы даже точно рассчитать, сколько времени (согласно вашим часам) пройдет до момента достижения сингулярности, когда вы прекратите существовать. В черной дыре, масса которой равна массе Солнца, это займет около одной миллионной доли секунды. Возможно, вы попробовали бы отсрочить ужасную гибель и сбежать от сингулярности, запустив ракетный двигатель, однако на самом деле это сыграло бы против вас. Согласно теории относительности, движение без ускорения максимизирует время между двумя событиями. Пытаясь бороться с неизбежным, вы лишь ускорили бы приближение конца.[78]


Вечность. В поисках окончательной теории времени

Рис. 5.5. Объект приближается к горизонту событий, но удаленному наблюдателю кажется, что он всего лишь замедляется и краснеет. Момент на мировой линии объекта, когда он пересекает горизонт, – это последнее мгновение, когда его можно увидеть снаружи


Момент на вашей траектории, когда вы, падая, пересекаете горизонт событий, определяется однозначно. Предположим, что вы отправляете своему другу, находящемуся за пределами черной дыры, непрерывный поток радиосигналов. Он получит только те сигналы, которые вы успели отправить до прохождения горизонта событий, и ни одного сигнала изнутри черной дыры. Но при этом вы не исчезнете внезапно из его поля зрения. Он продолжит получать ваши радиосигналы – просто через все более долгие интервалы и в искаженном виде, поскольку из-за большего красного смещения длина волны сигналов также будет постоянно возрастать. Последний момент вашего падения перед пересечением горизонта с точки зрения внешнего наблюдателя вообще будет «заморожен», хотя картинка и будет с течением времени становиться все более тусклой и краснеть.

Белые дыры: черные дыры наоборот

Если вдуматься, во всей этой истории с черными дырами есть кое-что очень интригующее – выраженная асимметрия времени. В предыдущем обсуждении мы то и дело играючи вворачивали выражения, предполагающие направленность времени: мы говорили «стоит вам зайти за горизонт событий, вы уже не сможете вернуться» – но не «выйдя за пределы горизонта событий, вы уже не сможете вернуться». И это не проявление нашей лингвистической беспечности – сама природа черной дыры подразумевает асимметричность во времени. Сингулярность всегда в вашем будущем, а не в прошлом, и на этот счет не может быть двух мнений.

Это не проявление каких-то основополагающих физических законов. Общая теория относительности идеально симметрична во времени: для каждого пространства – времени, представляющего решение уравнения Эйнштейна, существует другое решение, которое идентично предыдущему, но обладает обратным ходом времени. Черная дыра – это одно из решений уравнения Эйнштейна, поэтому существуют и эквивалентные решения, «живущие в другую сторону», – белые дыры.

Для того чтобы получить определение белой дыры, нужно всего лишь взять описание черной дыры и заменить все слова, относящиеся ко времени, терминами с противоположным значением. В таком случае сингулярность окажется в прошлом, из которого появляются световые конусы. Горизонт событий будет лежать в будущем относительно сингулярности, а еще дальше будет находиться внешний мир. Горизонт обозначает место, выйдя за пределы которого вы уже никогда не сможете вернуться в область белой дыры.

Однако почему мы постоянно слышим о черных дырах во Вселенной, а о белых практически никто не говорит? Начнем с того, что «создать» белую дыру невозможно. Поскольку мы находимся во внешнем мире, сингулярность и горизонт событий белой дыры обязательно остались у нас в прошлом. Так что нас вообще не должен волновать вопрос, как сконструировать белую дыру. Если мы когда-либо обнаружим такой объект, это будет означать, что он существовал во Вселенной с самого начала.

Если подходить к вопросу со всей серьезностью, то нас должно насторожить слово «создать». Почему в мире, живущем в соответствии с обратимыми законами физики, мы мыслим в терминах «создания» вещей, которые продолжают существовать в будущем, но не вещей, способных попасть в прошлое и занять достойное место там? По той же причине, почему мы верим в свободу воли: условие низкой энтропии в прошлом ставит жесткие ограничения на то, что могло произойти раньше, а отсутствие подобных граничных условий в будущем оставляет практически бесконечное число возможностей дальнейшего развития событий.


Вечность. В поисках окончательной теории времени

Рис. 5.6. Пространство – время белой дыры – это отраженная во времени версия черной дыры


Следовательно, ответ на вопрос «Почему процесс образования черной дыры кажется достаточно понятным, а белые дыры мы если и найдем во Вселенной, то уже в готовом состоянии?» должен быть очевидным: потому что энтропия черной дыры больше, чем энтропия тех вещей, из которых ее можно было бы сделать. На самом деле вычислить значение энтропии весьма непросто; при этом необходимо принимать во внимание излучение Хокинга (мы поговорим об этом в главе 12). Ключевой момент для нас – то, что энтропия черной дыры чрезвычайно велика. Именно черные дыры способны пролить свет на связь между гравитацией и энтропией – двумя важнейшими ингредиентами окончательного объяснения стрелы времени.

Глава 6. Петляя во времени

О да, мой сын, в пространстве время здесь!

Рихард Вагнер. Парсифаль

Все знают, как выглядит машина времени: это такие стимпанковские сани с красным бархатным креслом, переливающимися огоньками и гигантским вращающимся штурвалом позади. Для представителей юного поколения сносной заменой будет навороченный спортивный автомобиль, увешанный хитрыми приспособлениями, а наши британские читатели наверняка отдадут предпочтение лондонской полицейской будке в стиле 50-х годов.[79] Функциональные подробности могут разниться от модели к модели, но одно известно точно: отправляясь в путешествие во времени, машина обязана дематериализоваться в облаке спецэффектов, для того чтобы возникнуть где-то за многие тысячелетия в прошлом или будущем.

Однако на самом деле все происходит совсем не так. Не потому, что путешествия во времени невозможны, а сама идея выглядит нелепицей; реальны или нереальны путешествия во времени – вопрос куда более сложный и неопределенный, чем вы можете себе вообразить. Я много раз подчеркивал сходство времени с пространством. Продолжим эту мысль: если вам повезет наткнуться на рабочую машину времени в лаборатории какого-нибудь сумасшедшего изобретателя, то вы увидите обычную «машину пространства» – банальное транспортное средство того или иного рода, предназначенное для перемещения из одного места в другое. Если уж вам хочется визуализировать путешествие в машине времени, представляйте себе ее старт как запуск космического корабля, а не как исчезновение в клубах дыма.

Так что же в действительности подразумевает путешествие во времени? Для нас интерес могут представлять два случая: путешествие в будущее и путешествие в прошлое. В будущее попасть легко: как сидели в кресле, так и продолжайте сидеть. Каждый час вы будете перемещаться ровно на час в будущее. Вы возразите: «Но ведь это скучно! Я хочу попасть далеко в будущее и как можно быстрее, а не переползать за каждый час всего лишь на один час вперед. Я хочу увидеть двадцать четвертый век еще до обеда!» Однако нам известно, что невозможно двигаться со скоростью, превышающей один час в час относительно часов, которые путешествуют вместе с вами. Вы можете попытаться перехитрить себя, погрузившись в сон или в искусственную кому, но время идти не перестанет.

С другой стороны, вы можете изменить промежуток времени, затрачиваемый на прохождение вдоль вашей мировой линии по сравнению с мировыми линиями других людей. В ньютоновской Вселенной это невозможно, так как время универсально и вдоль всех мировых линий, соединяющих одни и те же два события, проходит один и тот же период времени. Однако специальная теория относительности позволяет нам управлять промежутками времени путем перемещения в пространстве. Движению без ускорения соответствует самый длинный временной интервал между двумя событиями; поэтому если вы желаете быстро (с вашей точки зрения) попасть в будущее, вам нужно всего лишь двигаться сквозь пространство – время по сильно искривленному пути. Вы можете улететь в межзвездное пространство на скорости, близкой к скорости света, а затем вернуться или, если запас топлива на вашей ракете достаточно велик, просто летать кругами на сверхвысокой скорости, никогда особенно не удаляясь от стартовой точки в пространстве. Когда вы приземлитесь и выйдете из космического корабля, помимо головокружения у вас будет понимание, что вы «переместились в будущее», или, точнее, что вдоль вашей мировой линии прошло меньше времени, чем вдоль мировых линий всех тех людей, с которыми вы попрощались при старте. Путешествовать в будущее просто, а как быстро вы будете перемещаться – вопрос исключительно ваших технологических возможностей. Это абсолютно не противоречит фундаментальным законам физики.

Однако в какой-то момент вам захочется вернуться обратно, и тут вы столкнетесь с настоящими трудностями. Главные проблемы путешествия во времени связаны как раз с путешествием в прошлое.

Жульничество с пространством – временем

Несмотря на уроки, которые мы извлекли из фильмов о Супермене, путешествие назад во времени не означает изменения направления вращения Земли на обратное. В этом должно участвовать само пространство – время. Если только, разумеется, вы не решите сжульничать, начав двигаться со скоростью выше скорости света.

В ньютоновской Вселенной вопрос путешествия назад во времени вообще не ставится. Мировые линии пронзают пространство – время, которое однозначно разделяется на трехмерные моменты равного времени, и правило о том, что мировые линии не могут менять направление и возвращаться назад, нерушимо. В специальной теории относительности дела обстоят не намного лучше. Определение «моментов равного времени» во Вселенной достаточно произвольно, однако в каждом событии мы сталкиваемся с ограничениями, накладываемыми световыми конусами. Будучи существами, сделанными из обычной материи, мы вынуждены двигаться из любого события вперед, внутрь светового конуса. Поэтому у нас нет никакого шанса вернуться во времени назад; на диаграмме пространства – времени мы неустанно шагаем вверх.

Если бы мы были сделаны из чего-то необычного, например тахионов – частиц, скорость движения которых всегда превышает скорость света, ситуация была бы немного интереснее. К сожалению, мы состоим не из тахионов, и есть веские основания полагать, что тахионы вообще не существуют. В отличие от обычных частиц, тахионы всегда вынуждены двигаться за пределами светового конуса. В специальной теории относительности объект, движущийся вне светового конуса, с точки зрения некоторых наблюдателей перемещается во времени назад. Кроме того, световые конусы – единственные структуры, определенные в пространстве – времени теории относительности; такого понятия, как «пространство в какой-то момент времени», попросту нет. Таким образом, если вы с какой-то частицей оказываетесь в одном и том же событии и она вылетает за пределы вашего светового конуса (быстрее света), это означает, что относительно вас она может перемещаться в прошлое. Остановить ее невозможно.

Получается, что тахион способен совершить нечто пугающее и непредсказуемое: «стартовать» из некоего события на мировой линии обычного, движущегося медленнее скорости света объекта (мы помним, что событие определяется некоторым положением в пространстве и некоторым моментом времени) и проследовать по пути, который приведет его в предыдущую точку на той же самой мировой линии. Вооружившись фонариком, испускающим тахионы, вы (по идее) могли бы сконструировать хитрую систему зеркал и отправлять световые сигналы азбукой Морзе в прошлое самому себе. Вы могли бы предостеречь себя в прошлом, что вот в то посещение ресторана креветки заказывать не стоит, или что не нужно идти на свидание со странноватой коллегой, или что неразумно вкладывать все свои сбережения в акции Pets.com.

Очевидно, что путешествия назад во времени порождают возможность возникновения парадоксов, а это способно любого человека выбить из колеи. Однако вернуть все на свои места совсем несложно: объявите, что тахионы, скорее всего, не существуют, а также несовместимы с законами физики.[80] Это одновременно и продуктивно, и недалеко от истины, по крайней мере до тех пор, пока вы не выходите за рамки специальной теории относительности. Когда в игру вступит искривленное пространство – время, все станет куда запутаннее и увлекательнее.


Вечность. В поисках окончательной теории времени

Рис. 6.1. Если бы тахионы существовали, они могли бы испускаться обычными объектами и улетать, для того чтобы быть поглощенными в прошлом. В каждом событии на своей траектории тахион двигается за пределом светового конуса


Круги во времени

Траектории в пространстве – времени тех из нас, кто сделан не из тахионов, ограничены скоростью света. Начиная с события, определяющего наше текущее местоположение – каким бы оно ни было, мы можем двигаться только «вперед во времени», навстречу какому-то другому событию внутри нашего светового конуса. Говоря научным языком, мы движемся сквозь пространство – время по времениподобной траектории. Это локальное требование, распространяющееся не на всю Вселенную, а лишь на некоторую окрестность вокруг нас. Но в общей теории относительности пространство – время искривлено. Это означает, что световые конусы в нашей окрестности не обязательно смотрят «в ту же сторону», что и световые конусы где-то вдалеке, – они могут быть наклонены по отношению друг к другу. Вспомните обсуждение из предыдущей главы, где световые конусы наклонялись в сторону черной дыры, – здесь мы говорим о точно таком же явлении.

Теперь представьте себе, что, вместо того чтобы наклоняться в сторону сингулярности и создавать черную дыру в нашем пространстве – времени, световые конусы формируют окружность, как показано на рис. 6.2. Очевидно, что это потребовало бы наличия чрезвычайно сильного гравитационного поля, но мы можем позволить себе принять такое допущение. Если бы пространство – время было искривлено таким способом, то это бы порождало потрясающее следствие: мы могли бы следовать по времениподобному пути всегда вперед, в световой конус будущего, но в конечном счете встречаться с самими собой в каком-то момент в прошлом. Иными словами, наша мировая линия описывала бы в пространстве замкнутую окружность, пересекающую саму себя, благодаря чему мы в какой-то момент своей жизни сталкивались бы с собой образца какого-то другого момента.


Вечность. В поисках окончательной теории времени

Рис. 6.2. В искривленном пространстве – времени световые конусы могли бы выстраиваться в окружность, формируя закрытые времениподобные пути


Такая мировая линия – всегда движущаяся вперед с локальной точки зрения, но умудряющаяся пересечься с самой собой в прошлом – называется замкнутой времениподобной кривой, или ЗВК. Именно ее мы имеем в виду, когда говорим о «машине времени» в рамках общей теории относительности. Для перемещения вдоль замкнутой времениподобной кривой вам потребуется обычное средство передвижения через пространство, скажем космический корабль. Возможно, сойдет и что-нибудь более приземленное: например, продолжать сидеть «без движения» в собственном кресле. Искривление пространства – времени само приведет вас в момент прошлого. Это центральное свойство общей теории относительности, которое сыграет важную роль позже, когда мы вернемся к обсуждению зарождения Вселенной и проблемы энтропии: пространство – время не высечено в мраморе, оно может меняться (даже появляться или исчезать), реагируя на воздействие материи и энергии.

В общей теории относительности легко найти пространство – время, и даже не одно, в котором встречаются замкнутые времениподобные кривые. Еще в 1949 году математик и логик Курт Гёдель нашел решение уравнения Эйнштейна, описывающее «вращающуюся» Вселенную. Его решение содержало замкнутые времениподобные кривые, проходящие через каждое событие. Гёдель подружился с бывшим уже в возрасте Эйнштейном во время работы в Институте перспективных исследований в Принстоне, и идея решения возникла из бесед между двумя учеными.[81] В 1963 году новозеландский математик Рой Керр нашел точное решение, описывающее вращающуюся черную дыру; поразительно, что в этом случае сингулярность принимает форму быстро вращающегося кольца, в окрестности которого находятся замкнутые времениподобные кривые.[82] А в 1974 году Франк Типлер доказал, что бесконечно длинный, состоящий из вещества вращающийся цилиндр, при условии, что он обладает достаточной плотностью и вращается достаточно быстро, будет создавать вокруг себя замкнутые времениподобные кривые.[83]

Однако для того чтобы сконструировать пространство – время с замкнутыми времениподобными кривыми, совсем не обязательно прилагать такие усилия. Возьмите самое заурядное плоское пространство – время, знакомое вам еще по специальной теории относительности. А теперь представьте, что времениподобное направление (определяемое каким-то конкретным движущимся без ускорения наблюдателем) представляет собой окружность, а не простирается вперед в бесконечность. В такой Вселенной объект, движущийся вперед во времени, будет снова и снова возвращаться к одному и тому же моменту в истории Вселенной. В фильме Гарольда Рамиса «День сурка» герой Билла Мюррея каждое утро просыпается в одной и той же обстановке и в течение дня оказывается ровно в тех же ситуациях, которые уже пережил днем раньше. Вселенная с циклическим временем, о которой мы говорим здесь, приблизительно так и выглядит. Однако имеются два важных исключения: во-первых, все дни были бы совершенно одинаковыми, включая действия и поступки главного героя, а во-вторых, вырваться из этого круга было бы невозможно. В частности, даже завоевание Энди Макдауэлл вас бы не спасло.

Вселенная с циклическим временем – не только игровая площадка для создателей фильмов; она также представляет собой точное решение уравнения Эйнштейна. Как вы помните, выбрав движущуюся без ускорения систему координат, мы можем «нарезать» четырехмерное плоское пространство – время на трехмерные моменты одинакового времени. Возьмем два таких среза: скажем, полночь 2 февраля и полночь 3 февраля – два момента во времени, распространенные на всю Вселенную (в данном конкретном случае плоского пространства – времени в данной конкретной системе координат). Теперь возьмем этот отрезок пространства – времени длиной в один день между двумя срезами, а все остальное отбросим. Наконец, отождествим время начала и время конца, то есть сформулируем правило, согласно которому как только мировая линия доходит до какой-то точки в пространстве 3 февраля, она моментально заново появляется из соответствующей точки пространства в прошлом, 2 февраля. По сути, это то же самое, что скатать в трубочку лист бумаги и склеить края. В любом событии, даже в полночь 2 и 3 февраля, все выглядит совершенно гладко. Пространство – время плоское: время представляет собой окружность, а все точки на окружности абсолютно равноправны и ничем не отличаются друг от друга. Это пространство – время изобилует замкнутыми времениподобными кривыми, как показано на рис. 6.3. Возможно, у нас получилась не самая реалистичная Вселенная, однако мы убедились в том, что сами по себе правила общей теории относительности не противоречат существованию замкнутых времениподобных кривых.


Вечность. В поисках окончательной теории времени

Рис. 6.3. Вселенная с циклическим временем, сконструированная путем отождествления двух моментов в плоском пространстве – времени. Показаны две замкнутые времениподобные кривые: первая замыкается за один проход (из a в a'), а вторая описывает две петли (из b в b', затем из b' в b' ')


Врата во вчера

Есть две основные причины, почему большинство людей, хотя бы немного времени посвятивших обдумыванию возможности путешествий во времени, поместили их на полку «Научная фантастика», а не «Серьезные исследования». Во-первых, трудно представить, как на практике создать замкнутую времениподобную кривую, несмотря на то что, как мы увидим далее, определенные идеи все же были высказаны. Во-вторых, и это куда более основательная причина, в действительности практически невозможно придумать разумное толкование такого явления, как «путешествие во времени». Стоит нам согласиться с возможностью путешествий в прошлое, и мы сможем легко привести массу примеров абсурдных и парадоксальных ситуаций.

Для того чтобы прояснить это утверждение, рассмотрим следующий простой пример машины времени: врата во вчерашний день (с тем же успехом мы могли бы взять «врата в завтра» – просто перемещаться нужно было бы в противоположную сторону). Представьте себе, что в поле стоят волшебные ворота. Это совершенно обычные, ничем не примечательные ворота, за одним важным исключением: когда вы проходите в них «спереди», то оказываетесь на том же самом поле с другой стороны ворот, но на день раньше – по крайней мере с точки зрения «фонового времени», измеряемого внешними наблюдателями, которые никогда не проходят сквозь ворота. (Предположим, что в поле установлены фиксированные часы, которые никто не проносит сквозь ворота, и эти часы синхронизированы с покоящейся системой координат самого поля.) И наоборот, когда вы проходите сквозь ворота «сзади», вы оказываетесь перед ними, но на день позже того момента, когда вы собрались перешагнуть порог.

Это все звучит удивительно и волшебно, но в действительности мы всего лишь описали частный тип необычного пространства – времени, идентифицировав набор точек в пространстве в разные моменты времени. Никто не исчезает в клубах дыма; с точки зрения любого конкретного наблюдателя его мировая линия непрерывно продвигается в будущее, секунда за секундой. Заглядывая в ворота спереди, вы не натыкаетесь взором на чернильно-черную пустоту или всполохи психоделических цветов; вы видите поле, простирающееся с другой стороны ворот, – точно так же, как если бы посмотрели на него сквозь любую другую дверь. Единственное отличие заключается в том, что вы видите, как это поле выглядело вчера. Если вы наклоните голову и посмотрите на поле сбоку от ворот, то увидите, как оно выглядит сегодня, тогда как взгляд сквозь ворота спереди дает вам представление о вчерашнем состоянии поля. Аналогично, если обойти ворота и посмотреть сквозь них сзади, то вы увидите другую часть поля – в том состоянии, в котором она будет находиться завтра. Ничто не мешает вам пройти сквозь ворота и сразу же вернуться назад и проделывать это столько раз, сколько вам заблагорассудится. Более того, вы можете даже поставить ноги по обе стороны ворот и стоять так сколь угодно долго. Вы не будете чувствовать никакого странного покалывания, и у вас не возникнет никаких других необычных ощущений. Все будет казаться совершенно нормальным, за исключением точных часов, закрепленных по обеим сторонам ворот: разница показаний на этих часах будет составлять ровно одни сутки.


Вечность. В поисках окончательной теории времени

Рис. 6.4. Врата во вчера и одна из возможных мировых линий. Путешественник проходит через ворота спереди (a) (на рисунке это справа) и оказывается позади ворот на один день раньше (a’). Он проводит половину дня, гуляя по полю, а затем снова проходит через ворота опять спереди (b) и переносится на один день назад (b’). После этого он выжидает целый день и проходит через ворота сзади (c), появившись в итоге перед воротами через один день в будущем


Пространство – время с вратами во вчера совершенно определенно содержит замкнутые времениподобные кривые. Все, что вам нужно сделать, – это пройти через ворота спереди, для того чтобы вернуться на один день назад, затем обойти ворота, снова оказавшись перед ними, и терпеливо подождать. Ровно через день вы обнаружите себя в том же месте и моменте пространства – времени, в котором вы находились сутки назад (по вашим персональным часам), и, разумеется, вы встретитесь там с копией себя образца прошлых суток. При желании вы сможете обменяться любезностями с собой из прошлого и обсудить подробности прошедшего дня. В этом и заключается суть замкнутой времениподобной кривой.

И здесь в игру вступают парадоксы. По какой-то причине физикам нравится делать свои мысленные эксперименты как можно более жестокими и беспощадными; вспомните, к примеру, Шрёдингера и его несчастного кота.[84] Когда дело доходит до путешествий во времени, стандартный сценарий включает перемещение в прошлое и убийство своего дедушки до того, как тот успеет встретиться с бабушкой, чтобы, таким образом, предотвратить собственное рождение. Парадокс, порождаемый этим деянием, очевиден: если ваши дедушка с бабушкой так и не встретились, то как вы могли появиться на свет, а потом отправиться в прошлое и убить одного из своих предков?[85]

Однако не обязательно воображаемые события должны быть настолько драматичными. Вот более простой и мирный пример парадокса. Вы подходите к вратам во вчера и замечаете, что вас там ждет ваша копия, выглядящая примерно на день старше, чем вы сейчас. Поскольку вам известно о существовании замкнутых времениподобных кривых, вы не слишком удивляетесь такому повороту событий: очевидно, что ваша копия просто бродила вокруг ворот в ожидании встречи с вами, для того чтобы пожать руку своей версии из прошлого. Итак, вы двое мило беседуете некоторое время, а затем вы покидаете компанию своей копии и проходите через ворота спереди, попадая в результате во вчерашний день. Но после этого – исключительно из упрямства – вы решаете, что более не желаете придерживаться традиции. Вместо того чтобы болтаться на этом поле, готовясь к встрече со своей более молодой копией, вы уходите оттуда, ловите такси в аэропорт и садитесь на рейс до Багамских островов. Вы даже не встречаетесь с той копией себя, которая первой прошла через ворота. Однако та копия встречалась со своей копией из будущего – ведь вы храните воспоминания об этой встрече. Что же происходит?

Одно простое правило

Существует простое правило, разрешающее все возможные парадоксы путешествий во времени.[86] Оно гласит: парадоксов не бывает.

Вот так. Проще простого.

Пока что ученые не обладают достаточными знаниями для того, чтобы говорить, допускают ли физические законы существование макроскопических замкнутых времениподобных кривых. Если нет, то и необходимости беспокоиться о парадоксах тоже нет. Но гораздо интереснее такой вопрос: всегда ли замкнутые времениподобные кривые приводят к возникновению парадоксов? Если это так, то их существование невозможно и вопрос закрыт.

Однако вполне возможно, что парадоксы не являются непременными спутниками замкнутых времениподобных кривых. Мы все согласны, что события, противоречащие логике, происходить не могут. В частности, в классической физике, с которой мы работаем в данный момент (в противоположность квантовой механике[87]), существует один-единственный верный ответ на вопрос «Что произошло в окрестности данного события в пространстве – времени?». В каждой области пространства – времени что-то происходит: вы проходите сквозь ворота, вы находитесь в одиночестве, вы встречаете кого-то еще, вы почему-то не приходите на встречу, – что угодно. И это что-то является именно тем, чем является, и было именно тем, чем было, и будет именно тем, чем будет, сейчас и всегда. Если в каком-то событии пространства – времени ваш дедушка заигрывал с вашей бабушкой, то именно это и происходило в том событии. Вы никак не сможете это изменить, потому что это уже случилось. Одинаково невозможно повлиять на события в прошлом как пространства – времени, содержащего замкнутые времениподобные кривые, так и пространства – времени, где таких кривых нет.[88]

Очевидно, что непротиворечивые истории возможны, причем даже в пространствах – временах с замкнутыми времениподобными кривыми. На рис. 6.4 изображена мировая линия одного бесстрашного путешественника, который дважды перепрыгивает назад во времени, а затем ему становится скучно, и он делает один прыжок в будущее, прежде чем уйти от волшебных ворот. Его перемещения не таят никаких парадоксов. Точно так же мы могли бы взять сценарий из предыдущего раздела и немного переделать его, чтобы исключить парадоксы. Вы подходите к воротам, видите свою копию, которая старше вас на один день; вы обмениваетесь любезностями, а затем проходите через ворота спереди и оказываетесь во вчерашнем дне. Однако вместо того чтобы демонстрировать упрямство и уходить прочь, вы выжидаете один день и встречаетесь со своей более молодой копией, с которой обмениваетесь любезностями, прежде чем пойти по своим делам. Какой бы участник событий ни описал происходящее, его версия будет превосходно согласована.

Мы могли бы придумать массу куда более драматичных историй, которые тем не менее будут безупречно согласованы. Вообразите, что нас назначили Стражами Врат, и наша работа – неусыпно наблюдать за проходящими сквозь ворота. Однажды, стоя по сторонам от ворот, мы замечаем незнакомца, вышедшего из ворот с тыльной стороны. Ничего странного; это всего лишь означает, что незнакомец завтра войдет (или уже вошел? – в нашем языке нет подходящих конструкций для описания путешествий во времени) в ворота спереди. Продолжая бдительно охранять ворота, мы видим, что этот незнакомец бродит по округе в течение дня, а затем, спустя ровно двадцать четыре часа, спокойно проходит через ворота спереди. Никто больше ниоткуда не появлялся, а незнакомцы, один из которых вошел в ворота, а другой вышел из них, формируют замкнутый цикл – эти двадцать четыре часа и есть полное время жизни незнакомца. История может показаться жутковатой и невероятной, однако в ней отсутствуют парадоксы и нет никаких логических противоречий.[89]

Вопрос же, который интересует нас больше всего, – что произойдет, если мы попытаемся мутить воду? Если решим, что не хотим следовать предписанному плану? В истории, где вы встречаетесь со своей копией старше вас на один день, а затем пересекаете порог врат и оказываетесь в прошлом, есть потенциальная развилка. Кажется, что после того, как вы прошли сквозь врата, у вас есть выбор: вы можете послушно выполнить свое предназначение или же взбунтоваться и уйти прочь. Итак, если вы все же решите пойти наперекор, что вас остановит? Вот здесь вся эта история с парадоксами и становится по-настоящему серьезной.

Мы знаем ответ: парадоксы невозможны. Если вы встретились со своей старшей копией, то мы можем утверждать с абсолютной метафизической уверенностью, что как только вы достигнете этого возраста, вы обязаны будете встретиться со своим более молодым дублем. Представьте себе, что мы убрали из условий задачи непослушные человеческие создания и рассматриваем простые неодушевленные объекты, например последовательность биллиардных шаров, прокатывающихся сквозь ворота. Существует масса наборов согласованных явлений, которые могли бы происходить в различных событиях пространства – времени, но только один из наборов произойдет в действительности.[90] Согласованные истории случаются, несогласованные – нет.

Энтропия и машины времени

Если заглянуть в самую суть вещей, то станет очевидно, что в действительности нас волнуют вовсе не законы физики: главная проблема – свобода воли. Мы живем с уверенностью, что над нами не может довлеть никакое предопределение, согласно которому мы так или иначе сделаем то, чего делать не хотим. Трудно сохранять такое ощущение, увидев, что мы уже делаем это.

Иногда наша свободная воля порабощается законами физики. Если выбросить человека из окна на верхнем этаже небоскреба, то он со свистом пронесется вниз и ударится о землю, как бы сильно ему ни хотелось улететь и безопасно приземлиться где-нибудь подальше. С таким вариантом предопределения мы смириться в состоянии. Однако принять намного более детализированное предопределение, навязываемое замкнутыми времениподобными кривыми, куда труднее. Создается впечатление, что существование непротиворечивой истории в пространстве – времени исключает возможности проявления свободной воли, которые были бы доступны в противном случае. Конечно, если бы мы были убежденными детерминистами, то верили бы, что атомы наших тел вступают в сговор с внешним миром и, подчиняясь непреложным законам ньютоновской механики, заставляют нас действовать во избежание парадоксов в точности по предписанному сценарию. Однако это все же не согласуется с тем, как мы привыкли мыслить о себе и своем месте в этом мире.[91]

Суть проблемы заключается в том, что при условии наличия замкнутых времениподобных кривых существование согласованной и непротиворечивой стрелы времени становится невозможным. Общая теория относительности меняет формулировку утверждения: «Мы помним прошлое, но не будущее»; теперь оно звучит так: «Мы помним события из светового конуса прошлого, но не из светового конуса будущего». Однако на замкнутой времениподобной кривой есть события, принадлежащие как световому конусу прошлого, так и световому конусу будущего – ведь эти два конуса перекрываются. Так что же, должны мы помнить такие события или нет? Мы могли бы согласовать события на замкнутой времениподобной кривой с законами физики на микроскопическом уровне, однако они не могут быть совместны с непрерывным увеличением энтропии вдоль кривой.

Для того чтобы в полной мере осознать значимость этого утверждения, подумайте о гипотетическом незнакомце, который выходит из ворот, а затем, сутки спустя, снова в них входит, но уже с другой стороны. Таким образом, история всей его жизни – это однодневный цикл, повторяющийся снова и снова, до бесконечности. Задумайтесь, какой непревзойденный уровень точности необходим, чтобы воспроизводить этот цикл день за днем (если считать, что цикл начинается в некоторой «стартовой» точке). Каждый день в одно и то же время незнакомец должен убеждаться, что каждый атом его тела занял именно то положение, в котором будет возможно его плавное слияние с самим собой из прошлого. Он должен проверять, например, что на его одежде не осело ни единой новой пылинки, которой не было сутки назад, что содержимое его пищеварительной системы в точности такое же, как день назад, и что его волосы и ногти абсолютно такой же длины. Мягко говоря, это несовместимо с нашим представлением о том, как происходит увеличение энтропии, даже это не есть прямое нарушение второго начала термодинамики (так как незнакомец не является закрытой системой). Если бы он просто пожал руку своей копии из прошлого, вместо того чтобы становиться ею, это бы не потребовало такого невообразимого уровня точности; однако в любом случае необходимость находиться в правильном месте в правильное время накладывает чрезвычайно строгие ограничения на возможные действия в будущем.

Наша концепция свободной воли тесно связана с идеей о том, что прошлое увековечено на скрижалях истории, тогда как будущее мы творим сами по своему разумению. Даже если верить, что законы физики точно фиксируют изменение какого-то конкретного состояния Вселенной, мы все равно не знаем, что это за состояние, так что в реальном мире увеличение энтропии приводит к бесконечному числу вариантов будущего. Тот тип предопределения, к которому приводит непротиворечивая эволюция в присутствии замкнутых времениподобных кривых, абсолютно аналогичен предопределению во Вселенной, где задано граничное условие в будущем, приводящее там к низкой энтропии – только в локальном масштабе.

Другими словами, если бы замкнутые времениподобные кривые существовали, то непротиворечивая эволюция в их присутствии казалась бы нам такой же странной и неестественной, как кино, прокручиваемое в обратном направлении, или любой другой пример развития событий по сценарию уменьшения энтропии. Это не невозможно – просто крайне маловероятно. Таким образом, либо замкнутые времениподобные кривые не существуют, либо большие макроскопические объекты не могут перемещаться сквозь пространство – время по действительно замкнутым путям – ну, или все, что, как нам кажется, мы знаем о термодинамике, неверно.

Предсказания и причуды

Жизнь на замкнутой времениподобной кривой кажется ужасающе предопределенной: если система движется по замкнутому контуру вдоль этой кривой, то она обязана каждый раз возвращаться точно в то состояние, с которого движение началось. При этом с точки зрения внешнего наблюдателя замкнутые времениподобные кривые также поднимают проблему, казалось бы, совершенно противоположной природы: исходное состояние Вселенной не позволяет однозначно предсказать, что будет происходить на этих кривых. Получается, что у нас есть очень строгое ограничение, в соответствии с которым движение вдоль замкнутых времениподобных кривых должно происходить самосогласованно, но в то же время число таких самосогласованных и непротиворечивых движений чрезвычайно велико, и никакие законы физики не в состоянии дать точный ответ, какое из них выберет система.[92]

Мы обсуждали различия между взглядом на Вселенную презентистов, которые считают реальным лишь текущий момент, и этерналистов – приверженцев концепции блочной Вселенной, в соответствии с которой все события на протяжении всей истории Вселенной одинаково реальны. Это интересный философский спор – какой взгляд представляет более плодотворную версию реальности; для физика они, однако, практически идентичны. Принято считать, что законы физики работают как компьютер: вы даете им на вход текущее состояние, а они сообщают, каким это состояние станет мгновение спустя (или было мгновением раньше, если интересно). Повторяя этот процесс много-много раз, мы можем получить предсказание для всей истории Вселенной от начала и до конца. В этом смысле всестороннее знание текущего состояния подразумевает полное знание всей истории Вселенной.

Замкнутые времениподобные кривые делают подобные «программы» невозможными; чтобы убедиться в этом, достаточно простого мысленного эксперимента. Еще раз обратим наше внимание на незнакомца, вышедшего из врат во вчера, который сутки спустя снова вошел в них с другой стороны, сформировав замкнутый цикл. Нет никакого способа предсказать существование такого незнакомца, отталкиваясь от какого-то более раннего состояния Вселенной. Предположим, что мы начинаем свой эксперимент во Вселенной, в которой в этот конкретный момент не существует замкнутых времениподобных кривых. Предполагается, что законы физики позволяют предсказать, что произойдет в будущем этого момента. Однако если кто-то создаст замкнутую времениподобную кривую, мы лишимся такой возможности. Как только во Вселенной появляется возможность существования замкнутых времениподобных кривых, загадочные незнакомцы и прочие случайные объекты начинают появляться тут и там и перемещаться вдоль этих кривых… или нет. Невозможно предсказать, что произойдет дальше, исходя лишь из полного знания состояния Вселенной в один из предыдущих моментов времени.

Другими словами, мы сколько угодно можем говорить о том, что происходящее в присутствии замкнутых времениподобных кривых непротиворечиво, а парадоксы отсутствуют. Однако это не делает происходящее также и предсказуемым, то есть не дает нам возможности предсказать будущее с помощью законов физики, начиная с состояния Вселенной в какой-то конкретный момент времени. Более того, замкнутые времениподобные кривые делают несостоятельным само определение «Вселенной в какой-то конкретный момент времени». В предыдущем нашем обсуждении пространства – времени критически важным моментом была возможность «нарезки» четырехмерной Вселенной на трехмерные «моменты времени», которые мы помечали соответствующими значениями временной координаты. Однако в присутствии замкнутых времениподобных кривых мы, по сути, не в состоянии этого сделать.[93] Локально – в ближайшей окрестности любого интересующего нас события – деление пространства – времени на «прошлое» и «будущее» с помощью световых конусов абсолютно такое же. Глобально мы не сможем последовательно разделить Вселенную на моменты времени.

Следовательно, в присутствии замкнутых времениподобных кривых нам придется позабыть о понятии «детерминизма» – идее о том, что состояние Вселенной в любой конкретный момент времени определяет ее состояния во все остальные моменты. Так ли высоко мы ценим детерминизм, чтобы эта проблема заставила нас полностью отвергнуть возможность существования замкнутых времениподобных кривых? Совсем не обязательно. Можно просто по-другому представлять себе работу законов физики – не как компьютера, вычисляющего состояние в следующий момент на основании текущего состояния. Например, мы можем считать физические законы неким набором условий, которые наложены на историю Вселенной в целом. Пока что неясно, что это могут быть за условия, но нельзя отбрасывать эту идею исключительно на основании умозрительных заключений.

Все эти метания из стороны в сторону могут казаться неуместными, однако они иллюстрируют важный урок. Частично наше понимание времени базируется на логике и известных законах физики, однако отчасти мы также руководствуемся бытовым удобством и кажущимися правдоподобными предположениями. Мы думаем, что возможность единственным образом предсказывать будущее на основании знаний о текущем состоянии важна, но у реального мира могут быть совсем иные мысли на этот счет. Если бы замкнутые времениподобные кривые могли существовать, то вечному спору между этерналистами и презентистами пришел бы конец: победа была бы обеспечена блочной Вселенной этерналистов. Очевидно, что возникающие то тут, то там замкнутые времениподобные кривые не позволили бы поделить Вселенную на последовательность «состояний настоящего».

Окончательный ответ на загадку замкнутых времениподобных кривых заключается в том, что они, вероятно, попросту не существуют (и не могут существовать). И если это действительно так, то причина в том, что законы физики не позволяют пространству – времени искривляться в достаточной мере, для того чтобы формировать подобные кривые, а не в том, что подобные кривые открыли бы путь к убийству наших предков. Так что менять нужно физические законы.

Флатландия

Замкнутые времениподобные кривые предлагают нам интересную лабораторию для мысленных экспериментов по исследованию природы времени. Тем не менее для того, чтобы всерьез воспринимать их, нам необходимо понять, возможно ли существование этих кривых в реальном мире, по крайней мере согласно правилам общей теории относительности.

Ранее были перечислены несколько решений уравнения Эйнштейна, включающих замкнутые времениподобные кривые: Вселенная с циклическим временем, Вселенная Гёделя, внутренняя область рядом с сингулярностью вращающейся черной дыры и вращающийся бесконечный цилиндр. Однако ни одно из них не помогает найти способ «построить» настоящую машину времени – создать замкнутую времениподобную кривую там, где ее не было. Во Вселенной с циклическим временем, Вселенной Гёделя и Вселенной с вращающимся цилиндром подразумевается, что замкнутые времениподобные кривые существуют с самого начала.[94] Настоящий вопрос звучит так: «Можем ли мы своими силами создавать замкнутые времениподобные кривые в локальной области пространства – времени?»

Обратившись вновь к рис. 6.2, легко понять, почему все эти решения включают вращение того или иного рода: недостаточно всего лишь наклонить световые конусы, нужно «положить их на бок», выстроив в замкнутую цепочку. Итак, если сесть и подумать, как же создать в пространстве – времени замкнутую времениподобную кривую, то первым делом на ум приходит какой-нибудь вращающийся объект – если не бесконечный цилиндр или черная дыра, то, возможно, достаточно длинный цилиндр или всего лишь массивная звезда. Результат может быть еще более впечатляющим, если взять два гигантских массивных тела и запустить их навстречу друг другу с громадной относительной скоростью. А затем, если повезет, гравитационное притяжение этих тел в достаточной степени повлияет на ориентацию окружающих их световых конусов, чтобы сформировать замкнутую времениподобную кривую.

Все это как-то слишком просто. Действительно, мы немедленно сталкиваемся с различными сложностями. Общая теория относительности – сложная штука, причем не только концептуально, но и технически; уравнения, описывающие искривление пространства – времени, невероятно сложны для решения в любой ситуации, возникающей в реальном мире. Все известные нам точные предсказания теории связаны с сильно идеализированными случаями, обладающими высокой симметрией, такими как статическая звезда или совершенно однородная Вселенная. Расчет кривизны пространства – времени, образовавшейся в результате пролета двух черных дыр мимо друг друга со скоростью, близкой к скорости света, лежит за пределами наших возможностей (хотя методы расчетов улучшаются с каждым днем).

С целью сильного упрощения мы можем задать вопрос, что произойдет, если два массивных объекта пройдут близко друг от друга на высокой относительной скорости, но во Вселенной с трехмерным пространством – временем, где вместо трех измерений пространства и одного измерения времени, как в нашем реальном четырехмерном пространстве – времени, будут всего лишь два измерения пространства и одно измерение времени.

Отбрасывая для простоты одно измерение пространства, мы совершаем достойный признания шаг. Эдвин Э. Эббот в своем романе «Флатландия» описывал существ, живущих в двумерном пространстве. Он пытался показать, что и в нашем мире может быть более трех измерений, попутно высмеивая Викторианскую культуру.[95] Мы позаимствуем терминологию Эббота и будем называть Вселенную с двумя пространственными измерениями и одним временным Флатландией, даже если на самом деле она вовсе не такая плоская,[96] так как нас интересуют случаи искривления пространства – времени, когда световые конусы могут наклоняться, а времениподобные кривые – замыкаться.

Изучение машин времени во Флатландии (и в Кембридже)

Рассмотрим ситуацию, показанную на рис. 6.5: два массивных объекта с высокой скоростью проносятся мимо друг друга во Флатландии. В трехмерной Вселенной прекрасно то, что в ней уравнение Эйнштейна упрощается на несколько порядков, позволяя найти точное решение задачи, которая в реальной четырехмерной Вселенной была бы невообразимо сложной. В 1991 году астрофизик Ричард Готт закатал рукава и рассчитал искривление пространства – времени для этой ситуации. В частности, он обнаружил, что во Флатландии тяжелые объекты, проходя мимо друг друга, действительно создают замкнутые времениподобные кривые – при условии, что движутся они с достаточно высокой скоростью. Для каждого конкретного значения массы двух тел Готт рассчитал скорость, с которой те должны двигаться, чтобы в нужной степени наклонить окружающие световые конусы и предоставить возможность путешествия во времени.[97]


Вечность. В поисках окончательной теории времени

Рис. 6.5. Машина времени Готта во Флатландии. Если два объекта пройдут мимо друг друга с достаточно высокой относительной скоростью, то возникнет замкнутая времениподобная кривая, обозначенная на рисунке пунктирной линией. Обратите внимание, что показанная здесь плоскость на самом деле двумерная – это не проекция трехмерного пространства


Интересный результат, но это не считается за «построение» машины времени. В пространстве – времени Готта все предопределено: объекты в самом начале разнесены на большое расстояние, затем проходят в непосредственной близости друг от друга, а после этого снова разлетаются в стороны. В конечном счете замкнутые времениподобные кривые просто не могут не образоваться; во всей истории развития системы не найдется такой точки, где их появления можно было бы избежать. Итак, вопрос остается на повестке дня: можем ли мы своими руками построить машину времени Готта? Например, пусть во Флатландии есть два массивных объекта, находящихся друг относительно друга в покое. К каждому из этих объектов мы приделаем ракетные двигатели (не забывайте повторять про себя: «Это мысленный эксперимент»). Сможем ли мы придать объектам достаточно высокую скорость, чтобы это привело к образованию замкнутых времениподобных кривых? Это можно было бы заслуженно назвать построением машины времени, пусть даже в не очень реалистичных обстоятельствах.

Ответ на этот вопрос чрезвычайно интересен, и мне повезло оказаться в первых рядах зрителей, когда этот поразительный результат был достигнут.[98] В 1991 году, когда был опубликована статья Готта, я был аспирантом в Гарварде и работал в основном со своим научным руководителем Джорджем Филдом. Как и многие другие студенты Гарварда, я часто пользовался подземной линией Red Line, чтобы доехать до Массачусетского технологического института (MIT) и прослушать курсы, которых не было в моем университете (множество студентов MIT ездили в противоположную сторону по аналогичной причине). Среди интересовавших меня лекций были великолепный курс по теоретической физике элементарных частиц Эдварда (Эдди) Фари и курс по космологии ранней Вселенной Алана Гута. Эдди был молодым парнем с типичным акцентом жителей Бронкса и весьма серьезным отношением к физике (насколько это возможно для человека, работы которого носят названия вроде «Можно ли создать Вселенную в лаборатории путем квантово-механического туннелирования?»[99]). Алан – исключительно здравомыслящий физик, заслуживший мировую известность как изобретатель инфляционного сценария развития Вселенной. Оба они были дружелюбными и увлеченными людьми, ребятами, с которыми было интересно проводить время, даже когда у нас не происходило увлекательных бесед о физике.

Итак, я был счастлив и горд тем, что эти двое пригласили меня поучаствовать в поиске ответа на вопрос, можно ли построить машину времени Готта. Над той же проблемой работала еще одна команда теоретиков в составе Стэнли Дезера, Романа Джакива и нобелевского лауреата Герарда ’т Хоофта. Они открыли интересное свойство двух движущихся тел во Вселенной Готта: несмотря на то что каждый объект в отдельности перемещается со скоростью, меньшей скорости света, совокупный импульс системы, включающей оба эти объекта, такой же, как у тахиона. Словно система двух совершенно обычных частиц является новой частицей, которая движется быстрее света. В специальной теории относительности, где сила притяжения не учитывается, а пространство – время совершенно плоское, это было бы невозможно: совокупный импульс любого числа частиц, скорость которых ниже скорости света, при любых условиях будет соответствовать движению медленнее скорости света. За такой интересный результат сложения скоростей двух объектов мы должны благодарить особые свойства искривленного пространства – времени. Однако для нас это открытие еще не поставило финальную точку в вопросе; кто сказал, что особенности искривленного пространства – времени не позволяют создавать тахионы?

Мы решили добавить к условиям задачи космический корабль, для того чтобы взять объекты, движущиеся с небольшой скоростью, и разогнать их так сильно, чтобы создать машину времени. Возможно ли это? В такой формулировке ответ кажется очевидным: легко! Главное, чтобы ракета была достаточно большая и мощная.

В действительности во Вселенной попросту не хватит для этого энергии. Для начала мы решили рассматривать «открытую Вселенную» – поверхность во Флатландии, по которой двигались наши частицы, простиралась до бесконечности. Однако одной из своеобразных особенностей силы притяжения во Флатландии является существование безусловного верхнего предела на полную энергию, которая способна поместиться в открытую Вселенную. Попробуйте добавить еще немного, и пространство – время искривится настолько, что Вселенная замкнется на саму себя.[100] В четырехмерном пространстве – времени во Вселенной может находиться сколько угодно энергии; каждая порция энергии искривляет ближайшую окрестность пространства – времени, однако на большом удалении от источника эффект ослабевает. В противоположность этому в трехмерном пространстве – времени влияние силы притяжения не может ослабевать – оно лишь усиливается. Следовательно, в открытой трехмерной Вселенной существует максимальный возможный объем энергии – и его недостаточно для построения машины Готта с нуля.

Получается, Природа предусмотрела интересный способ, как избежать создания машины времени. Мы написали две статьи: в первой мы изложили разумное обоснование этого результата, ее авторами стали мы втроем. Вторая статья была написана в соавторстве с Кеном Олумом, там было представлено более общее доказательство. Однако во время поисков мы заметили кое-что очень интересное. Действительно, верхний предел энергии существует – но для открытой Вселенной Флатландии; а что насчет закрытой? Если попытаться запихнуть слишком много энергии в открытую Вселенную, то она замкнется на саму себя. Но попробуем превратить эту проблему в характерную особенность и рассмотрим закрытые Вселенные, где пространство выглядит скорее как сфера, а не как плоскость.[101] В них существует одно-единственное допустимое значение полной энергии и никакого пространства для маневров. Суммарная кривизна пространства должна быть равной кривизне сферы, а это в два раза больше, чем может поместиться в открытую Вселенную.

Мы сравнили полную энергию закрытой Вселенной во Флатландии с энергией, необходимой для создания машины времени Готта, и обнаружили, что этого количества достаточно. Это произошло уже после того, как была подготовлена и принята к публикации в Physical Review Letters, ведущем журнале в этой области, наша первая статья. Однако журналы позволяют до публикации вставлять в статьи небольшие примечания: «добавлено при проверке», и мы воспользовались этой возможностью, указав, что, вероятно, машину времени можно было бы построить в закрытой Вселенной Флатландии, несмотря на то что в открытой Вселенной это совершенно точно невозможно.

Мы сглупили (в такой ситуации очень удобно быть молодым ученым, работающим в компании знаменитых старших коллег; ты всегда можешь оправдаться: «Если даже эти ребята пропустили такую ошибку, может быть, она и не настолько глупая»). Нам показалось забавным, что Природа так изобретательно предотвращает создание машин времени Готта в открытых Вселенных, но при этом в закрытых Вселенных, судя по всему, никаких проблем с машинами времени не существует. Определенно, в закрытой Вселенной хватит энергии, чтобы разогнать объекты до желаемых скоростей – что может пойти не так?


Вечность. В поисках окончательной теории времени

Рис. 6.6. Движущиеся частицы в закрытой Вселенной Флатландии, обладающей топологией сферы. Представьте себе муравьев, ползающих по поверхности пляжного мяча


Очень скоро Герард ’т Хоофт выяснил, что закрытая Вселенная, в отличие от открытой, обладает конечным общим объемом (хотя, поскольку у нас только два пространственных измерения, то «конечной общей площадью», но смысл вы поняли). Он продемонстрировал, что если заставить частицы двигаться в закрытой Вселенной Флатландии таким образом, чтобы инициировать возникновение машины времени Готта, то объем Вселенной начнет очень быстро сокращаться. По сути, Вселенная стремительно помчится навстречу Большому сжатию. Как только вам на ум придет эта мысль, вы сразу же поймете, каким образом пространство – время избегает машин времени: оно схлопывается до нулевого объема еще до того, как появляются замкнутые времениподобные кривые. Уравнения не лгут; так что Эдди, Алан и я признали это и отправили в Physical Review Letters уведомление об ошибке. Научный прогресс продолжил движение вперед, пусть и получив по пути небольшое ранение.

С учетом нашего результата, описывающего открытые Вселенные, и догадки ’т Хоофта о закрытых Вселенных становится очевидно, что во Флатландии ни при каких условиях невозможно создать новую машину времени Готта, то есть машину, которой до нас там не существовало. Может показаться, что большая часть аргументов, посредством которых мы пришли к этому результату, применима только в нереалистичном случае трехмерного пространства – времени, – и это действительно так. Однако совершенно ясно, что общая теория относительности пытается донести до нас простую мысль: замкнутые времениподобные кривые ей не по нраву. Можете сколько угодно пытаться создавать их, но каждый раз что-нибудь да пойдет не так. Определенно, нам было очень интересно, насколько это заключение применимо к реальному миру с четырехмерным пространством – временем.

Кротовые норы

Весной 1985 года Карл Саган работал над своим романом «Контакт», в котором астрофизик Элли Эрроуэй (позднее ее роль в экранизации романа сыграет Джоди Фостер) осуществляет первый контакт с инопланетной цивилизацией.[102] Сагану нужно было придумать способ быстрого перемещения на космические расстояния, однако он не хотел идти по ленивому пути писателей научной фантастики и использовать варп-двигатель, который заставил бы ракету лететь быстрее света. Поэтому он поступил так, как поступил бы на его месте любой уважающий себя автор: он бросил свою героиню в черную дыру в надежде, что она выскочит, целая и невредимая, за двадцать шесть световых лет от места сброса.

Маловероятно. Бедную Элли точно не выбросило бы на безопасный берег; приливные силы, действующие вблизи сингулярности черной дыры, сделали бы из нее спагетти – весьма печальный конец. Нельзя сказать, что Саган не был осведомлен о физике черных дыр; он имел в виду вращающиеся черные дыры, где световые конусы не заставляют вас на полной скорости врезаться в сингулярность, – по крайней мере, такую возможность оставляло точное решение, обнаруженное Роем Керром еще в шестидесятых. Однако он понимал, что точно не является мировым экспертом в области черных дыр, и в своем романе старался подходить к научным вопросам со всей тщательностью. К счастью, он дружил с человеком, которого без тени сомнения можно назвать мировым экспертом в этой области, – Кипом Торном, физиком-теоретиком из Калтеха, признанным авторитетом в вопросах общей теории относительности.

Торн с большим интересом прочитал рукопись Сагана и заметил одну проблему: современные исследования указывают, что в реальном мире черные дыры ведут себя совсем не так прилично, как в первоначальном решении Керра. Настоящая черная дыра, которую можно было бы создать с помощью физических процессов в нашей Вселенной, – неважно, вращающаяся или нет, – зажевала бы бесстрашного астронавта и не выбросила бы наружу ни косточки. Но есть альтернативная идея: кротовая нора.

В отличие от черных дыр, которые практически стопроцентно существуют в реальном мире и наличие которых подтверждается огромным количеством подлинных эмпирических данных, кротовые норы – это целиком и полностью гипотетические игрушки физиков-теоретиков. Смысл кротовых нор примерно понятен из названия: они позволяют воспользоваться преимуществами динамической природы пространства – времени в общей теории относительности и соединить две разные области пространства коротким «мостом».


Вечность. В поисках окончательной теории времени

Рис. 6.7. Кротовая нора соединяет две удаленные области пространства. Хотя на рисунке это показать невозможно, длина «моста» в кротовой норе может быть намного меньше обычного расстояния между двумя ее устьями


Типичная кротовина показана на рис. 6.7. Плоскость символизирует трехмерное пространство, а что-то вроде трубы под ней – это и есть кротовая нора, что-то типа трубы, представляющей собой короткий путь между двумя удаленными областями пространства. Места, в которых кротовая нора соединяется с внешним пространством, называются «устьями», а сама труба – «горловиной». Она не выглядит как кратчайший путь; более того, исходя из вида картинки можно подумать, что путешествие по кротовой норе займет больше времени, чем традиционное перемещение от одного устья к другому в обычном пространстве. Однако это объясняется исключительно нашей манерой рисовать интересные искривленные пространства, погружая их в нашу скучную локально трехмерную область. Мы будем рассматривать вариант геометрии, допускающий фигуры вроде показанной на рисунке, но в которой длина кротовой норы может быть какой угодно – в том числе намного меньшей, чем расстояние между устьями в обычном пространстве.

На самом деле есть намного более интуитивно понятный способ представить себе кротовую нору. Вообразите себе обычное трехмерное пространство и «вырежьте» в нем две сферические области равного размера. Затем отождествите поверхности сфер, то есть объявите, что любой объект, входящий в первую сферу, немедленно появляется на противоположной стороне второй. Результат показан на рис. 6.8; каждая сфера представляет собой одно из устьев кротовой норы. Это кротовая нора нулевой длины; пересекая поверхность первой сферы, вы мгновенно появляетесь из второй (на слове «мгновенно» у вас в голове должен сработать сигнал тревоги: мгновенно для кого?).


Вечность. В поисках окончательной теории времени

Рис. 6.8. Кротовая нора в трехмерном пространстве, сформированная путем отождествления двух сфер, внутренность которых была удалена. Все, что проходит внутрь одной сферы, моментально появляется на противоположной стороне другой сферы


Кротовая нора заставляет вспомнить наш предыдущий пример с вратами во вчера. Если вы заглянете в кротовую нору с одного конца, то не увидите психоделических цветовых завихрений; вашему взору предстанет то, что фактически находится на противоположном конце, как если бы вы разглядывали этот пейзаж через своеобразный перископ (или увидели его на мониторе, подключенном к камере на другом конце кротовой норы). И вы с легкостью могли бы протянуть руку или даже прыгнуть сквозь кротовую нору, если она окажется достаточно большой.

Такой тип кротовой норы позволяет срезать путь через пространство – время, соединяя две удаленные области моментальным переходом. Он обеспечивает возможность исполнить трюк, который Сагану требовался для его романа, и по совету Торна автор переписал соответствующий раздел (в кинематографической версии, к сожалению, вы увидите и психоделические завихрения, и переливающиеся огоньки). Однако вопрос Сагана дал толчок развитию целой серии идей, результатом которых стало новаторское научное исследование, а не только точный с научной точки зрения рассказ.

Машина времени без особых затрат

Кротовая нора – это короткий путь через пространство – время; она позволяет добраться из одного места в другое намного быстрее, чем если бы вы воспользовались прямым маршрутом через обычное пространство – время. С вашей, локальной точки зрения ваша скорость никогда не превышает скорость света, однако вы добираетесь до точки назначения быстрее, чем это смог бы сделать свет в отсутствие кротовой норы. Мы знаем, что перемещения со сверхсветовой скоростью открывают нам двери к путешествиям в прошлое. Проход через кротовую нору – не в точности тот же самый, хотя и похожий процесс. В конечном счете Торн, работая совместно с Майклом Моррисом и Ульви Юртсевером, обнаружил способ, как при помощи кротовой норы создать замкнутую времениподобную кривую.[103]

Секрет заключается вот в чем: когда мы бросаемся заявлениями вроде «кротовая нора соединяет две удаленные области пространства», мы не должны забывать о том, что в действительности это означает, что она соединяет два набора событий в пространстве – времени. Представим себе, что пространство – время абсолютно плоское (за исключением кротовой норы) и что мы определили «фоновое время» в некоторой покоящейся системе координат. Отождествляя две сферы для того, чтобы создать кротовую нору, мы делаем это «одновременно» по отношению к этой конкретной координате фонового времени. В какой-то другой системе координат соответствующие моменты времени не совпадали бы.

Теперь примем серьезное допущение: разрешим себе перемещать любое из устьев кротовины независимо от противоположного. Для того чтобы оправдать такое допущение в глазах других ученых, вам пришлось бы провести немало часов в жарких спорах, но в целях нашего мысленного эксперимента все совершенно нормально. Теперь пусть одно устье так и сидит себе спокойно на траектории, соответствующей движению без ускорения, а второе мы будем перемещать туда и сюда на очень высокой скорости.

Для того чтобы понять, чем это обернется, вообразите, что и к одному и к другому устью мы прикрепили часы. Часы на стационарном устье идут с той же скоростью, что и часы, отсчитывающие координату фонового времени. Однако для часов на движущемся устье времени проходит намного меньше – так происходит в теории относительности с любым движущимся объектом. В результате, когда мы снова располагаем устья рядом друг с другом, часы на том конце, который мы перемещали с большой скоростью, здорово отстают по сравнению с часами, которые оставались на одном месте.

Попробуем рассмотреть ту же ситуацию с точки зрения наблюдателя, глядящего сквозь кротовую нору. Вспомните, что, заглянув в горловину, вы не увидите ничего пугающего – только то, что находится на противоположном конце кротовой норы. Когда мы смотрим в устье кротовой норы, нам кажется, что часы на обоих концах неподвижны друг относительно друга. Причина в том, что длина горловины всегда остается неизменной (в нашем упрощенном примере она равна нулю), даже когда мы передвигаем одно из устий. Для наблюдателя, находящегося возле кротовой норы, эти двое часов всего лишь стоят рядом друг с другом совершенно неподвижно. Следовательно, идут они абсолютно синхронно, и оба циферблата показывают точное время.

Как двое часов могут показывать одинаково точное время, если часы, прикрепленные к подвижному устью, в конце эксперимента должны сильно отставать? Легко! Когда на часы смотрит внешний наблюдатель, показания на них отличаются, а если смотреть на часы сквозь кротовую нору, то время они показывают одинаковое. Этот загадочный феномен объясняется очень просто: как только два устья начинают двигаться по разным путям через пространство – время, с точки зрения внешнего наблюдателя они больше не принадлежат одному и тому же моменту времени. Сфера, представляющая одно устье, по-прежнему отождествлена со сферой, представляющей второе устье, но теперь они отождествлены в разные моменты времени. Проходя сквозь одно устье, вы перемещаетесь в прошлое – относительно фонового времени; проходя по кротовой норе в обратную сторону, вы снова переноситесь в будущее.

Следовательно, такой тип кротовой норы абсолютно идентичен вратам во вчера. Манипулируя входами кротовой норы с коротким туннелем, мы соединили две разные области пространства – времени, «живущие» в совершенно разных временах. Теперь мы можем проходить сквозь кротовую нору и перемещаться во времени точно так же, как по замкнутым времениподобным кривым, и снова начинать беспокоиться о всевозможных парадоксах. Если бы эту процедуру можно было воспроизвести в реальном мире, то результат, несомненно, можно было бы считать построением настоящей машины времени, отвечающей требованиям из нашего предыдущего обсуждения.

Защита от машин времени

При обсуждении машины времени на основе кротовой норы создается впечатление, что замкнутые времениподобные кривые могли бы существовать в реальном мире. Казалось бы, проблема исключительно в технологических возможностях, а вовсе не в ограничениях, налагаемых законами физики. Нам всего лишь нужно найти кротовую нору, научиться удерживать ее в открытом состоянии, передвинуть одно из устьев в правильном направлении… Нет, наверное, это все же нереально. Как вы наверняка подозревали с самого начала, оказывается, что существует масса причин, почему кротовые норы нельзя рассматривать в качестве практичных инструментов построения машин времени.


Вечность. В поисках окончательной теории времени

Рис. 6.9. Машина времени на основе кротовой норы. Двунаправленные стрелки обозначают отождествление сферических устьев кротовой норы. Сначала устья находятся по соседству и отождествляются в один и тот же момент фонового времени. Одно устье остается неподвижным, а другое уносится в сторону со скоростью, близкой к скорости света. Когда оно возвращается, устья отождествляются в совершенно разные моменты фонового времени


Во-первых, кротовые норы не растут на деревьях. В 1967 году физик-теоретик Роберт Герош задался вопросом, насколько реально создать кротовую нору. Он доказал, что для этого необходимо не только скрутить пространство – время совершенно определенным способом, но и на одном из промежуточных шагов этого процесса создать замкнутую времениподобную кривую. Другими словами, прежде чем приступать к построению машины времени с использованием кротовой норы, нужно построить машину времени, которая позволит создать кротовую нору.[104] Однако даже если вам повезет и вы совершенно случайно наткнетесь на существующую кротовую нору, то у вас на пути встанет новое препятствие: не так-то просто удерживать ее открытой. Действительно, это считается единственным серьезным доводом, позволяющим опровергнуть возможность построения машины времени на основе кротовой норы.

Проблема в том, что для удержания кротовой норы в открытом состоянии требуется отрицательная энергия. Гравитация означает притяжение: гравитационное поле, создаваемое обычным объектом с положительной энергией, заставляет вещи притягиваться друг к другу. Но взгляните еще раз на рис. 6.8: какой эффект кротовая нора оказывает на проходящие сквозь нее частицы? Она «дефокусирует их», разделяя частицы, которые первоначально перемещались все вместе, и заставляя их двигаться в разные стороны. Это прямая противоположность традиционному поведению гравитации и знак того, что в процессе должна принимать участие отрицательная энергия.

Существует ли отрицательная энергия в природе? Вероятно, нет; по крайней мере, не в той форме, которая потребовалась бы для поддержания работоспособности макроскопической кротовой норы. Тем не менее пока что мы не можем быть в этом уверены. Высказывались предположения о том, что квантовая механика способна помочь в создании «карманов» отрицательной энергии, однако они не были подкреплены достаточными обоснованиями. Трудность в том, что этот вопрос включает как гравитацию, так и квантовую механику, а мы пока что не очень хорошо понимаем, как пересекаются эти две теории.

Однако и это еще не все; даже если бы мы нашли кротовую нору и сумели удержать ее открытой, скорее всего, она вела бы себя чрезвычайно нестабильно. Малейшее возмущение – и кротовая нора сколлапсировала бы в черную дыру. Это связано с еще одним вопросом, на который не так-то просто найти однозначный ответ, но базовая идея заключается в том, что любое крошечное возмущение энергии может увеличиваться, перемещаясь в окрестности замкнутой времениподобной кривой произвольно большое число раз. Согласно современной точке зрения, такие повторяющиеся перемещения неизбежны по крайней мере для некоторых небольших возмущений. Кротовая нора не просто чувствует массу единичной пылинки, пролетающей сквозь нее, – она ощущает это влияние снова и снова, создавая громадное гравитационное поле, размер которого достаточно велик для того, чтобы в конечном итоге разрушить нашу потенциальную машину времени.

Таким образом, природа прилагает массу усилий, для того чтобы не позволить нам построить машину времени. Накопленные косвенные улики заставили Стивена Хокинга высказать предположение, которое теперь носит название гипотезы защиты хронологии: законы физики (какими бы они ни были) запрещают создание замкнутых времениподобных кривых.[105] Мы располагаем множеством свидетельств того, что эти строки хотя бы отчасти правдивы, даже если надежных доказательств в нашем арсенале пока что нет.

Идея путешествий во времени завораживает нас – в том числе потому, что она открывает двери для парадоксов и ставит под вопрос наше понимание свободы воли. В то же время велика вероятность того, что путешествия во времени невозможны, а проблемы, связываемые с ними, по большей части надуманны (если только вы не сценарист из Голливуда – тогда они могут стать вашим хлебом). Стрела времени, с другой стороны, является неотъемлемой составляющей окружающей нас реальности, и поднимаемые ее существованием вопросы требуют ответов. Эти два явления связаны между собой: самосогласованная стрела времени во Вселенной может существовать лишь потому, что здесь нет замкнутых времениподобных кривых, а многие рассуждения, запрещающие такие кривые, порождаются их несовместимостью со стрелой времени. Отсутствие машин времени – обязательное условие, однако ни в коем случае не достаточное объяснение самосогласованности стрелы времени. Мы проделали огромную подготовительную работу, а это означает, что сейчас самое время, вооружившись вновь обретенными знаниями, пойти в прямое наступление на загадку направления времени.

Часть III. Энтропия и ось времени

Глава 7. Время, назад!

Это-то я и имею в виду, когда говорю, что хотел бы повернуть назад течение времени: я бы хотел уничтожить последствия некоторых событий и восстановить первоначальные обстоятельства.

Итало Кальвино. Если однажды зимней ночью путник

Пьер-Симон Лаплас слыл карьеристом в те времена, когда карьеризм считался делом рискованным.[106] В разгар Великой французской революции Лаплас занял место одного из величайших математиков Европы, о чем он любил частенько напоминать своим коллегам в Академии наук. В 1793 году – в эпоху террора – Академия была распущена; Лаплас объявил о своих республиканских взглядах, но все же покинул Париж, для того чтобы не подвергать себя опасности (он не без оснований беспокоился за свою жизнь; его коллегу Антуана Лавуазье, отца современной химии, в 1794 году отправили на гильотину). Когда к власти пришел Наполеон, Лаплас присоединился к бонапартистам и посвятил императору свою работу «Аналитическая теория вероятностей». Наполеон назначил Лапласа министром внутренних дел, однако его карьера на этом посту продлилась совсем недолго – слишком абстрактными для политика понятиями он мыслил. После реставрации Бурбонов Лаплас стал роялистом и убрал посвящение Наполеону из последующих редакций своей книги. Титул маркиза ему был дарован в 1817 году.


Вечность. В поисках окончательной теории времени

Рис. 7.1. Пьер-Симон Лаплас, математик, физик, гибкий политик и непоколебимый детерминист


Несмотря на большое социальное честолюбие, когда дело доходило до его научных исследований, Лаплас моментально забывал о такте. Бытует забавный анекдот о его встрече с Наполеоном после того, как ученый попросил императора принять в подарок копию «Небесной механики» – пятитомного трактата о движении планет. Маловероятно, что Наполеон ознакомился с этим трудом (или хотя бы с его частью), но кто-то из присутствующих при дворе доложил ему, что автор ни в одном из пяти томов ни разу не ссылается на Бога. Наполеон воспользовался возможностью подшутить над ученым: «Месье Лаплас, говорят, вы написали эту толстую книгу о системе мира, не упомянув Создателя ни единым словом». На что Лаплас невозмутимо ответил: «Мне не понадобилась эта гипотеза».[107]

Одним из центральных догматов философии Лапласа был детерминизм. Именно Лапласу удалось разглядеть суть взаимосвязи между настоящим и будущим в ньютоновской механике: если вы знаете о настоящем каждую мелочь, то будущее для вас абсолютно предопределено. Как он писал во введении к рассуждениям о теории вероятностей:

Мы должны рассматривать настоящее состояние Вселенной как следствие ее предыдущего состояния и как причину последующего. Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов; не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором.[108]

Сегодня мы наверняка предположили бы, что достаточно мощный компьютер, если загрузить в него всю информацию о текущем состоянии Вселенной, смог бы с идеальной точностью предсказывать будущее (и восстанавливать прошлое). Лаплас о компьютерах ничего не знал, поэтому в качестве мысленного эксперимента предложил считать, будто во Вселенной существует некий бескрайний разум. Его биографам это предложение показалось суховатым, поэтому они придумали звучное название: демон Лапласа.

Разумеется, сам Лаплас никогда не называл предмет своего эксперимента демоном; скорее всего, у него просто не было необходимости в такой гипотезе – как и в гипотезе о существовании Бога. Однако идея отражает определенную угрозу, кроющуюся в изначальных уравнениях ньютоновской физики. Будущее не создается нашими руками; все судьбы предопределены и зашифрованы в деталях нынешнего состояния Вселенной. Каждый момент прошлого и будущего зафиксирован в настоящем. У нас всего лишь нет достаточного количества ресурсов, чтобы выполнить необходимые вычисления.[109]

Каждый из нас на подсознательном уровне противится такому положению вещей. Мы не хотим, чтобы демон Лапласа существовал, чтобы будущее было предопределено, даже если бы у кого-то был доступ к полному описанию состояния Вселенной. Том Стоппард в «Аркадии» красочно описывает беспокойства подобного рода.

ВАЛЕНТАЙН: Верно. Еще в двадцатых годах прошлого века один ученый – не помню имени – утверждал, что, опираясь на законы Ньютона, можно предсказывать будущее. Естественно, для этого нужен компьютер – огромный, как сама Вселенная. Но формула, так или иначе, существует.

ХЛОЯ: Но она не срабатывает! Ведь правда же? Согласись! Не срабатывает!!!

ВАЛЕНТАЙН: Согласен. Расчеты неверны.

ХЛОЯ: Расчеты ни при чем. Все из-за секса.

ВАЛЕНТАЙН: Да ну?

ХЛОЯ: Я уверена. Хотя, спору нет, Вселенная детерминирована, Ньютон был прав. Вернее, она пытается соответствовать его законам, но все время сбоит. Буксует. А причина одна-единственная: люди любят не тех, кого надо. Поэтому сбиваются все планы и искажается картинка будущего.

ВАЛЕНТАЙН: Хм… Притяжение, которое Ньютон сбросил со счетов?.. Одно яблоко трахнуло его по башке, а другое подкинул змей-искуситель?.. Да. (Пауза.) Пожалуй, ты додумалась до этого первая.[110]

Мы не будем углубляться в обсуждение вопроса, помогает ли сексуальная привлекательность выбраться из-под тяжелого пресса детерминизма. Нас интересует лишь то, почему прошлое так разительно отличается от будущего. Это не представляло бы никакой загадки, если бы не тот факт, что основополагающие законы физики вообще-то абсолютно обратимы. Взять того же демона Лапласа: для него реконструкция прошлого и предсказание будущего совершенно идентичны.

Отражение во времени (изменение направления времени на обратное) оказывается удивительно коварным понятием, хотя на первый взгляд кажется, что все просто и очевидно (помните про кинопленку, прокручиваемую в обратном направлении?). Нельзя просто так взять и бездумно развернуть время в обратную сторону – это не будет отражением симметрии законов природы. Для того чтобы правильно описать основополагающую симметрию, необходимо подойти к значению того, что мы понимаем под «задней передачей времени», с другой стороны. Итак, сейчас мы с вами пойдем к нашей цели кружным путем, используя упрощенные модели. В конечном счете я хочу продемонстрировать, что главным понятием в наших рассуждениях является не «изменение хода времени на обратный», а похожее понятие «обратимости» – умение восстанавливать прошлое исходя из состояния настоящего – в точности, как это делает Демон Лапласа. Не исключено, что это окажется куда сложнее, чем пустить время в обратную сторону. Ключевое понятие, обеспечивающее явление обратимости, – это сохранение информации. Если информация, описывающая состояние мира, с течением времени не пропадает, то мы всегда можем прокрутить часы назад и восстановить любое из предыдущих состояний. И вот тогда на поверхность всплывает настоящая загадка стрелы времени.

Шахматный мир

Давайте сыграем в игру. Она называется «шахматный мир», и правила очень просты. Вам показывают массив квадратиков – шахматную доску, на которой часть квадратиков белые, а часть – серые. Если говорить на компьютерном языке, то каждый квадратик – это «бит», и мы можем пометить белые квадратики нулем, а серые единицей. Шахматная доска бескрайняя и простирается во все стороны до бесконечности, но в каждый момент времени мы можем видеть лишь ее часть.

Смысл игры в том, чтобы разгадать шаблон. Видя перед собой некий массив квадратиков, вы должны выделить закономерности и описать шаблон, или правила расстановки белых и серых квадратиков. После этого для проверки вам покажут другие части доски, и вы сможете сравнить свои предположения с фактическим расположением клеток. Последний шаг на языке игры называется «проверкой гипотезы».

Разумеется, у этой игры есть и другое название: «наука». Мы всего лишь описали, что делают настоящие ученые для понимания природы, – только в сильно идеализированном контексте. В случае физики хорошая теория включает три ингредиента: характеристики объектов, из которых сделана Вселенная, место действия, по которому распределены эти объекты, и правила, которым подчиняется поведение объектов. К примеру, в качестве объектов могут выступать элементарные частицы или поля, местом действия можно считать четырехмерное пространство – время, а правилами – законы физики. Мир шахматной доски именно такой: в качестве объектов выступают биты (нули и единицы, белые и серые квадратики), местом действия является сама шахматная доска, а правила – законы природы в этом игрушечном мире – это шаблоны, которые мы распознаем исходя из поведения квадратиков. Играя в эту игру, мы ставим себя на место воображаемых физиков, живущих в одном из подобных шахматных миров. Они проводят время, пытаясь разгадать закономерности в композициях квадратиков и сформулировать глобальные законы природы.[111]


Вечность. В поисках окончательной теории времени

Рис. 7.2. Пример мира «шахматной доски» с простым шаблоном заливки вертикальных столбцов


На рис. 7.2 изображен простейший пример игры, который мы будем называть «шахматная доска A». Очевидно, что какой-то шаблон здесь присутствует: квадратики раскрашены по определенной схеме. Можно сказать, что «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Однако мы должны быть осторожны и убедиться в том, что здесь случайно не затесались никакие другие шаблоны, ведь если кто-то найдет больше шаблонов, чем мы, то мы проиграем, а нашим соперникам достанется Нобелевская премия шахматного мира. Создается впечатление, что на шахматной доске A нет никаких других очевидных шаблонов; мы пробежались глазами вдоль всей строки, но никаких идей, позволяющих дополнительно упростить описание этого шахматного мира, не возникло. Значит, мы закончили.

Каким бы простым этот пример ни казался, у шахматной доски A много общего с реальным миром. Например, обратите внимание на то, что в найденном нами шаблоне различаются «время» (направление вверх по столбцам) и «пространство» (горизонтальное направление вдоль строк). Различие между ними состоит в том, что в строке может произойти все что угодно; насколько мы можем судить, наличие информации о состоянии одного конкретного квадратика не позволяет сделать никаких выводов о состоянии соседних. Аналогичным образом, в реальном мире мы также можем стартовать с любой произвольной конфигурации вещества в пространстве и предсказать, что с этой конфигурацией будет происходить с течением времени, руководствуясь «законами физики». Если у нас на коленях сидит кошка, то мы можем быть уверены, что и мгновение спустя она будет где-то неподалеку. Тем не менее наличие информации о присутствии рядом кошки не позволяет получить никакого представления о том, что еще есть в той комнате, где мы находимся.

Предположим, мы решили с нуля построить новую Вселенную. Кто сказал, что в нашем творении между временем и пространством обязательно должно существовать различие такого рода? Вполне возможно вообразить такой мир, в котором вещи от момента к моменту будут меняться настолько же резко и непредсказуемо, как от места к месту. Однако в той Вселенной, где живем мы с вами, данное различие действительно существует. Понятие времени, с ходом которого вещи во Вселенной эволюционируют, не является логически неотъемлемой частью мира; это всего лишь идея, которая внезапно оказывается весьма удобной для размышлений о реальности, в которой мы живем.

Мы описали правило, действующее на шахматной доске A, так: «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Это глобальное описание, распространяющееся сразу же на весь столбец. Мы могли бы перефразировать его, сделав более локальным, чтобы можно было взять любую строку («момент во времени») и с помощью правила восстановить все остальные строки сверху или снизу. Например, таким способом: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик прямо над ним находится точно в таком же состоянии». Другими словами, мы описали шаблон в терминах развития с течением времени и теперь можем, начиная с какого-то конкретного состояния в какой-то конкретный момент времени, продвигаться вперед (или назад), восстанавливая состояние одной строки за раз. Это традиционный способ применения законов физики к реальному миру, как показано на рис. 7.3. Расскажите о состоянии всего мира (скажем, о положении и скорости каждой частицы во Вселенной) в определенный момент времени, и законы физики услужливо сообщат, каким мир станет мгновение спустя.[112] Повторяя процесс, можно построить полную картину будущего. А как насчет прошлого?


Вечность. В поисках окончательной теории времени

Рис. 7.3. Физические законы можно представлять себе как машину, которая исходя из текущего состоянии мира дает предсказание, каким мир станет мгновением позже


Ставя время с ног на голову

Для мира, существующего только в нашем воображении, шахматная доска уж слишком однообразна и ограниченна. Невозможно представить, чтобы эти маленькие квадратики могли закатить вечеринку или написать эпическую поэму. Тем не менее если бы на шахматных досках жили физики, то они нашли бы, что обсудить после формулировки законов временной эволюции.

Физика шахматной доски A обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени. Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться.[113] Симметрии так и работают: вы что-то делаете, но это ничего не меняет – правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.

Кроме того, на шахматной доске A можно заметить еще один вид симметрии – инвариантность относительно обращения времени. Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» – то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, – то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A, в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.

Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B. Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка.[114] Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие – только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.

Что произойдет с шахматной доской B, если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A, где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной B', показан результат зеркального отражения относительно одной из строк шахматной доски B. В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.


Вечность. В поисках окончательной теории времени

Рис. 7.4. Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки


Инвариантен ли мир шахматной доски из примера B относительно обращения времени? Определенно, это так. Пусть изменение направления времени относительно произвольно выбранной строки и меняет индивидуальное распределение белых и серых клеток – это не важно. Важно то, что неизменными остаются «законы физики», то есть правила, которым подчиняются схемы закрашивания квадратиков. В исходном примере B, до изменения направления времени, правила гласили, что существуют два типа диагональных линий, содержащих серые клетки. То же самое верно и для B'. И пусть два типа линий обмениваются личинами; это не отменяет того факта, что как в состоянии «до», так и в состоянии «после» мы наблюдаем одни и те же два типа линий. Таким образом, воображаемые физики из мира шахматной доски B объявили бы, что законы природы инвариантны относительно изменения направления времени.

В Зазеркалье

Ну что, рассмотрим еще один мир шахматной доски? Теперь это будет шахматная доска C, показанная на рис. 7.5. И снова действующие в этом мире правила кажутся довольно простыми: мы видим только диагональные линии, протянувшиеся из левого нижнего угла в правый верхний. Попробуем сформулировать правило «предсказания будущего» в терминах пошагового развития: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик на один шаг выше и правее него находится в том же самом состоянии». Определенно, данное правило инвариантно относительно переноса во времени, так как результат его применения абсолютно не зависит от того, с какой строки мы начнем.


Вечность. В поисках окончательной теории времени

Рис. 7.5. В шахматном мире C присутствуют только диагональные линии серых квадратиков, идущие из левого нижнего угла в правый верхний. Если изменить направление времени на противоположное, то мы получим картинку C', на которой нет ничего, кроме диагональных линий из правого нижнего угла в левый верхний. Строго говоря, шахматная доска C не инвариантна относительно изменения направления времени – она инвариантна относительно одновременного отражения в пространстве и во времени


Если изменить направление времени на шахматной доске C на противоположное, то мы получим конфигурацию, показанную на рис. 7.5 на доске C'. Очевидно, что эта ситуация отличается от ситуации с B и B'. Правила, которым подчиняются клетки на доске C', отличаются от правил на доске C: вместо диагональных линий, идущих из левого нижнего угла в правый верхний, мы теперь видим линии, идущие в другую сторону. Физики, живущие в мирах C и C', сказали бы, что наблюдаемые ими законы природы не обладают симметрией относительно обращения времени. Мы безошибочно различаем направления «вперед во времени» и «назад во времени»: «вперед» – это то направление, в котором диагональные линии движутся вправо. Какое направление назначить «будущим» – решать нам, но как только выбор сделан, «прошлое» и «будущее» идентифицируются однозначно.

Однако это еще не конец истории. Хотя шахматная доска C, строго говоря, не инвариантна относительно изменения направления времени (в том смысле, как мы его определили), что-то «обратимое» в этом мире все же должно быть. Давайте попробуем понять – что.

Помимо обращения времени, мы также могли бы рассмотреть вариант «обращения» пространства. Для этого нам нужно отразить шахматную доску по горизонтали относительно какого-то столбца. В реальном мире мы получаем аналогичный результат, когда смотримся в зеркало, так что обращением пространства в данном случае можно считать обычное зеркальное отражение. В физике это обычно называют преобразованием четности, которое получается при одновременном обращении всех трех пространственных осей, а не одной (как на шахматной доске). Давайте тоже будем использовать этот термин, чтобы у нас была возможность при необходимости сойти за настоящих физиков.

Очевидно, что наша исходная шахматная доска A инвариантна относительно преобразования четности: те правила поведения, которые мы на ней обнаружили, выполняются даже после горизонтального зеркального отражения. В то же время на шахматной доске C мы сталкиваемся с ситуацией, аналогичной той, которую мы получали, когда меняли направление времени на противоположное: четность – это не симметрия. Меняя «лево» на «право», мы превращаем мир с диагоналями «только вверх и вправо» в мир с диагоналями «только вверх и влево».

Тем не менее почему бы нам не взять шахматную доску C и не обратить сразу и время и пространство? В получившемся мире будут действовать те же правила, с которых все началось. При обращении времени первый тип диагоналей превращается во второй, а отражение в пространстве восстанавливает исходную картинку. Все встает на свои места, а этот эксперимент иллюстрирует одну важную особенность изменения направления времени в фундаментальной физике: очень часто бывает так, что определенная физическая теория не инвариантна относительно «наивного инвертирования времени», при котором меняется лишь направление времени и больше ничего. Однако та же самая теория может быть инвариантной относительно некоторого правильно обобщенного преобразования симметрии, которое не ограничивается лишь обращением времени, а включает какие-то дополнительные преобразования. В реальном мире это происходит по весьма изощренному сценарию, который в изложении некоторых авторов учебников по физике становится еще сложнее и запутаннее. Итак, давайте оставим наш дискретный мир шахматных досок и бросим взгляд на настоящую Вселенную.

Адрес состояния системы

В теориях, которые используются физиками для описания реального мира, присутствует общее базовое понятие состояния, которое «развивается с течением времени». Это касается как классической механики, сформулированной Ньютоном, так и общей теории относительности и квантовой механики, и даже квантовой теории поля и стандартной модели в физике элементарных частиц. На любой из наших шахматных досок состоянием является горизонтальная строка квадратиков, каждый из которых окрашен в белый или серый цвет (и, возможно, несет какую-то дополнительную информацию). В зависимости от подхода к физике реального мира определение состояния может меняться. Однако каким бы оно ни было, мы можем задавать одни и те же вопросы об изменении направления времени и других возможных симметриях нашего мира.

«Состояние» физической системы – это «полный набор информации о системе в определенный момент времени, которая достаточна для описания ее дальнейшего развития[115] с учетом законов физики». Если точнее, то данное определение распространяется только на изолированные системы, то есть системы, не подверженные влиянию непредсказуемых внешних сил (в ситуации с предсказуемыми внешними силами мы можем просто-напросто объявить их частью «законов физики», действующих на данную систему). Таким образом, мы можем рассуждать как обо всей Вселенной, которая предполагается изолированной, так и о каком-то космическом корабле, находящемся на достаточном удалении от любых планет или звезд.

Рассмотрим для начала классическую механику – мир сэра Исаака Ньютона.[116] Что нам нужно знать, чтобы предсказать будущее системы в ньютоновской механике? Выше я уже упоминал об этом: нам потребуются положения и скорости всех элементов системы. Однако не будем торопиться, а попробуем прийти к этому ответу постепенно, шаг за шагом.

Когда кто-то упоминает ньютоновскую механику, можно не сомневаться – дело закончится игрой в бильярд.[117] Но давайте представим себе новый вариант игры – не тот традиционный бильярд с восемью шарами, а нечто уникальное. Свое гипотетическое развлечение с бильярдными шарами мы назовем бильярдом физиков. В попытке избавиться от излишних усложнений и добраться до сути вещей физики выдумывают игры, в которых нет ни шума, ни трения: идеально круглые сферы катаются по столу и отталкиваются друг от друга, не теряя ни капли энергии. Настоящие бильярдные шары ведут себя совершенно по-другому – каждому столкновению сопутствуют звук удара и рассеяние определенного количества энергии. Это наглядное проявление работы стрелы времени: шум и трение создают энтропию. Мы же на мгновение отбросим подобные сложности.

Для начала вообразим один-единственный бильярдный шар, катающийся по столу (распространить правила игры сразу на несколько шаров будет совсем нетрудно). Мы считаем, что он никогда не теряет энергию и, наталкиваясь на бортик, просто отскакивает. В целях нашей задачи «идеальный отскок» будет частью «физических законов» данной замкнутой системы – бильярдного шара. Так что же можно считать состоянием этого единственного шара?

На первый взгляд кажется, что логично считать состоянием шара в любой момент времени его положение на столе. В конце концов, если сделать фотографию стола, то что мы увидим? Место, где в тот момент находился шар. Однако выше мы определили состояние как полную информацию, требуемую для предсказания движения системы; очевидно, что одного лишь положения нам недостаточно. Если я скажу, что шар находится точно в центре стола (и больше ничего), и попрошу вас предсказать, где он окажется секундой позже, то вы не сможете дать мне точный ответ, ведь вам неизвестно, в какую сторону шар катился.

Разумеется, для предсказания движения шара на основании информации, имеющейся в наличии в конкретный момент времени, нам нужно знать как положение, так и скорость объекта. Говоря «состояние шара», мы имеем в виду его положение и скорость и – обратите внимание! – ничего более. Нам неважно, например, с каким ускорением шар катится, какое сейчас время суток, чем шар позавтракал в этот день и что еще происходит в его внутреннем мире.

Для описания движения частиц в классической механике вместо скорости часто используют такое понятие, как импульс. История данного понятия восходит к тысячному году и связана с величайшим персидским философом Ибн Синой (в латинизированном написании Авиценна). Он предложил теорию движения, в которой «влечение» – произведение массы и скорости – остается в отсутствие внешних воздействий постоянным. Импульс сообщает нам, какой энергией обладает объект и в каком направлении он движется.[118] В ньютоновской механике импульс равен произведению массы на скорость, а в теории относительности формула слегка модифицируется с учетом того, что с приближением скорости объекта к скорости света его импульс возрастает до бесконечности. Если вам известен импульс объекта с фиксированной массой, то вы знаете его скорость, и наоборот. Следовательно, определить состояние любой частицы можно, указав ее положение и импульс.


Вечность. В поисках окончательной теории времени

Рис. 7.6. Одинокий бильярдный шар, катающийся по столу без трения. Показаны состояния в три разных момента времени. Стрелочки обозначают импульс шара; он остается постоянным до тех пор, пока шар не отскочит от бортика


Зная положение и импульс бильярдного шара, вы можете полностью предсказать всю траекторию, по которой он будет следовать, катаясь по столу. Пока шар свободно катится, не касаясь стенок, импульс остается постоянным; меняется лишь положение шара вдоль прямой линии, и происходит это с постоянной скоростью. Когда шар врезается в бортик, импульс мгновенно отражается относительно линии бортика, после чего шар продолжает движение с постоянной скоростью, то есть он отскакивает. Я описываю простые вещи сложными словами, но это необходимо.

Вся суть ньютоновской механики в этом и заключается. Если по одному и тому же столу катается много шаров, то полное состояние системы представляет собой всего лишь набор положений и импульсов каждого из них. Скажем, состояние Солнечной системы – это положения и импульсы всех планет, а также Солнца. Или же, если вам хочется большей детальности и реалистичности, – то это положения и импульсы всех частиц, из которых состоят эти объекты. А состояние вашего парня или девушки включает описание положения и импульса каждого атома его или ее тела. Правила классической механики позволяют однозначно предсказать, по какому пути пойдет развитие системы, опираясь лишь на информацию о ее текущем состоянии. После того как вы составили нужный список, дело берет в свои руки демон Лапласа, и исход предопределен. Однако вы не столь умны, как демон Лапласа, и у вас нет доступа к такому объему информации, поэтому парни и девушки навсегда останутся загадками. Кроме того, они представляют собой открытые системы, так что в любом случае вам потребовалась бы также информация и обо всем остальном мире.

Во многих ситуациях удобно рассуждать обо «всех потенциально возможных состояниях системы», называемых пространством состояний системы. Обратите внимание на то, что слово «пространство» употребляется в двух, казалось бы, совершенно разных смыслах. У нас есть пространство – физическая арена, на которой происходит движение реальных объектов во Вселенной, а также абстрактное понятие пространства как математического набора объектов (это почти то же самое, что и «множество», но с возможностью существования некой дополнительной структуры). Пространство состояний – это пространство, способное принимать разные формы в зависимости от рассматриваемых физических законов.

В ньютоновской механике пространство состояний называется фазовым пространством, хотя причины такого именования не до конца ясны. Это всего лишь набор всех возможных положений и импульсов всех присутствующих в системе объектов. В мире шахматных досок пространство состояний состоит из всевозможных последовательностей белых и серых квадратиков в одной строке, а также может включать некоторую дополнительную информацию в точках, где пересекаются диагональные линии. Когда мы окунемся в квантовую механику, то столкнемся с пространством состояний, состоящим из всех возможных волновых функций, описывающих квантовую систему; на техническом языке это называется гильбертовым пространством. В любой уважающей себя физической теории присутствует пространство состояний и правила, описывающие эволюцию конкретных состояний с течением времени.

У пространства состояний может быть громадное количество измерений, даже если обычное пространство всего лишь трехмерное. В этом контексте под измерением понимается «число, необходимое для фиксации точки в пространстве». В пространстве состояний есть по одному измерению для каждой компоненты положения и по одному измерению для каждой компоненты импульса для каждой частицы в системе. Если мы говорим о бильярдном шаре, катающемся по плоскому двумерному столу, то нам требуется два числа для описания его положения (так как сам стол двумерный) и два числа для описания его импульса (величины и направления). Таким образом, пространство состояний одного бильярдного шара, привязанного к двумерному столу, четырехмерное: два числа для положения, два для импульса.


Вечность. В поисках окончательной теории времени

Рис. 7.7. Два шара на бильярдном столе и соответствующее пространство состояний. Для обозначения положения каждого шара на столе требуется два числа, и еще два числа описывают его импульс. Полное состояние двух частиц представляет собой точку в восьмимерном пространстве (справа). Мы не можем нарисовать восемь измерений, так что постарайтесь вообразить, что они там действительно присутствуют. Каждый дополнительный шар добавляет к пространству состояний четыре измерения


Если бы на столе было девять шаров, то нам потребовалось бы по два числа на положение каждого шара и по два на их импульсы – итого тридцать шесть измерений фазового пространства. Число измерений, требующихся для описания импульса и положения, всегда совпадает, так как в реальном пространстве вдоль каждой из осей пространства направлено по одной компоненте импульса. Если рассмотреть случай бейсбольного мяча, летящего в воздухе, что эквивалентно задаче об одной частице, свободно движущейся в трехмерном пространстве, то пространство состояний для него будет шестимерным. Для 1000 частиц оно будет 6000-мерным.

В реалистичных задачах пространство состояний чрезвычайно велико. Настоящий бильярдный шар состоит примерно из 1025 атомов, а пространство состояний представляет собой список положений и импульсов каждого из них. Вместо того чтобы рассматривать эволюцию всех этих атомов, движущихся сквозь трехмерное пространство со своими импульсами, мы можем с равным успехом говорить о движении всей системы целиком как об одной точке (состоянии), движущейся сквозь пространство состояний с громадным количеством измерений. Это кардинальный способ перепаковки огромного объема информации в другую форму; нисколько не упрощая описание (мы всего лишь подменили огромное количество частиц огромным количеством измерений), он позволяет взглянуть на вещи с новой точки зрения.

Ньютоновская механика инвариантна относительно выбора направления времени. Если вы снимете фильм о том, как наш одинокий бильярдный шар катается по зеленому фетру и отскакивает от бортиков стола, то ни один зритель не сможет сказать, смотрит он эту пленку в прямом или в обратном воспроизведении. В обоих случаях на экране происходит одно и то же: шар катится по прямой линии с постоянной скоростью до тех пор, пока не врежется в бортик и не отскочит от него.

Однако это далеко не конец истории. В нашем шахматном мире мы определили инвариантность относительно обращения времени как идею о том, что последовательность состояний системы можно отразить во времени, и результат все так же будет подчиняться сформулированным для этого мира законам физики. На шахматной доске состоянием является строка белых и серых квадратиков; для бильярдного шара это точка в пространстве состояний, задающая положение и импульс шара.

Взгляните на первую часть траектории шара на рис. 7.6. Шар равномерно и прямолинейно катится вверх и вправо, величина его импульса остается постоянной, и направлен импульс также вверх и вправо. Если зеркально отразить происходящее во времени, то мы получим последовательность положений шара, движущегося из верхней правой области стола в нижнюю левую, а также набор одинаковых импульсов, указывающих вверх и вправо. Но это какое-то безумие. Если шар катится вдоль траектории с обратным направлением времени – сверху и справа вниз и влево, то и направление его импульса должно совпадать с направлением скорости. Очевидно, что самый простой рецепт – взять исходный набор состояний, упорядоченный во времени, и воспроизвести его в неизменном виде в обратную сторону – не работает. Получившаяся траектория не отвечает законам физики. (Совершенно очевидно, что импульс никак не может быть направлен в сторону, противоположную направлению скорости, ведь он равен произведению скорости и массы![119])

Эта дилемма хоть и кажется неразрешимой, в действительности довольно проста. В классической механике мы можем определить операцию обращения времени не просто как воспроизведение исходного набора состояний в обратную сторону, но как составную операцию, включающую изменение направления импульсов на противоположное. И тогда действительно классическая механика окажется идеально инвариантной относительно обращения времени. Если вы предоставите мне описание эволюции системы с течением времени, включающее положения и импульсы каждой ее части в каждый момент времени, то я смогу развернуть эти импульсы в обратную сторону, воспроизвести последовательность в обратном порядке и получить новую траекторию, которая также будет представлять собой правильное решение ньютоновских уравнений движения.

Это более или менее отвечает здравому смыслу. Возьмем планету, вращающуюся вокруг Солнца. Предположим, что вам стало интересно, как этот процесс будет выглядеть в «обратной перемотке», – вы мысленно меняете направление течения времени, и теперь планета движется по той же орбите, но в обратную сторону. Наблюдая эту картину в течение какого-то времени, вы приходите к выводу, что все выглядит вполне достоверно. Это происходит потому, что ваш мозг автоматически меняет направление импульса на противоположное, – вам даже не приходится задумываться об этом, в вашем воображении планета совершенно естественным образом движется в обратную сторону. Мы не придаем этому большого значения, потому что не можем увидеть импульс так же, как видим положение. Тем не менее это такая же важная часть состояния любой системы, как и положение входящих в нее частиц.

Следовательно, нельзя говорить, что ньютоновская механика инвариантна относительно самого тривиального определения обращения времени: взять упорядоченную по времени допустимую последовательность состояний, поменять порядок их следования на обратный и посмотреть, будет ли новая последовательность отвечать действующим законам физики. При этом никого это особо не волнует. Мы просто даем более усовершенствованное определение: в этой упорядоченной во времени допустимой последовательности состояний нужно преобразовать каждое индивидуальное состояние некоторым простым, но конкретным способом и только после этого менять порядок следования состояний на обратный. Под «преобразованием» мы понимаем всего лишь изменение каждого состояния согласно заранее согласованному правилу; в случае ньютоновской механики требуемой трансформацией будет «изменение направления импульса на обратное». Если мы найдем достаточно простой способ преобразования отдельных состояний, обеспечивающий соблюдение законов физики даже после обращения времени, то сможем с гордостью объявить, что эти законы инварианты относительно изменения направления времени.

Это заставляет вспомнить (по крайней мере должно заставлять, если мой план удался) диагональные линии с шахматной доски C. Там мы обнаружили, что показанный на панели C' результат простого зеркального отражения упорядоченной по времени последовательности состояний не отвечает правилам исходного шаблона. Следовательно, шахматная доска C не допускает тривиального обращения времени. При этом если сначала отразить шахматную доску по горизонтали и только после этого поменять направление времени, то результат будет удовлетворять первоначальным правилам. Таким образом, в этом мире существует хорошо определенная процедура преобразования индивидуальных состояний (строк, состоящих из квадратиков), показывающая, что шахматная доска C инвариантна относительно обращения времени, но в более изощренном смысле.

Понятие об обращении времени, включающее преобразование состояний в дополнение к непосредственному изменению направления времени, может вызывать сомнения, но физики постоянно занимаются чем-то подобным. Например, в теории электричества и магнетизма при обращении времени электрическое поле остается неизменным, а направление магнитного поля меняется. Это всего лишь часть требуемого преобразования; прежде чем пускать время в обратную сторону, изменениям должны быть подвергнуты как магнитное поле, так и импульс.[120]

Урок, который мы должны извлечь из всего этого, заключается в следующем. Фраза «данная теория инвариантна относительно обращения времени» не означает «можно только лишь поменять направление времени, и теория как работала, так и продолжит работать». На самом деле все немного сложнее: нужно каким-то простым способом преобразовать состояние в каждый момент времени, а потом уже менять направление времени, и тогда теория продолжит работать, как раньше. Очевидно, что выражения типа «каким-то простым способом» в определениях фундаментальных физических понятий несколько подрывают их авторитет. Кто вправе судить, что можно считать достаточно «простым», а что нет?

В действительности это не так уж важно. Если существует какое-то преобразование, которое можно применить к состоянию некой системы в каждой момент времени так, чтобы движение «назад во времени» подчинялось исходным физическим законам, вы можете смело объявлять это инвариантностью относительно изменения направления времени. Или другим видом симметрии, связанным с обращением времени, но не в точности равным ему. Название не играет роли; важно лишь понимание всевозможных симметрий и того, соблюдаются они рассматриваемыми законами или нет. В стандартной модели физики элементарных частиц действительно существует преобразование состояний, после которого они могут быть «прокручены назад во времени» так, чтобы исходные уравнения движения по-прежнему соблюдались. Но физики предпочитают не называть это «инвариантностью относительно изменения направления времени». Давайте посмотрим, как это работает.

Запуск частиц в обратном направлении

Элементарные частицы не слишком-то хорошо соблюдают постулаты классической механики: они живут по правилам квантовой механики. Тем не менее основополагающий принцип остается неизменным: существуют такие преобразования, что после изменения направления времени на обратное и применения этих трансформаций мы все так же получаем верное решение в исходной теории. Часто можно услышать, что элементарные частицы не инвариантны относительно отражения времени, и периодически высказываются даже не слишком тонкие намеки на то, что это связано со стрелой времени. Но это ложный след. Поведение элементарных частиц в условиях «обратного» времени никакого отношения к стреле времени не имеет, что, однако, вовсе не делает ее менее интересным объектом для исследований.

Давайте попробуем вообразить эксперимент, позволяющий понять, действительно ли физика элементарных частиц инвариантна относительно обращения времени. Для этого нам нужно взять какой-либо процесс, включающий элементарные частицы, и прокрутить его в обратном направлении. Например, две частицы могут взаимодействовать друг с другом с образованием других частиц (как в ускорителе), или же одна частица может распадаться на несколько других. Если продолжительность «прямого» процесса будет отличаться от продолжительности «обратного», это станет доказательством отсутствия инвариантности.

Атомные ядра состоят из нейтронов и протонов, которые в свою очередь состоят из кварков. Нейтроны остаются стабильными только в окружении протонов и других нейтронов, образующих ядро, а оказавшись в одиночестве, они распадаются в течение нескольких минут (будучи частицами с тонкой душевной организацией, они не могут жить без внимания окружающих). Нейтрон распадается на комбинацию из протона, электрона и нейтрино (очень легкая нейтральная частица).[121] С теоретической точки зрения нет ничего сложного в том, чтобы сконструировать обратный процесс: нужно всего лишь выстрелить протоном, электроном и нейтрино в одну точку на правильной скорости и дождаться результата. Проблема, однако, состоит в том, что даже если подобное взаимодействие и позволило бы получить какие-нибудь новые интересные знания об обращении времени, реализовать это на практике невозможно. Никому не под силу поместить протон, электрон и нейтрино в такие положения и заставить вести себя так, чтобы полностью воспроизвести картину распада нейтрона в обратном направлении.


Вечность. В поисках окончательной теории времени

Рис. 7.8. Нейтральный каон и нейтральный антикаон. Поскольку оба обладают нулевым электрическим зарядом и суммарное кварковое число в них также равно нулю, каон и антикаон могут осциллировать друг в друга, оставаясь при этом разными частицами


Однако не всегда все так печально. В физике элементарных частиц встречаются специфические случаи, когда одиночная частица «распадается» в другую одиночную частицу, которая затем также может «распасться» обратно в исходную. В действительности это, конечно, нельзя называть распадом, поскольку в процесс вовлечена только одна частица. Такие процессы называются осцилляциями. Очевидно, что осцилляции могут происходить только в весьма специфических обстоятельствах. Например, протон не может осциллировать в нейтрон: их электрические заряды отличаются. Две частицы могут осциллировать друг в друга только в том случае, если они обладают одинаковым электрическим зарядом, одинаковым числом кварков и одинаковой массой, так как при осцилляции не может исчезать или увеличиваться энергия. Обратите внимание на то, что кварк и антикварк – это не одно и то же, и, следовательно, нейтроны не будут осциллировать в антинейтроны. В сущности, нас интересуют две практически одинаковые частицы, различия между которыми минимальны.

Природа предоставляет нам идеального кандидата для таких осцилляций: нейтральный каон. Каон относится к типу мезонов, и это означает, что он состоит из одного кварка и одного антикварка. Если мы хотим, чтобы частица состояла из кварков разных типов с нулевым суммарным зарядом, то проще всего сделать ее из одного нижнего (d) – кварка и одного странного (s) антикварка, или наоборот.[122] Систему из нижнего кварка и странного антикварка принято называть «нейтральным каоном», а систему из странного кварка и нижнего антикварка – «нейтральным антикаоном». Массы этих частиц абсолютно одинаковы и составляют около половины массы протона или нейтрона. Вполне естественно ожидать, что между каонами и антикаонами возникают осцилляции, и действительно: изучение осцилляций именно этих частиц стало уже чем-то вроде промышленной отрасли в экспериментальной физике элементарных частиц. (Существуют также каоны, обладающие электрическим зарядом. Такой каон состоит из верхнего (u) кварка и странного кварка и для наших целей совершенно бесполезен. Даже если в дальнейшем обсуждении для простоты формулировок мы будем опускать слово «нейтральный», говорить мы все же будем именно о нейтральных каонах.)

Итак, нам нужно сделать несколько каонов и антикаонов, чтобы понаблюдать, как они будут осциллировать друг в друга. Если инвариантность относительно отражения времени отсутствует, то в одну сторону процесс будет идти дольше, чем в другую; в результате в нашем наборе частиц будет в среднем немного больше каонов, чем антикаонов (или наоборот). К сожалению, на самих частицах мы не найдем маленьких меточек, сообщающих, с каким типом каонов мы имеем дело. Зато в конечном счете они полностью распадутся и образуют совершенно новые частицы: каон распадается на пион с отрицательным зарядом, антиэлектрон и нейтрино, а антикаон – на пион с положительным зарядом, электрон и антинейтрино. Если оценить, насколько часто один тип распада происходит по сравнению с другим, то можно понять, в какой форме первоначальные частицы пребывали дольше – в форме каона или антикаона.

Несмотря на то что теоретические предсказания были получены уже достаточно давно, соответствующий эксперимент CPLEAR провели в лаборатории CERN в Женеве (Швейцария) лишь в 1998 году.[123] Ученые обнаружили, что создаваемый ими пучок частиц, совершающий осцилляции между каонами и антикаонами, немного чаще (примерно на две трети процента) распадался как каон, чем как антикаон, то есть частицы в осциллирующем пучке чуть дольше пребывали в состоянии каонов, чем антикаонов. Другими словами, процесс превращения каона в антикаон занимал немного больше времени, чем обратный процесс перехода антикаона в каон. Таким образом, в реальном мире направление времени в физике элементарных частиц не симметрично.

По крайней мере, это справедливо для «бесхитростного» обращения времени, как мы определили его выше. Можно ли в мире элементарных частиц использовать какие-либо дополнительные преобразования, чтобы в результате добиться инвариантности относительно обращения времени? Ответ положительный, и сейчас мы обсудим это подробнее.

Три отражения природы

Если пристальнее всмотреться в принципы работы физики элементарных частиц, то выяснится, что существует три типа возможных симметрий, включающих «обращение» физического свойства, и каждое из них обозначено своей заглавной буквой. Инверсия времени T меняет местами прошлое и будущее. Четность P обозначает замену «право» на «лево», и наоборот. Мы уже обсуждали четность в контексте миров шахматных досок, но это понятие точно так же распространяется и на реальный трехмерный мир. Наконец, существует «зарядовое сопряжение» C – на самом деле это просто модное название для процесса замены частиц на античастицы. Преобразования C, P и T обладают одним общим свойством: если повторить любое из них два раза подряд, то вы вернетесь к исходному состоянию.

В принципе, можно представить себе набор физических законов, инвариантный относительно каждого из перечисленных преобразований в отдельности, и на первый взгляд кажется, что так и обстоит дело в нашем мире (главное, не копать слишком глубоко, например, изучая распад нейтральных каонов). Если создать атом антиводорода из антипротона и антиэлектрона, то он будет обладать почти такими же свойствами, как и обычный атом водорода, за исключением того, что при соприкосновении с атомом обычного водорода эти элементы проаннигилируют, оставив после себя лишь излучение. Таким образом, преобразование C создает впечатление симметрии нашего мира, так же как P и T.

В результате, когда в 1950-х годах американские физики китайского происхождения Чжэндао Ли, Чжэньнин Янг и Цзяньсюн Ву показали, что одно из преобразований – четность – не является симметрией природы, для многих это стало огромным сюрпризом. Мысль о возможном нарушении инвариантности относительно четности витала в воздухе уже довольно давно. Об этом говорили разные люди, но всерьез такую возможность никто не рассматривал. В физике авторство открытия приписывается не тому, кто случайно высказывает предположение, а тому, кто подходит к этому предположению с достаточно основательных позиций, чтобы взять его в работу и превратить в солидную теорию или убедительный эксперимент. В случае нарушения принципа четности именно Ли и Янг сели и выполнили тщательный анализ проблемы. Они поняли, что существует множество экспериментальных доказательств того, что электромагнетизм и сильное взаимодействие инвариантны относительно P, однако что касается слабого взаимодействия, вопрос оставался открытым.

Ли и Янг предложили несколько путей поиска доказательств нарушения четности при слабом взаимодействии. В конце концов они убедили Ву – физика-экспериментатора, специализирующуюся на слабых взаимодействиях, и коллегу Ли по Колумбийскому университету, что на этот проект стоит потратить время и силы. Ву пригласила физиков из Национального бюро стандартов США присоединиться к ней для проведения эксперимента над атомами кобальта-60 в магнитных полях при очень низких температурах.

В ходе подготовки к эксперименту Ву убедилась в том, что этот проект имеет фундаментальную значимость. Позднее в своих воспоминаниях она живо описывала свои ощущения от участия в важнейшем событии научного мира:

После визита профессора Ли я глубоко задумалась. Для физика, изучающего бета-распад, это было великолепной возможностью провести решающий эксперимент, и, конечно же, я не могла ее упустить. Той весной мы с моим мужем Чиа-Лью Юань планировали посетить конференцию в Женеве, а затем отправиться на Дальний Восток. Мы оба покинули Китай в 1936 году, ровно двадцать лет назад. Билеты на рейс Королевы Елизаветы были уже забронированы, но внезапно я осознала, что обязана провести эксперимент немедленно, до того как его значимость станет очевидной физическому сообществу и кто-нибудь меня опередит. Поэтому я попросила Чиа-Лью позволить мне остаться и отправиться в поездку без меня.

Сразу же по завершении весеннего семестра, в конце мая, я начала с энтузиазмом готовиться к эксперименту. В середине сентября я наконец-то поехала в Вашингтон на первую встречу с доктором Аблером… В перерывах между экспериментами в Вашингтоне мне приходилось то и дело возвращаться в Колумбийский университет – я продолжала преподавать, а также должна была заниматься исследованиями. В канун Рождества я добралась до Нью-Йорка на последнем поезде; аэропорт был закрыт из-за сильных снегопадов. Там я рассказала профессору Ли о замеченной асимметрии – она не только была огромной, но и оказалась воспроизводимой. Параметр асимметрии составлял почти –1. Профессор Ли отметил, что это замечательный результат. Именно тот результат, которого следовало ожидать для двухкомпонентной теории нейтрино.[124]

Супруг и возвращение в дом детства подождут – наука зовет! В 1957 году Ли и Янгу была присуждена Нобелевская премия; в число награждаемых надо было включить и Ву, однако этого не произошло.

Вскоре после того, как выяснилось, что слабое взаимодействие нарушает четность, ученые заметили, что эксперименты вроде бы подтверждают инвариантность относительно комбинации преобразований – когда к четности добавляется зарядовое сопряжение C, заменяющее частицы античастицами. Более того, что-то подобное предсказывали теоретические модели, популярные в то время. Таким образом, люди, которых неприятно поразило открытие асимметрии четности в реальном мире, нашли некоторое утешение в мысли о том, что комбинация C и P является хорошей симметрией.

Тем не менее это было ошибкой. В 1964 году Джеймс Кронин и Вал Фитч совместно провели исследование, объектом которого выступил наш старый друг нейтральный каон. Они обнаружили, что четность нарушается не только при распаде каона, но и при распаде антикаона, только во втором случае это происходит несколько иным образом. Другими словами, комбинация преобразований C и P не является симметрией природы.[125] Нобелевскую премию Кронину и Фитчу присудили в 1980 году.

Долго ли, коротко ли, но обнаружилось, что природа нарушает не только все потенциальные симметрии – C, P и T, но и комбинацию любых двух преобразований. Очевидным следующим шагом стала проверка комбинации всех трех: CPT. Если взять какой-либо процесс природы, заменить все частицы античастицами, поменять местами лево и право и изменить направление времени на обратное, то будет ли получившийся процесс подчиняться законам физики? С учетом того, что нам уже известно про комбинации двух преобразований, логично ожидать, что и комбинация CPT также не будет инвариантной.

Однако и здесь мы ошибаемся! (Хорошо, что и задаем вопросы, и отвечаем на них мы сами.) Пока что все проведенные эксперименты подтверждают, что преобразование CPT является симметрией реального мира. Более того, сделав некоторые обоснованные предположения про законы физики, можно доказать, что преобразование CPT обязано быть симметрией, – это утверждение неудивительным образом называется «CPT-теоремой». Разумеется, даже обоснованные предположения могут оказываться ошибочными, так что ни физики-экспериментаторы, ни теоретики не чураются исследовать возможное нарушение CPT-инвариантности. Но насколько можно судить, эта симметрия пока что не собирается сдавать позиции.

Ранее я говорил, что для того, чтобы получить преобразование, применение которого не нарушает законов природы, может оказаться необходимым «починить» операцию обращения времени. В случае стандартной модели физики элементарных частиц в список преобразований также добавляются зарядовое сопряжение и четность. Большинство физиков полагают, что следует разделять гипотетический мир, в котором C, P и T инвариантны по отдельности, и реальный мир, в котором инвариантностью обладает лишь комбинация CPT. Это позволяет заявлять, что реальный мир не инвариантен относительно изменения направления времени. Однако необходимо все время помнить, что существует возможность дополнить инверсию времени другими операциями так, чтобы результат отвечал всем требованиями симметрии реального мира.

Сохранение информации

Мы убедились, что обращение времени включает в себя не только изменение направления эволюции системы, то есть воспроизведение естественной последовательности состояний в обратную сторону, но также требует применения определенных преобразований к самим состояниям. Это может быть изменение импульса на противоположный, зеркальное отражение строки на шахматной доске или что-то более изысканное, например замена частиц античастицами.

Однако если это так, то можно ли утверждать, что каждый осмысленный набор физических законов инвариантен относительно той или иной формы «усложненного обращения времени»? Всегда ли возможно найти такие преобразования состояний, после применения которых движение «в обратную сторону по времени» все так же будет подчиняться законам физики?

Нет. Возможность определить обращение времени таким образом, чтобы законы физики относительно данной операции оставались инвариантными, зависит от одного критически важного предположения: предположения о сохранении информации. Это всего лишь означает, что два разных состояния в прошлом всегда переходят в два разных состояния в будущем – пути их эволюции не могут пересечься в одном и том же состоянии. Если это выполняется, то мы говорим, что «информация сохраняется», так как зная состояние в будущем, можно понять, каким было соответствующее состояние в прошлом. Физические законы, в которых заложена такая особенность, считаются обратимыми, и в таком случае можно утверждать, что существуют какие-то (возможно, очень сложные) преобразования, которые можно применять к состояниям таким образом, что инвариантность относительно обращения времени сохранится.[126]

Для того чтобы посмотреть, как это работает на деле, давайте снова вернемся в шахматный мир. Шахматная доска D, показанная на рис. 7.9, выглядит довольно просто. Серые квадратики на ней образуют несколько диагональных линий и один вертикальный столбец. Но здесь происходит нечто интересное, что нам еще не доводилось наблюдать в предыдущих примерах: разные линии серых квадратиков «взаимодействуют» друг с другом, а именно создается впечатление, что диагональные линии могут подходить к вертикальному столбцу справа или слева, но в месте соприкосновения с вертикальным столбцом диагональные линии неизменно обрываются.


Вечность. В поисках окончательной теории времени

Рис. 7.9. Шахматная доска с необратимой динамикой. Информация о прошлом не сохраняется в будущем


Казалось бы, правило довольно простое, и его можно считать отличным «набором законов физики». Но между шахматной доской D и предыдущими шахматными мирами существует кардинальное отличие: на этой доске происходящее необратимо. Пространство состояний, как и раньше, представляет собой простое перечисление белых и серых квадратиков вдоль каждой строки (с дополнительной информацией о том, является квадратик частью диагонали, движущейся направо, диагонали, движущейся налево, или вертикального столбца). Имея на руках такую информацию, мы без труда можем предсказать развитие «вперед во времени» – мы точно знаем, как будет выглядеть следующая строка и строка сразу за ней, и так далее.

Однако, зная состояние одной строки, мы не можем прокрутить развитие системы в обратную сторону. Мы сможем продолжить существующие диагональные линии, но с точки зрения прокрутки времени в обратную сторону новые диагонали могут отпочковываться от вертикального столбца в абсолютно случайных точках (соответствующих точкам «столкновения» диагоналей с вертикальным столбцом при развитии вперед во времени). Когда мы говорим, что физический процесс необратим, мы имеем в виду, что невозможно восстановить прошлое состояние, отталкиваясь от знания о текущем состоянии, и эта шахматная доска служит прекрасным примером.

В подобных ситуациях информация теряется. Даже зная о состоянии мира в какой-то момент времени, мы не можем сказать с уверенностью, в каких состояниях он пребывал в прошлом. У нас есть пространство состояний – описания строчек из белых и серых квадратиков с дополнительными метками на серых, сообщающими направление движения: вверх и вправо, вверх и влево или строго вверх. Это пространство состояний со временем не меняется: каждая строка остается членом одного и того же пространства состояний и в каждой конкретной строке может наблюдаться любое из допустимых состояний. Необычно в шахматной доске D то, что двум разным строкам может соответствовать одно и то же состояние в будущем. Когда мы оказываемся в этом будущем состоянии, мы уже не можем восстановить информацию о том, какая прошлая конфигурация стала предшественницей этого состояния; воспроизвести последовательность смены состояний в обратную сторону не представляется возможным.


Вечность. В поисках окончательной теории времени

Рис. 7.10. Очевидная потеря информации в стакане воды. Состояние в будущем – «стакан прохладной воды» – может быть следствием любого из двух состояний в прошлом – «стакан прохладной воды» или «стакан теплой воды с кубиком льда»


В реальном мире постоянно происходит очевидная потеря информации. Рассмотрим два разных состояния стакана воды. В одном состоянии в стакане находится только прохладная вода; в другом состоянии в стакан налита теплая вода и брошен кубик льда. В будущем эти два состояния могут развиться в то, что с нашей точки зрения будет одним и тем же состоянием: стакан прохладной воды.

Мы уже встречались с этим явлением раньше: это стрела времени. По мере того как кубик льда тает в теплой воде, энтропия увеличивается; этот процесс может происходить, но никогда не может быть обращен. Загадка в том, что движение отдельных молекул, составляющих воду, инвариантно относительно обращения времени – в этом нет сомнений. И в то же время макроскопическое описание в терминах льда и жидкости не инвариантно. Для того чтобы понять, как так получается, что обратимые базовые законы порождают макроскопическую необратимость, нам необходимо снова вспомнить Больцмана и его идеи относительно энтропии.

Глава 8. Энтропия и беспорядок

Никому не дано представить в телесных образах обращение времени. Время необратимо.

Владимир Набоков. Смотри на арлекинов!

Почему обсуждения энтропии и второго начала термодинамики так часто заканчиваются разговорами о еде? Вот несколько популярных (и вкусных) примеров, когда энтропия увеличивается в ходе необратимых процессов:

• вы разбиваете яйца и готовите яичницу;

• смешиваете кофе с молоком;

• проливаете вино на новый ковер;

• вынимаете пирог из духовки, и его аромат распространяется по квартире;

• кидаете кубики льда в стакан воды, и они постепенно тают.

Честно говоря, не все эти примеры одинаково аппетитны; тот, что с кубиком льда, пресноват, – хотя это легко исправить, заменив воду джином. Кроме того, пример с приготовлением яичницы требует дополнительного разъяснения. На самом деле приготовление яиц нельзя считать прямолинейной демонстрацией второго начала термодинамики. Готовка – химическая реакция, вызываемая нагреванием, и этот процесс не был бы возможен, если бы яйца не были открытыми системами. Энтропия вступает в игру, когда мы разбиваем яйца и перемешиваем белки с желтками; смысл тепловой обработки получившейся смеси в том, чтобы избежать отравления сальмонеллой, а не продемонстрировать принципы термодинамики.

Взаимоотношения между энтропией и едой основываются по большей части на таком вездесущем процессе, как смешивание. На кухне мы очень часто именно этим и занимаемся – смешиваем два вещества, которые до этого существовали сами по себе или хранились раздельно. Это могут быть как две разные формы одной и той же субстанции (лед и жидкая вода), так и два совершенно разных ингредиента (молоко и кофе, белки и желтки яиц). Первопроходцы термодинамики были чрезвычайно заинтересованы в изучении влияния тепла на различные объекты из повседневной жизни, и таяние кубика льда стало бы для них проблемой первоочередной важности. Куда меньшее любопытство у них вызвали бы процессы, в которых принимают участие ингредиенты, имеющие одинаковую температуру, например пролитое на ковер вино. Однако совершенно очевидно, что независимо от температуры между всеми этими процессами есть нечто сходное: изначально субстанции разъединены, а в конечном состоянии перемешаны между собой. Смешать вещи очень легко, а вот разъединить куда труднее. Стрела времени накладывает свой отпечаток на все, что мы делаем на кухне.

Почему смешивать ингредиенты легко, а отделять их друг от друга сложно? Когда мы смешиваем две жидкости, мы видим, как разноцветные завихрения постепенно сливаются, образуя равномерно окрашенную текстуру. Это зрелище не слишком помогает разобраться, что именно там происходит. Так что давайте вместо этого рассмотрим смешивание песка двух разных цветов. Важно то, что песок состоит из дискретных частей – отдельных песчинок. Это ни у кого не вызывает сомнения. Смешивая, например, синий песок с красным, мы получаем песок фиолетового цвета. Но это не означает, что каждая песчинка из обеих порций окрасилась в фиолетовый цвет. Песчинки сохраняют индивидуальность – синие остаются синими, а красные красными; они просто беспорядочно перемешиваются. Только если мы глядим издалека («макроскопически») смесь кажется однообразно фиолетовой; если приглядеться (посмотреть на нее «микроскопически»), мы увидим те же самые синие и красные песчинки.

Одним из величайших достижений пионеров кинетической теории – Даниила Бернулли из Швейцарии, Рудольфа Клаузиуса из Германии, Джеймса Клерка Максвелла и Уильяма Томсона из Великобритании, Людвига Больцмана из Австрии и Джозайи Уилларда Гиббса из США – было то, что они первыми стали рассматривать все жидкости и газы так, как мы только что описывали песок: как наборы крохотных кусочков, сохраняющих свои отличительные черты. Разумеется, мы не ищем в жидкостях и газах песчинки; мы знаем, что они сделаны из атомов и молекул. Однако принцип остается неизменным. Когда мы наливаем молоко в кофе, не происходит никакого чудесного объединения отдельных молекул молока с отдельными молекулами кофе, и молекулы нового вида не появляются в этой смеси. Два набора молекул просто перемешиваются. Даже тепло – это свойство атомов и молекул, а не какая-то отдельная самостоятельная жидкость. Теплота объекта – характеристика энергии быстро движущихся молекул, из которых он состоит. Когда кубик льда тает в стакане воды, молекулы не меняются. Они всего лишь сталкиваются друг с другом, вследствие чего их энергия равномерно распределяется между всеми молекулами, содержащимися в стакане.

Не давая (пока что) точного математического определения энтропии, на примере смешивания песка двух цветов мы можем показать, что перемешивать вещи значительно проще, чем разделять их обратно. Представьте себе миску, в которую насыпали песок: все синие песчинки находятся у одного бортика, а все красные у противоположного. Очевидно, что эта конфигурация достаточно специальная: если потрясти миску или помешать содержимое ложкой, то красный песок начнет смешиваться с синим. Если же с самого начала насыпать в миску смесь двух типов песка, то конфигурация будет устойчива: сколько ни перемешивай, менее разнородной смесь не станет. Причина проста: для того чтобы разделить два типа песка, нам потребуется применить намного более точное действие, чем простое потряхивание или перемешивание. Нам придется взять увеличительное стекло и аккуратно поработать пинцетом, перенося красные песчинки к одному бортику миски, а синие к другому. Для создания нестабильного специального состояния необходимо вкладывать куда больше труда, чем для создания стабильной неразберихи.

Все то же самое можно изложить с ужасающе научной количественной точки зрения – что Больцман и другие, собственно говоря, и сделали в 1870-х годах. Мы тщательно изучим результаты их работы и попробуем понять, на какие вопросы они дают ответы, а на какие нет и насколько эти ответы согласуются с основополагающими законами физики, которые, как мы знаем, полностью обратимы. Однако уже сейчас должно быть понятно, что ключевую роль здесь играет большое количество атомов, составляющих макроскопические объекты в реальном мире. Если бы у нас была только одна красная песчинка и одна синяя, то между «смешанным» и «несмешанным» состояниями никакого различия бы не было. В предыдущей главе мы говорили о том, что физические законы работают совершенно одинаково как вперед во времени, так и назад (при условии, что мы дали надлежащее определение направлению времени). Это микроскопическое описание, требующее тщательного отслеживания каждой индивидуальной составляющей системы. Однако в реальном мире, где в различных процессах участвует невообразимое количество атомов, мы попросту не в состоянии обрабатывать такие объемы информации. Нам приходится прибегать к упрощениям – рассматривать средний цвет, или температуру, или давление вместо положения и импульса каждого атома. Когда мы мыслим макроскопически, мы забываем (или отбрасываем) детальную информацию об отдельных частицах, – и здесь на сцену выходят энтропия и необратимость.

Огрубление

Главное, что мы хотим понять, – это «как макроскопические характеристики системы, состоящей из множества атомов, меняются вследствие движения отдельных атомов?» (Я буду попеременно использовать все три термина – «атомы», «молекулы» и «частицы», подразумевая примерно одно и то же, так как для нас важно лишь то, что это крохотные объекты, подчиняющиеся обратимым законам физики, и что для того, чтобы сконструировать нечто макроскопическое, нужно взять необычайно много таких объектов.) Чтобы разобраться в этом, рассмотрим герметичный контейнер, разделенный на две части перегородкой, в которой проделано отверстие. Молекулы газа летают в одной половине контейнера и чаще всего отскакивают от центральной перегородки, однако периодически часть молекул пролетает сквозь отверстие на другую половину. Можно предположить, например, что молекулы отскакивают от перегородки в 995 случаях из 1000, но полпроцента из них при каждом столкновении (которое случается, скажем, каждую секунду) умудряется пробраться в другую часть контейнера.


Вечность. В поисках окончательной теории времени

Рис. 8.1. Контейнер, полный молекул газа, посередине которого установлена перегородка с отверстием. Каждую секунду у каждой молекулы есть крошечный шанс пролететь сквозь отверстие на другую сторону


Этот пример весьма специфичен и тем удобен; мы можем в деталях изучить каждый вариант развития событий и описать, что при этом происходит.[127] Про каждую молекулу в левой половине контейнера мы можем сказать, что каждую секунду с вероятностью 99,5 % она останется в своей половине, а с вероятностью 0,5 % переместится в противоположную; то же самое верно для правой половины контейнера. Это правило абсолютно инвариантно относительно обращения времени: если снять на пленку движение произвольной частицы, подчиняющейся этому правилу, то при просмотре фильма невозможно будет сказать, вперед или назад по времени воспроизводится запись. На уровне отдельных частиц прошлое и будущее совершенно идентичны.

На рис. 8.2 мы изобразили один из возможных вариантов; как всегда, значение времени увеличивается снизу вверх. В контейнере 2000 «молекул воздуха», и в момент времени t = 1 в левой части находится 1600 молекул, а в правой – только 400. (Пока что вы не должны спрашивать, почему первоначальная конфигурация выбрана именно такой, хотя позже, когда мы заменим «контейнер» на «Вселенную», мы начнем задавать подобные вопросы.) Итак, мы наблюдаем за молекулами, летающими внутри контейнера и отскакивающими от стенок, и то, что происходит далее, нас совсем не удивляет. Каждую секунду любая молекула с небольшой вероятностью может перелететь на другую половину, но поскольку в самом начале в одной части контейнера существенно больше молекул, чем в другой, в целом наблюдается тенденция к выравниванию. (В точности как с температурами в формулировке второго начала термодинамики, предложенной Клаузиусом.) Пока в левой части контейнера молекул больше, общее количество молекул, пролетающих сквозь отверстие слева направо, превышает количество молекул, перемещающихся в обратном направлении. Через 50 секунд мы увидим, что количества молекул в обеих частях начинают выравниваться, а через 200 секунд они станут практически равными.

Очевидно, что этот контейнер – еще одна иллюстрация существования стрелы времени. Даже если бы мы не указали моменты времени на различных конфигурациях, показанных на рисунке, большинство людей без труда угадали бы, что было в начале, а чем все закончилось. Нас не удивляет тот факт, что концентрация молекул воздуха выравнивается, но мы бы были поражены, если бы все (или почти все) молекулы внезапно собрались в одной половине контейнера. «Прошлое» – это с той стороны стрелы времени, где объекты находятся в более разделенном состоянии, тогда как «будущее» – это там, где они перемешались, а их концентрация выровнялась. То же самое происходит, когда вы наливаете в чашку кофе ложку молока и две жидкости смешиваются.


Вечность. В поисках окончательной теории времени

Рис. 8.2. Поведение 2000 молекул газа в контейнере с перегородкой. В самом начале 1600 молекул находятся в левой части контейнера и 400 молекул – в правой. Через 50 секунд в левой половине остается около 1400 молекул, а в правой их число уже составляет 600. По истечении 200 секунд молекулы равномерно распределены между двумя половинами контейнера


Конечно же, это всего лишь статистическая картина, а не абсолютная действительность. Я хочу сказать, что вполне вероятна ситуация, когда вначале слева и справа в контейнере будет одинаковое число молекул, а потом по удивительному стечению обстоятельств большинство частиц соберется в какой-то одной половине, образовав очень неравномерное распределение. Как мы увидим далее, вероятность такого исхода невелика, и чем больше частиц участвуют в процессе, тем она ниже; тем не менее нельзя сбрасывать ее со счетов. Однако пока что мы можем смело игнорировать такие редкие события и сконцентрироваться на наиболее вероятном варианте эволюции системы.

Энтропия по Больцману

Нам хотелось бы сделать нечто большее, чем просто заявить: «Вполне очевидно, что молекулы, скорее всего, будут перемещаться до тех пор, пока равномерно не распределятся по объему». Мы хотели бы уметь обосновывать это ожидание и заменять выражения типа «скорее всего» и «равномерно распределятся» строгими количественными характеристиками. Этим занимается раздел науки под названием «статистическая механика». Повторяя бессмертные слова Питера Венкмана: «С дороги, человек, я ученый!»

Первой крупной догадкой Больцмана было осознание того факта, что у молекул есть гораздо больше способов равномерно (более или менее) распределиться по объему контейнера, чем всем вместе скопиться у одной из его стенок. Представьте себе, что мы подсчитали имеющиеся молекулы и навесили на них номера от 1 до 2000. Нам интересно, сколько существует способов организовать молекулы так, чтобы в левой и правой половинах контейнера оказалось ровно требуемое число молекул. Например, сколько есть способов поместить 2000 молекул в левую часть и 0 в правую? Ровно один. Мы следим только за тем, в какой половине контейнера находится каждая молекула, и нас не интересуют ее точное положение и импульс, поэтому мы всего лишь берем и помещаем каждую молекулу в левую часть контейнера.

Теперь попробуем ответить на вопрос: сколькими способами можно поделить молекулы так, чтобы в левой части оказалось 1999 молекул, а в правой – ровно одна? Ответ: двумя тысячами способов, по одному на каждую молекулу, которой посчастливилось попасть в правую половину. А если мы хотим, чтобы в правой части всегда находилась пара молекул? Это можно сделать 1 999 000 способов. И в конце концов, если мы обнаглеем поместить в правую половину три молекулы, оставляя в левой 1997, то обнаружим, что вариантов такого размещения молекул целых 1 331 334 000.[128]

Очевидно, что эти числа увеличиваются очень быстро: 2000 намного больше 1, 1 999 000 намного больше 2000, а 1 331 334 000 еще больше. По мере того как мы в ходе своего мысленного эксперимента перемещаем все больше и больше молекул в правую половину, опустошая левую, они продолжают возрастать, а затем в определенный момент начинают уменьшаться. В конце концов, задавшись вопросом, много ли существует способов поместить все 2000 молекул в правую часть контейнера, оставив в левой ровно ноль, мы вновь вернемся к единственному уникальному варианту такой конфигурации.

Ситуация, соответствующая наибольшему числу всевозможных конфигураций, – очевидно, та, когда в каждой половине контейнера находится ровно по 1000 молекул. Создать такую конфигурацию можно… в общем, очень большим количеством способов. Мы не будем приводить точное число; скажем только, что оно примерно равно 2 × 10600 – двойка, за которой следует шестьсот нулей. И это всего лишь для двух тысяч частиц. Попробуйте вообразить приблизительное число возможных конфигураций атомов в комнате с обычным объемом воздуха или даже в стакане воды (предмет, который можно удержать в руке, состоит где-то из 6 × 1023 молекул – это число Авогадро). Возраст Вселенной – всего лишь около 4 × 1017 секунд, так что можете представить себе, как быстро вам придется двигать молекулы туда и сюда, для того чтобы изучить все возможные допустимые конфигурации.

Все это наводит на определенные мысли. Существует относительно немного способов собрать все молекулы в одной половине контейнера, но огромное число вариантов более или менее равномерного распределения их по доступному пространству. К тому же разумно ожидать, что очень неравномерное распределение с легкостью будет переходить в относительно равномерное, но не наоборот. Эти заявления похожи, но не эквивалентны. Следующим шагом Больцмана было предположение о том, что если у нас нет какой-то особой информации о состоянии системы, то следует предполагать, что она будет переходить от «специальных» конфигураций к «общим», то есть от ситуаций, соответствующих относительно небольшому числу вариантов расположения частиц, к ситуациям, соответствующим множеству способов их расположения.

Размышляя подобным образом, Больцман ставил целью объяснить на атомном уровне второе начало термодинамики – утверждение, что энтропия в замкнутой системе всегда увеличивается (или остается постоянной). Формулировки второго начала уже были даны Клаузиусом и другими учеными, однако Больцман хотел вывести их из некоего простого набора базовых принципов. Вы уже заметили, что статистическое мышление движет нас в правильном направлении: заявление о том, что «развитие систем происходит от специальных конфигураций к общим», весьма похоже на «развитие систем происходит от конфигураций с низкой энтропией к конфигурациям с высокой энтропией».

Таким образом, напрашивается определение энтропии как «количества перестановок микроскопических частей системы, при которых ее макроскопическое состояние не меняется». В нашем примере с перегородкой внутри контейнера это соответствует количеству способов разместить отдельные молекулы внутри сосуда так, чтобы общее число молекул в каждой половине осталось неизменным.

Мы почти подобрались к верному ответу, но все же не совсем. В действительности пионерам термодинамики было известно об энтропии не только то, что «она обычно увеличивается». Например, они знали, что если взять две разные системы и заставить их взаимодействовать, то общая энтропия будет равна простой сумме отдельных энтропий этих двух систем. Энтропия аддитивна, точно так же, как число частиц (в отличие, например, от температуры). Однако количество конфигураций совершенно точно свойством аддитивности не обладает: если соединить два контейнера с газом, то общее количество способов реорганизации молекул в двух контейнерах станет во много раз больше, чем в пределах одной емкости.

Больцману удалось справиться с задачей формулировки определения энтропии в терминах микроскопических перестановок. Мы будем использовать букву W (от немецкого Wahrscheinlichkeit – «вероятность») для обозначения количества перестановок микроскопических составляющих системы без изменения ее макроскопических свойств. Последним шагом Больцмана было взятие логарифма от W и объявление о том, что результат пропорционален энтропии.

Слово «логарифм» звучит очень по-научному, но это всего лишь способ показать, как много цифр понадобится для написания числа. Если число представляет собой степень 10, то его логарифм равен всего лишь этой степени,[129] то есть логарифм 10 равен 1, логарифм 100 равен 2, логарифм 1 000 000 равен 6 и т. д.

В приложении мы более подробно обсудим некоторые математические тонкости. Они не очень важны для составления глобальной картины; если вы притворитесь, что не замечаете слова «логарифм», то ничего особо не потеряете. В действительности важно знать только лишь две вещи:

• по мере увеличения чисел возрастают и их логарифмы;

• но не слишком быстро; сами числа становятся неимоверно больше, однако их логарифмы увеличиваются довольно медленно. Один миллиард намного больше тысячи, однако 9 (логарифм миллиарда) не сильно больше 3 (логарифм 1000).

Когда дело доходит до огромных чисел, например таких, с которыми мы сталкиваемся в этой игре, последнее свойство здорово нам помогает. Поделить 2000 частиц поровну можно 2×10600 способов – просто невообразимое число! Но логарифм этого числа равен всего лишь 600,3 – с этим еще можно иметь дело.

Формула Больцмана для энтропии, традиционно обозначаемой буквой S (букву E мы использовать не хотим, потому что она обычно обозначает энергию), гласит, что энтропия равна произведению некоторой константы k, которая называется постоянной Больцмана, на логарифм W, где W – число микроскопических состояний системы, неразличимых с макроскопической точки зрения.[130] Таким образом,[131]

S = k lg W.

Это, без сомнения, одно из важнейших уравнений за всю историю науки – триумф физики XIX века, которое можно поставить в один ряд с ньютоновским описанием динамики в XVII веке и революционными открытиями в области теории относительности и квантовой механики в двадцатом. Посетив могилу Больцмана в Вене, вы увидите, что это уравнение выгравировано на его надгробном камне (см. главу 2).[132]

Взятие логарифма избавляет нас от основной проблемы, а формула Больцмана приводит как раз к тем свойствам, которые разумно ожидать от такого явления, как энтропия. В частности, полная энтропия двух систем после объединения равна всего лишь сумме энтропий этих систем. Это обманчиво простое уравнение обеспечивает количественную связь между микроскопическим миром атомов и макроскопическим миром, который мы видим вокруг себя.[133]

Контейнер с газом возвращается

Для примера мы могли бы вычислить энтропию показанного на рис. 8.2 контейнера с газом, внутри которого есть перегородка с небольшим отверстием. Наша макроскопическая наблюдаемая – это полное количество молекул в левой или правой половине контейнера (нам неизвестно, что это за молекулы, где они находятся и какие у них импульсы). Величина W в данном примере – это всего лишь число способов распределить 2000 частиц между двумя половинами контейнера так, чтобы их количество в каждой половине оставалось постоянным. Если слева 2000 частиц, то W равно 1, а lg W равен 0. Еще несколько вариантов перечислено в табл. 8.1.


Таблица 8.1. Количество расположений W и логарифм этого значения, вычисленные для контейнера с 2000 частицами, часть из которых находится слева от перегородки, а часть – справа

Вечность. В поисках окончательной теории времени

На рис. 8.3 представлено изменение энтропии (в определении Больцмана) со временем в нашем контейнере с газом. Я перемасштабировал график так, чтобы максимальное значение энтропии контейнера равнялось 1. Начальное значение энтропии относительно невелико – оно соответствует первой конфигурации на рис. 8.2, где в левой части контейнера находится 1600 молекул, а в правой – только 400. По мере того как молекулы постепенно просачиваются сквозь отверстие в центральной перегородке, энтропия увеличивается. Это лишь один пример эволюции системы; поскольку наш «закон физики» (каждую секунду у каждой частицы есть 0,5-процентная вероятность попасть на другую сторону) включает вероятностную составляющую, движение системы в разных экспериментах неизбежно будет отличаться в деталях. Однако в подавляющем большинстве случаев энтропия все же будет увеличиваться, поскольку система тяготеет к макроскопическим конфигурациям, соответствующим большему числу микроскопических расстановок. Второе начало термодинамики в действии.

Согласно Больцману и коллегам, это и есть источник стрелы времени. Сначала у нас имеется лишь набор микроскопических законов физики, инвариантных относительно обращения времени: для них прошлое и будущее неразличимы. Однако мы имеем дело с системами, включающими огромное количество частиц, для полного описания состояния которых нам не требуется отслеживать каждую деталь – мы следим лишь за некоторыми поддающимися наблюдению макроскопическими величинами. Энтропия – это мера числа микроскопических состояний, неразличимых с точки зрения макроскопического наблюдателя (и под этим заявлением мы подразумеваем, что она пропорциональна логарифму этого числа). В предположении, что система развивается по направлению к макроскопическим конфигурациям, соответствующим большему количеству возможных состояний, естественно говорить о том, что со временем энтропия увеличивается.


Вечность. В поисках окончательной теории времени

Рис. 8.3. Увеличение энтропии в контейнере с перегородкой, содержащем молекулы газа. Вначале большая часть молекул сосредоточена в левой половине, но со временем распределение выравнивается (см. рис. 8.2). Соответственно увеличивается и энтропия, поскольку существует гораздо больше способов равномерно поделить молекулы между двумя отсеками контейнера, чем собрать их все с одной или с другой стороны. Для удобства мы показываем энтропию в единицах ее максимального значения, которое на данном графике равно единице


В частности, было бы очень странно, если бы она внезапно уменьшилась. Стрела времени появляется потому, что система (или Вселенная) с течением времени естественным образом переходит от редких конфигураций к более общим.

Все это на первый взгляд кажется весьма правдоподобным, и в конечном итоге мы убедимся, что это действительно так. Но в ходе наших рассуждений мы сделали несколько «обоснованных» логических скачков, заслуживающих более тщательного рассмотрения. В оставшихся разделах этой главы мы прольем свет на различные предположения, которые необходимо сделать для больцмановской интерпретации энтропии, и попробуем решить, насколько они оправданны.

Полезная и бесполезная энергия

У нашего примера с контейнером газа есть интересная особенность: стрела времени там – явление временное. После того как концентрация газа выравнивается (примерно в момент времени t = 150 на рис. 8.3), ничего больше не происходит. Отдельные молекулы продолжают перелетать из левой половины в правую и обратно, но число таких молекул взаимно компенсируется, и большую часть времени количество молекул слева и справа будет одинаково. Это конфигурации, соответствующие наибольшему числу расстановок отдельных молекул, в которых система соответственно обладает наибольшей энтропией.

Система, обладающая максимально возможной энтропией, находится в равновесии. Когда наступает состояние равновесия, системе становится некуда двигаться дальше; такая конфигурация для нее наиболее естественна. В равновесной системе стрела времени отсутствует, так как энтропия не увеличивается (и не уменьшается). Для макроскопического наблюдателя система в равновесии предстает статичной, не меняющейся.

Ричард Фейнман в своей лекции «Характер физических законов» рассказывает историю, иллюстрирующую концепцию равновесия.[134] Представьте себе, что вы сидите на пляже и внезапно на вас обрушивается ливень. Вы принесли с собой полотенце, но пока вы успеваете добежать до укрытия, оно также промокает. Оказавшись под крышей, вы начинаете вытираться полотенцем. Какое-то время это работает, потому что полотенце промокло чуть меньше, чем вы. Тем не менее вскоре вы обнаруживаете, что оно пропиталось влагой и вы, вытираясь им, настолько же быстро смачиваете свою кожу, насколько быстро стираете с нее капли воды. Вы с полотенцем достигли состояния «равновесия влажности», и оно уже не может высушить вас. Это состояние, в котором число способов разместить молекулы воды на вас и на вашем полотенце максимально.[135]

После достижения состояния равновесия полотенце становится непригодным для достижения первоначальной цели (обсушиться). Обратите внимание, что когда вы вытираетесь, полный объем воды не меняется – она просто переходит с вас на полотенце. Аналогично, в контейнере с газом, изолированном от внешнего мира, полная энергия не меняется; она остается постоянной, по крайней мере в ситуациях, когда расширением пространства можно пренебречь. Однако энергия может быть распределена так, чтобы приносить какую-то пользу, а может быть и бесполезной. Когда энергия находится в конфигурации с низкой энтрпией, ее можно использовать для совершения работы. Но тот же объем энергии в состоянии равновесия абсолютно бесполезен. Энтропия – это также мера бесполезности конфигурации энергии.[136]

Снова вернемся к нашему контейнеру с перегородкой. Но на этот раз пусть это будет не перегородка с отверстием, жестко зафиксированная внутри контейнера и лишь позволяющая некоторой части молекул пролетать из одной его половины в другую, а сплошная подвижная пластина, прикрепленная к стержню, выходящему за пределы контейнера. То, что мы сейчас описали, – всего лишь обыкновенный поршень, с помощью которого при определенных обстоятельствах можно производить работу.

На рис. 8.4 показаны две разные ситуации, в которых может оказаться наш поршень. Вверху проиллюстрирована конфигурация с низкой энтропией: все молекулы газа находятся с одной стороны от перегородки. Внизу изображена ситуация с высокой энтропией: с обеих сторон от перегородки находятся равные объемы газа. Полное количество молекул и полная энергия одинаковы в обоих случаях; отличается только энтропия. Также очевидно, что развиваться события в этих двух случаях будут совершенно по-другому. В случае, представленном в верхней части рисунка, весь газ находится с левой стороны от поршня. Сила молекул, ударяющихся о перегородку, оказывает давление, которое выталкивает поршень до тех пор, пока газ не заполнит весь объем контейнера. Подвижный стержень поршня можно использовать для выполнения полезной работы, например кручения маховика (по крайней мере, в течение какого-то небольшого промежутка времени). При этом расходуется энергия газа, поэтому в конце процесса его температура станет ниже. (Поршни в двигателе вашего автомобиля работают точно так же, расширяя и охлаждая горячие газы – продукты сгорания паров бензина; эта полезная работа и приводит автомобиль в движение.)

В нижней части рисунка показан процесс, в котором первоначальная энергия такая же, но энтропия намного выше: по обеим сторонам перегородки находится одинаковое количество частиц. Высокая энтропия подразумевает равновесие, что, в свою очередь, свидетельствует о бесполезности энергии. И действительно, мы видим, что поршень не движется. Давление газа с одной стороны перегородки компенсируется давлением с другой стороны. Полная энергия газа в этом контейнере равна полной энергии в контейнере, изображенном в левом верхнем углу, однако в данном случае мы не можем воспользоваться ею в своих целях, например заставить газ передвинуть поршень и помочь нам сделать что-то полезное.

Этот пример помогает нам понять связь между взглядом Больцмана на энтропию и мнением Рудольфа Клаузиуса, который впервые сформулировал второе начало термодинамики. Вспомните, что Клаузиус и его предшественники вообще не думали об энтропии в терминах атомов, они рассматривали ее как независимую субстанцию с собственной динамикой. В исходной версии второго начала термодинамики энтропия даже не упоминалась; это было всего лишь утверждение о том, что «теплота не может спонтанно начать течь от более холодного объекта к более горячему». Когда контактируют два объекта с разной температурой, их температуры постепенно изменяются по направлению к некоторому равновесному значению между ними. Если же в контакте находятся два объекта с одинаковой температурой, то с ними ничего не происходит (так как они уже находятся в температурном равновесии).


Вечность. В поисках окончательной теории времени

Рис. 8.4. Газ в разделенном сплошной перегородкой контейнере, применяемый для приведения в движение поршня. Вверху газ в состоянии с низкой энтропией выталкивает поршень вправо, производя полезную работу. Внизу газ в состоянии с высокой энтропией никак не влияет на положение поршня


С точки зрения физики атомов все это также имеет смысл. Возьмем классический пример соприкосновения двух объектов с разной температурой: кубик льда в стакане теплой воды (о котором мы говорили в конце прошлой главы). И кубик льда, и жидкость состоят из совершенно одинаковых молекул, а именно H2O. Единственное различие заключается в том, что температура льда намного ниже. Как мы уже говорили выше, температура – это мера средней энергии движения молекул в веществе. Таким образом, молекулы жидкой воды двигаются относительно быстро, а молекулы льда – медленно.

Однако такой тип условий – два набора молекул, в одном из которых молекулы движутся быстро, а в другом медленно, концептуально почти не отличается от двух наборов молекул, заключенных в контейнере по разные стороны от перегородки. В любом случае присутствуют макроскопические ограничения на перестановки микроскопических частей этих систем. Если бы у нас был только стакан воды, имеющей постоянную температуру, мы могли бы заменять молекулы в одной части стакана молекулами из какой-то другой его части, и с макроскопической точки зрения никаких различий при этом мы бы не увидели. Но если в воде плавает кубик льда, то нельзя запросто поменять местами молекулы льда и молекулы обычной воды – при этом кубик льда начал бы двигаться, и мы заметили бы это даже со своей макроскопической точки зрения. Деление молекул воды на «жидкость» и «лед» накладывает серьезные ограничения на число доступных перестановок, поэтому данная конфигурация обладает низкой энтропией. По мере того как температура молекул воды, составлявших в начале эксперимента ледяной кубик, и температура «жидкой» воды в стакане выравниваются, энтропия возрастает. Правило Клаузиуса о тенденции к выравниванию температур и о том, что теплота не может спонтанно течь от холодного объекта к горячему, абсолютно эквивалентно утверждению, что энтропия, как ее определил Больцман, в замкнутой системе никогда не уменьшается.

Ничто из этого, разумеется, не означает, что охладить объект невозможно. Однако в повседневной жизни с учетом того, что большинство вещей вокруг нас имеют одинаковую температуру, это требует большей изобретательности, чем нагревание. Холодильник – куда более сложное устройство, чем плита (работа холодильника основывается на том же базовом принципе, что и работа поршня, показанного на рис. 8.4: двигатель устройства расширяет газ, забирая у него энергию и таким образом охлаждая его). Когда Гранту Ачатцу, шеф-повару чикагского ресторана «Alinea», потребовалось устройство, которое умело бы быстро охлаждать продукты – точно так же, как поставленная на огонь сковорода мгновенно нагревает их, для создания такой машины ему пришлось объединить усилия с Филипом Престоном, технологом, специализирующемся на кухонном оборудовании. Результатом их совместной работы стала «антисковорода» – устройство размером с микроволновую печь, металлическая верхняя поверхность которого имеет температуру –34 °C. Если вылить на эту «антисковороду» горячее пюре или соус, то нижний его слой мгновенно замерзнет, а верхняя часть останется мягкой. Мы уже давно усвоили основы термодинамики, но продолжаем изобретать новые способы применения науки для облегчения собственной жизни.

Не зацикливайтесь на деталях

В пятницу вечером вы выбрались с друзьями в клуб поиграть в бильярд. Сейчас мы говорим о бильярде из реального мира, а не о «бильярде физиков», в котором мы пренебрегаем трением и шумом.[137] Один из ваших друзей только что эффектно разбил пирамиду. Раскатившиеся по столу шары остановились, вы принялись обдумывать свой следующий удар, и вдруг проходящий мимо незнакомец восклицает: «Ух ты! Это невероятно!»

В недоумении вы спрашиваете, что же тут невероятного, и слышите в ответ: «Вы только посмотрите: все эти шары оказались ровно в этих точках на столе! Какова вероятность того, что вам когда-либо удастся расположить их в точности таким же образом? Да вы не сможете повторить этого и за миллион лет!»

От загадочного незнакомца попахивает безумием – наверное, он немного свихнулся, читая слишком много философских трактатов об основах статистической механики. Однако в его словах есть определенный смысл. На столе с несколькими шарами появление любой заданной конфигурации крайне маловероятно. Представьте, что вы запустили биток в группу случайным образом расставленных по столу шаров, а они, покатавшись туда-сюда, остановились ровно в тех же точках, в которых находились до удара. Увидев такое, вы были бы поражены до глубины души! Однако вероятность данной конфигурации (конечные положения в точности совпадают с начальными) не больше и не меньше вероятности любого другого расположения шаров на столе.[138] Имеем ли мы право выделять ее на фоне других, называя «поразительной» или «невероятной», а все остальные именовать «непримечательными» или «случайными»?

Этот пример превосходно иллюстрирует центральный вопрос больцмановского определения энтропии и понимания второго начала термодинамики: кто решает, можно ли считать два данных микроскопических состояния системы одинаковыми с нашей, макроскопической, точки зрения?

Формула для энтропии, выведенная Больцманом, основывается на величине W, которую мы определили как «количество способов разместить микроскопические составляющие системы так, чтобы ее макроскопический образ не изменился». В предыдущей главе мы определили «состояние» физической системы как полный набор информации, необходимой для однозначного описания ее движения с течением времени; в классической механике это положения и импульсы всех составляющих систему частиц. Теперь, когда мы рассматриваем статистическую механику, удобно использовать термин «микросостояние», подразумевая точное состояние системы, в противоположность «макросостоянию», включающему лишь те характеристики, которые поддаются наблюдению с макроскопической точки зрения. В этом случае можно дать величине W краткое определение: число микросостояний, соответствующих данному макросостоянию.

Для контейнера с газом, разделенного перегородкой на две половины, микросостоянием в любой момент времени является список положений и импульсов всех молекул газа. Однако нас интересовало только, сколько молекул находится слева от перегородки, а сколько – справа. Неявным образом каждый вариант деления группы молекул на части – сколько-то слева, а оставшиеся справа – определял «макросостояние» контейнера. А когда мы вычисляли значения W, мы всего лишь подсчитывали количество микросостояний, соответствующих данному макросостоянию.[139]

Раньше решение не отслеживать ничего, кроме количества молекул в каждой половине контейнера, казалось нам совершенно безобидным. Но мы могли бы следить и за массой других параметров. Имея дело с атмосферой в настоящей комнате, мы можем учитывать намного больше параметров, чем просто количество молекул в каждой части помещения: например, отслеживать температуру, плотность и атмосферное давление в каждой точке комнаты или, по крайней мере, в некотором наборе точек. Если в атмосфере содержится смесь газов, то мы могли бы по отдельности следить за плотностью и другими параметрами каждого из газов. В любом случае, объем информации, которым нам пришлось бы при этом манипулировать, все равно был бы намного меньше, чем если бы мы записывали положения и импульсы всех молекул в комнате. Тем не менее процедура выбора, какую информацию относить к макроскопическим характеристикам, а какую отбрасывать как несущественную составляющую микросостояния, определена недостаточно четко.

Процесс деления пространства микросостояний какой-то физической системы (газ в контейнере, стакан воды или Вселенная) на наборы, которые мы помечаем как «макроскопически неразличимые», называется «огрублением». Это такая черная магия, играющая критически важную роль в наших рассуждениях об энтропии. Рисунок 8.5 демонстрирует, как она работает: мы всего лишь делим пространство всех состояний системы на области (макросостояния), которые с точки зрения макроскопического наблюдателя кажутся одинаковыми. Каждая точка внутри любой такой области соответствует одному из микросостояний, а энтропия, связанная с данным микросостоянием, пропорциональна логарифму площади этой области, которому это микросостояние принадлежит (в действительности не площади, а объема, так как мы говорим о чрезвычайно многомерном пространстве). При взгляде на подобную схему становится очевидно, почему энтропия имеет тенденцию к увеличению: как правило, система развивается по направлению от состояний с низкой энтропией, соответствующих крошечной части пространства состояний, к состояниям из объемных областей, с которыми связаны большие значения энтропии.


Вечность. В поисках окончательной теории времени

Рис. 8.5. Процедура огрубления представляет собой разделение пространства всех возможных микросостояний на области, считающиеся неразличимыми с макроскопической точки зрения, – макросостояния. С каждым макросостоянием связано значение энтропии, пропорциональное логарифму объема этого макросостояния в пространстве состояний. Размер областей с низкой энтропией увеличен в целях наглядности; в действительности они чрезвычайно малы по сравнению с областями с высокой энтропией


Рисунок 8.5 не масштабирован; если бы мы хотели представить реальную систему, то макросостояния с низкой энтропией занимали бы намного меньшую площадь по сравнению с площадью, отведенной под макросостояния с высокой энтропией. Как мы убедились на примере с поделенным на две части контейнером, количество микросостояний, соответствующих макросостояниям с высокой энтропией, куда больше количества микросостояний, определяющих макросостояния с низкой энтропией. Нет ничего удивительного в том, что система с низкой начальной энтропией перейдет в более объемные области пространства состояний, к макросостояниям с высокой энтропией. Если же вначале система обладает высокой энтропией, то она может очень долго блуждать по пространству состояний, не встречая при этом областей с низкой энтропией. Вот что мы имеем в виду, говоря, что система находится в равновесии: она не находится в статическом микросостоянии, просто никогда не выходит из области, соответствующей макросостоянию с высокой энтропией.

Все эти рассуждения могут показаться вам нелепыми. Два микросостояния принадлежат одному и тому же макросостоянию, если они макроскопически неразличимы. Но это всего лишь один из способов сказать: «…когда мы не можем отличить одно от другого, основываясь на своих макроскопических наблюдениях». Именно это «мы» и должно вызывать у вас тревогу. Почему вообще мы приплели сюда какие-то свои способности? Мы говорим об энтропии как о характеристике всего мира, а не как об одной из сторон нашего умения воспринимать мир. Два стакана воды находятся в одном и том же макросостоянии, если весь объем воды в них имеет одинаковую температуру, даже если распределения положений и импульсов молекул воды в них отличаются, потому что мы не можем непосредственно измерить эти величины. Однако представьте себе, что нам встретилась раса супернаблюдательных инопланетян, способных впериться взором в толщу воды и увидеть положения и импульсы каждой заключенной там молекулы. Неужели эта раса вправе будет заявить, что энтропии вообще не существует?

Ученые, работающие в области статистической механики, пока что не признали единственно верным ни один из возможных ответов на озвученные выше вопросы (если бы это произошло, то мы бы только его и рассматривали). Давайте обсудим пару мнений.

Прежде всего, многие считают, что это вообще не важно. То есть вам-то может быть очень даже важно, как именно вы будете объединять микросостояния в макросостояния в целях какой-то конкретной актуальной для вас физической задачи, но в конечном итоге не имеет значения, как вы сделаете это, если единственная ваша цель – доказать истинность какого-то утверждения вроде второго начала термодинамики. Если посмотреть на рис. 8.5, станет понятно, почему второе начало термодинамики работает: в пространстве состояний гораздо больший объем отведен под состояния с высокой энтропией, чем с низкой, поэтому если мы начнем путешествие из последнего состояния, нет ничего удивительного в том, что в итоге мы окажемся в первом. Однако так будет всегда, независимо от того, как мы отсортируем микросостояния. Второе начало термодинамики непоколебимо; оно зависит от определения энтропии как логарифма от некоего объема внутри пространства состояний, но не от точного способа выбрать этот объем. Как бы то ни было, на практике из множества альтернатив мы выбираем что-то одно, поэтому такая прозрачная попытка избежать прямого ответа не может нас полностью удовлетворить.

Второе мнение заключается в том, что выбор – как именно провести огрубление – не может быть абсолютно произвольным и зависящим от человека, даже если без определенной степени предвзятости не обойтись. Действительно, мы сортируем микросостояния естественным, на наш взгляд, образом, учитывая реальные физические условия, а не собственные прихоти. Например, наблюдая за температурой и давлением в стакане воды, мы отбрасываем ту информацию, получить которую можно лишь путем изучения содержимого данного стакана под микроскопом. Мы определяем средние свойства в относительно небольших областях пространства, потому что так работают наши органы чувств. Определившись с доступными критериями огрубления, мы получаем относительно хорошо определенный набор поддающихся макроскопическому наблюдению величин.

Усреднение величин в небольших областях пространства – это не случайный метод и не специфическая особенность функционирования человеческих органов чувств в противоположность органам чувств гипотетических инопланетян. Это совершенно естественный подход с учетом того, как работают законы физики.[140] Когда я среди нескольких чашек кофе отмечаю те, куда только что вылили ложку молока, и те, в которых молоко уже хорошенько перемешали с основным содержимым, мои решения, к какой категории «состояний кофе» отнести ту или иную чашку, не случайны; я руководствуюсь тем, как кофе, с моей точки зрения, выглядит – непосредственно и феноменологически. Итак, даже если, в принципе, наш подход к огрублению микросостояний в макросостояния кажется абсолютно произвольным, в действительности мудрая природа одарила нас умением делать это правильно и разумно.

Прокрутка энтропии в обратную сторону

У сформулированного Больцманом статистического определения энтропии есть одно примечательное следствие: второе начало термодинамики не абсолютно, а всего лишь описывает сценарий развития, вероятность наступления которого существенно выше всех остальных. Если взять систему, находящуюся в макросостоянии с энтропией средней величины, почти все микросостояния, составляющие это макросостояние, будут развиваться в сторону увеличения энтропии, однако найдется некоторое незначительное число микросостояний, эволюция которых пойдет в противоположную сторону.

Это утверждение несложно проиллюстрировать. Снова представьте себе контейнер с газом. Пусть энтропия газа в начальный момент времени очень низкая – все молекулы собрались в центре сосуда. Если просто понаблюдать за развитием событий, то мы увидим, как молекулы летают туда и сюда, сталкиваются друг с другом и со стенками контейнера и в итоге (с громадной вероятностью) формируют конфигурацию с намного более высокой энтропией.

Теперь рассмотрим одно конкретное микросостояние газа в какой-то момент времени после того, как энтропия внутри контейнера стала высокой. Из него сконструируем новое состояние: сохраним положения всех молекул, но скорости заменим на противоположные. Полученное микросостояние также будет обладать высокой энтропией, ведь оно входит в то же макросостояние, с которого мы начали (если кто-то внезапно поменяет направления движения всех молекул воздуха вокруг вас на противоположные, вы этого даже не заметите; в среднем в любом направлении движется примерно одинаковое число молекул). Начиная с этого состояния каждая молекула «пройдет по своим следам» обратно, то есть их движение будет происходить по тому же пути, по которому они пришли из состояния с низкой энтропией, но в обратную сторону. Для внешнего наблюдателя это будет выглядеть так, словно энтропия начала спонтанно уменьшаться. Процент высокоэнтропийных состояний, способных продемонстрировать это занятное свойство, астрономически мал, но они определенно существуют.

Если мы верим, что фундаментальные физические законы обратимы, то почему бы целой Вселенной не развиваться по такому сценарию? Взять нашу Вселенную в ее сегодняшнем виде: ее описывает какое-то конкретное микросостояние, нам неизвестное, и все же мы знаем кое-что о макросостоянии, которому оно принадлежит. Давайте возьмем и поменяем импульсы всех частиц во Вселенной на противоположные, а в дополнение проделаем любые другие преобразования (например, заменим частицы античастицами), необходимые для совершения полного обращения времени. И посмотрим, что произойдет. Мы должны увидеть, как Вселенная развивается по направлению к «будущему», где ее ждет коллапс, расформирование звезд и планет и общее уменьшение энтропии; это будет история нашей настоящей Вселенной, воспроизведенная в обратную сторону.

Однако мысленный эксперимент поворота стрелы времени в целой Вселенной вспять совсем не так интересен, как тот же самый эксперимент, но проведенный над некоторой подсистемой Вселенной. Причина проста: никто ничего не заметит.

В главе 1 мы задавали вопрос, как будет выглядеть наша жизнь, если время потечет быстрее или медленнее, и основная трудность, с которой мы столкнулись в поисках ответа на этот вопрос, – нам было непонятно, с чем сравнивать. «Для всего, что только есть в мире, время внезапно начинает идти быстрее» – утверждение бессмысленное; мы измеряем время с помощью синхронизированных повторений, и пока все часы, к какому бы типу они ни принадлежали (включая биологические часы и часы, определяемые субатомными процессами), идут синхронно друг с другом, у нас нет никакой возможности определить, что «скорость времени» изменилась в ту или иную сторону. Только если ход каких-то конкретных часов ускорится или замедлится по сравнению со всеми остальными, это понятие обретет какой-то смысл.

Точно такая же проблема связана и с идеей о «времени, идущем назад». Представляя ситуацию, когда время начинает течь в обратную сторону, мы обычно воображаем, будто процессы в какой-то одной части Вселенной побежали вспять, например в стакане прохладной воды внезапно образовался кубик льда. Однако если вообще все сущее начнет «жить в обратную сторону», то с точки зрения внутреннего наблюдателя по сравнению с текущей ситуацией ничего не изменится. Все будет точно так же, как при развитии Вселенной вперед во времени, за исключением странной временно́й координаты, бегущей в противоположном направлении.

Стрела времени – следствие не того, что «энтропия увеличивается по направлению к будущему», а того, что «поведение энтропии вдоль одного направления во времени кардинально отличается от поведения энтропии вдоль другого». Предположим, во Вселенной есть место, с которым мы никоим образом не соприкасаемся и не взаимодействуем, и там энтропия в том направлении, которое мы сейчас называем будущим, уменьшается. Так же как и мы, люди, обитающие в этом мире обратного времени, ничего особенного вокруг себя не замечают. Они живут в соответствии с обычной стрелой времени и утверждают, что в их прошлом (в те времена, о которых у них есть воспоминания) энтропия была ниже, а в будущем она будет только возрастать. Различие лишь в том, что «будущее» для них – это наше «прошлое», и наоборот. Направление временной координаты во Вселенной абсолютно произвольно, устанавливается нами самими и никакого смысла само по себе не несет. Просто нам удобно говорить, что «время» растет в направлении увеличения энтропии. Важно понимать, что энтропия увеличивается вдоль одного и того же временного направления для всех, кто живет в обозримой Вселенной, если все они договорились о направлении стрелы времени.

Разумеется, все меняется, когда два человека (или две другие подсистемы физической Вселенной), способных общаться и взаимодействовать друг с другом, расходятся во мнениях относительно направления стрелы времени. Возможно ли, чтобы моя стрела времени указывала в другом направлении – совсем не туда, куда указывает ваша?

Деконструкция Бенджамина Баттона

Вторую главу мы открыли несколькими литературными примерами необычной стрелы времени – это были истории о людях или вещах, для которых время текло в обратную сторону. В «Стреле времени» у повествователя были воспоминания о будущем, но не о прошлом; Белая Королева чувствовала боль от укола еще до того, как булавка касалась ее пальца; а главный герой «Загадочной истории Бенджамина Баттона» Фрэнсиса Скотта Фицджеральда становился моложе с течением времени, хотя воспоминания и опыт у него накапливались обычным образом, как у всех остальных людей. Теперь у нас есть инструменты, благодаря которым мы можем обоснованно доказать, что ничего подобного в реальном мире никогда не произойдет.

Если фундаментальные законы физики обратимы, то, зная точное состояние всей Вселенной (или любой другой замкнутой системы) в произвольный момент времени, мы с помощью этих законов можем определить, в каком состоянии она окажется в любой момент в будущем или какой она была в любой момент в прошлом. Обычно в качестве точки отсчета выбирают «начальный» момент времени, но это, в принципе, может быть и любое другое мгновение. Более того, в текущем контексте, когда нас больше всего волнуют стрелы времени, указывающие во всевозможных направлениях, одного начального момента времени для всего сущего мы и вовсе не найдем. Итак, вот что нам интересно: почему настолько сложно, а то и вовсе невозможно найти состояние Вселенной, обладающее интересующим нас свойством – чтобы по мере нашей эволюции вперед во времени в некоторых ее частях энтропия увеличивалась, а в других уменьшалась?

На первый взгляд кажется, что это элементарно. Возьмите два контейнера с молекулами газа. Создайте в одном из них состояние с низкой энтропией, как в левом верхнем углу на рис. 8.6. Как только молекулы начинают движение, их энтропия возрастает, как и ожидалось. Второй контейнер мы возьмем в состоянии с высокой энтропией, которое получилось из состояния с низкой энтропией в результате временной эволюции. Изменим скорости всех содержащихся в нем молекул на противоположные, как в левом нижнем кадре на том же рисунке. Таким образом, во втором контейнере все будет готово для того, чтобы энтропия начала со временем уменьшаться. Итак, начиная с мгновения, когда вы завершили подготовку, в двух контейнерах энтропия будет меняться в противоположных направлениях.

Однако нам нужно больше. Совсем не интересно наблюдать, как жизнь протекает вдоль разнонаправленных стрел времени в двух не связанных друг с другом мирах. Мы хотим воспроизвести это состояние во взаимодействующих системах – таких, которые способны каким-то образом общаться друг с другом.

И это все изменяет.[141] Представьте себе, что мы взяли эти два контейнера: в одном все готово к увеличению энтропии, а во втором – к ее уменьшению. После этого добавим крошечное взаимодействие: скажем, несколько протонов, летающих туда и сюда между двумя контейнерами. Столкнувшись с молекулами в одном контейнере, они будут перелетать в другой, отталкиваться там от новых молекул и т. д. Определенно, тело Бенджамина Баттона взаимодействовало с окружающим миром куда сильнее (так же, как Белая Королева и повествователь в «Стреле времени» Мартина Эмиса).


Вечность. В поисках окончательной теории времени

Рис. 8.6. На верхних рисунках мы видим обычное поведение молекул в контейнере, которые из начального состояния с низкой энтропией переходят в конечное высокоэнтропийное состояние. На нижних рисунках мы обратили импульсы всех частиц из финального состояния верхней строки, для того чтобы пустить эволюцию в обратную сторону и добиться снижения энтропии


Это небольшое взаимодействие приведет к легкому изменению скоростей тех молекул, с которыми доведется столкнуться протонам (импульс сохраняется, поэтому других вариантов быть не может). Для контейнера, где энтропия изначально была низкой, это не представляет никакой проблемы, так как для того, чтобы заставить энтропию расти, специальной тонкой настройки проводить не нужно. Однако это полностью разрушает нашу попытку создать во втором контейнере условия, при которых энтропия смогла бы уменьшиться. Даже самое незначительное изменение скорости очень быстро распространится на весь объем газа: одна столкнувшаяся с протоном молекула ударит другую, та, в свою очередь, врежется еще в пару и т. д. Для того чтобы энтропия в контейнере с газом стала волшебным образом уменьшаться, направления скоростей всех молекул должны быть точно согласованы, и любое дополнительное взаимодействие нарушит это хрупкое согласие. В первом контейнере энтропия будет вполне ожидаемо возрастать, а во втором она как была высокой, так высокой и останется – по сути, эта подсистема будет пребывать в равновесном состоянии. Во взаимодействующих подсистемах Вселенной не могут существовать несовместимые стрелы времени.[142]

Энтропия как беспорядок

Мы часто говорим, что энтропия – мера беспорядка. Это всего лишь удобный перевод очень специфического понятия на простой человеческий язык – абсолютно адекватный на первый взгляд, но таящий пару неточностей, которые при определенных обстоятельствах могут всплыть на поверхность. Теперь, когда нам известно настоящее определение энтропии, данное Больцманом, мы можем проверить, насколько близка к истине эта неформальная идея.

Вопрос в том, что следует понимать под «порядком». В отличие от энтропии, порядок – не такое понятие, которому можно с легкостью дать строгое определение. В голове мы ассоциируем «порядок» с целенаправленным расположением объектов тем или иным способом в отличие от состояния хаоса. Действительно, обсуждая энтропию, мы использовали очень похожие выражения. Неразбитое яйцо кажется нам более упорядоченным, чем яйцо, вылитое в чашку и взбитое до однородного состояния.

Энтропия кажется естественным образом связанной с понятием беспорядка, потому что чаще всего путей создания беспорядка больше, чем путей упорядочения объектов. Классический пример роста энтропии – распределение документов на рабочем столе. Вы складываете их в аккуратные стопки – приводите в порядок, в состояние с низкой энтропией, но со временем они расползаются по столу – порядок утерян, энтропия возросла. Конечно, ваш стол нельзя назвать замкнутой системой, но основная идея, думаю, понятна.

С другой стороны, если слишком налегать на ассоциации, можно опровергнуть свои же идеи. Взять, например, молекулы воздуха в комнате, где вы сидите прямо сейчас. Скорее всего, они равномерно распределены по всему объему помещения и образуют высокоэнтропийную конфигурацию. Теперь представьте себе, что все молекулы собрались в центре комнаты в небольшой области всего лишь в несколько сантиметров шириной и к тому же выстроились в фигуру, повторяющую Статую Свободы, только в миниатюрном варианте. Неудивительно, что энтропия такой конфигурации намного ниже, и все согласятся, что порядка в ней намного больше. Но попробуем зайти еще дальше: пусть газ сожмется еще сильнее и соберется в крохотную аморфную кляксу диаметром не больше одного миллиметра. Поскольку область пространства, в которой теперь сконцентрирован весь газ, стала еще меньше, энтропия новой конфигурации также уменьшилась по сравнению с конфигурацией «Статуя Свободы» (расположить молекулы так, чтобы они образовали статуэтку среднего размера, можно куда большим числом способов, чем собрать их в очень маленькую кляксу). Однако вряд ли кто-то будет утверждать, что аморфная клякса более «упорядочена», чем копия знаменитого памятника, даже если эта клякса действительно крайне мала. Получается, что в данном случае корреляция между упорядоченностью и малой энтропией отсутствует, так что нам следует быть более осторожными с выбором примеров.

Этот пример кажется несколько надуманным, и действительно, совсем не нужно так изощряться, чтобы опровергнуть утверждение об эквивалентности энтропии и беспорядка. Продолжая серию кухонных примеров, рассмотрим масло и уксус. Если вы смешаете эти два ингредиента в чашке, готовя заправку для салата, а затем отставите посудину в сторону, то заметите, что смесь очень быстро перестает быть однородной – масло отделяется от уксуса. Не бойтесь, это не означает, что салатная заправка способна нарушить второе начало термодинамики. Уксус в основном состоит из воды, а молекулы воды прилипают к молекулам масла, и, в силу определенных химических свойств масла и воды, они способны образовывать при этом лишь строго определенные конфигурации. Таким образом, когда вы тщательно перемешиваете масло с водой (или с уксусом), молекулы воды прилипают к молекулам масла в очень специальных конфигурациях, соответствующих состоянию с относительно низкой энтропией. Когда же две субстанции по большей части разделены, отдельные молекулы получают возможность свободно перемещаться между другими молекулами того же типа. При комнатной температуре это приводит к тому, что у масла с водой энтропия выше в конфигурации, когда они разделены, а не когда их старательно перемешали.[143] Порядок спонтанно возникает на макроскопическом уровне, но по сути – на микроскопическом уровне – это банальнейший беспорядок.

В по-настоящему больших системах все еще сложнее. Давайте перейдем от газа, содержащегося в одном небольшом помещении, к облаку газа и пыли астрономических масштабов – скажем, галактической туманности. Она производит впечатление весьма хаотичного и высокоэнтропийного объекта. Однако если размер туманности достаточно велик, она начинает сжиматься под давлением собственной гравитации, в результате чего формируется звезда – возможно, даже с вращающимися вокруг нее планетами. Поскольку этот процесс подчиняется второму началу термодинамики, мы можем быть уверены в том, что в конце него энтропия выше, чем была в начале (мы старательно учитываем все порожденное коллапсом излучение и другие побочные эффекты). Но звезда с несколькими планетами кажется, по крайней мере с неформальной точки зрения, более упорядоченной системой, чем рассредоточенное межзвездное облако газа. Энтропия увеличилась, но точно так же возросла степень упорядоченности.

Хитрость в данном случае в гравитации. Можно бесконечно говорить о том, как гравитация в пух и прах разносит наше бытовое понимание энтропии, но достаточно будет заметить, что взаимодействие гравитации с другими силами обладает чудесной способностью создавать порядок, одновременно, тем не менее, повышая энтропию – хотя бы и временно. Это великолепная подсказка, дающая понять, как работает Вселенная; жаль только, что пока наших знаний недостаточно для того, чтобы ею воспользоваться.

Пока давайте просто запомним, что связка «энтропия – беспорядок» не идеальна. В этом нет ничего страшного, и мы можем продолжать неформально объяснять понятие энтропии на примере захламленного рабочего стола. Однако что в действительности сообщает нам энтропия, так это сколько микросостояний с макроскопической точки зрения кажутся нам неразличимыми. Иногда это напрямую связано с порядком, а иногда нет.

Принцип безразличия

С больцмановским подходом ко второму началу термодинамики связаны еще два надоедливых вопроса, которые не мешало бы прояснить или, по крайней мере, о которых стоит упомянуть. Итак, у нас есть огромный набор микросостояний, который мы подразделяем на макросостояния, и мы объявляем, что энтропия равна логарифму числа микросостояний в данном макросостоянии. Теперь нам предлагают добавить еще один существенный факт – предположение о том, что все микросостояния, отвечающие одному и тому же макросостоянию, «равновероятны».

Следуя по цепочке рассуждений Больцмана, логично было бы утверждать, что причина возрастания энтропии со временем кроется всего-навсего в количестве микросостояний: куда больше микросостояний образуют макросостояния с высокой энтропией, чем с низкой. Однако это утверждение не имело бы никакого смысла, если бы типичная система проводила намного больше времени в низкоэнтропийных микросостояниях (а их относительно немного), чем в высокоэнтропийных (которых гораздо больше). Представьте себе, будто у микроскопических законов физики появилось новое свойство: почти все высокоэнтропийные состояния естественным образом переходят в одно из немногих низкоэнтропийных состояний. В таком случае тот факт, что состояний с высокой энтропией больше, не играл бы совершенно никакой роли; мы все равно знали бы, что если подождать достаточно долго, то энтропия в системе понизится.

Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, – в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.

Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.

Реальные же законы физики на фундаментальном уровне обратимы. И если вдуматься, это их свойство гарантирует, что высокоэнтропийные состояния не будут стремиться переходить в состояния с низкой энтропией. Как вы помните, основа обратимости – сохранение информации. Информация, необходимая для описания конкретного состояния, сохраняется, несмотря на то что система движется, меняясь с течением времени. Это означает, что два разных состояния с течением времени всегда переходят в два разных состояния; если бы в будущем они приходили в какое-то одно состояние, то мы не могли бы восстановить прошлое этого состояния. Поэтому совершенно невозможно, чтобы все высокоэнтропийные состояния стремились в низкоэнтропийные: состояний с низкой энтропией просто-напросто слишком мало, для того чтобы это было реально. Данный результат называется теоремой Лиувилля в честь французского математика Жозефа Лиувилля.

Это почти то, что нам нужно, но не совсем. И, как это часто случается, мы хотим того, что вряд ли сможем в действительности получить. Предположим, что у нас есть какая-то система, мы знаем, в каком макросостоянии она находится, и хотели бы сделать какие-то предсказания относительно ее будущего. Пусть это будет, например, стакан воды с плавающим в ней кубиком льда. Согласно теореме Лиувилля, большинство микросостояний этого макросостояния будут стремиться к увеличению (либо сохранению) энтропии. То же самое говорит нам второе начало термодинамики: кубик льда, скорее всего, растает. Однако система находится ровно в одном конкретном микросостоянии, даже если мы не знаем точно, в каком. Можем ли мы быть уверены, что это не одно из того крошечного набора микросостояний, в которых энтропия способна в любое мгновение внезапно уменьшиться? Как гарантировать, что кубик льда не увеличится, одновременно нагрев окружающую его воду?

Ответ прост: никак. В макросостоянии «вода с кубиком льда» обязательно присутствует какое-то конкретное, очень редкое микросостояние, которое действительно будет эволюционировать по направлению к микросостоянию с меньшей энтропией. Статистическая механика (основанная на атомах версия термодинамики), по сути, наука вероятностная: нам неизвестно, что в точности произойдет; мы можем лишь утверждать, что вероятность определенных событий наиболее высока. По крайней мере, нам хотелось бы иметь возможность делать такие утверждения. В действительности же мы можем говорить лишь о том, что большинство состояний с небольшой энтропией будут развиваться в сторону увеличения, а не уменьшения энтропии. Вы обратили внимание на тонкое различие между «большинство микросостояний данного макросостояния развиваются в сторону увеличения энтропии» и «принадлежащее данному макросостоянию микросостояние с большой вероятностью будет развиваться в сторону увеличения энтропии»? Первое утверждение – это всего лишь подсчет относительного числа микросостояний, обладающих разными свойствами («кубик льда тает» или «кубик льда растет»), однако во втором мы уже делаем заявление о вероятности какого-то события в реальном мире. Это не одно и то же. В мире больше китайцев, чем литовцев; однако это не означает, что вы с большей вероятностью столкнетесь с китайцем, чем с литовцем, прогуливаясь по улицам Вильнюса.

Другими словами, традиционная статистическая механика основывается на критически важном допущении: если мы находимся в определенном макросостоянии и знаем полный набор составляющих его микросостояний, мы можем предполагать, что все эти микросостояния одинаково вероятны. В любых подобных рассуждениях допущения неизбежны, потому что без их помощи нам никак не перейти от банального подсчета количества состояний к точному вычислению вероятностей. У предположения о равной вероятности есть название, которое также отлично подошло бы в качестве заглавия для стратегии поиска спутника жизни, особенно если вы человек эмоциональный: «принцип безразличия». Впервые оно прозвучало в контексте теории вероятностей задолго до того, как на сцене появилась статистическая механика, и озвучил его наш старый друг Пьер-Симон Лаплас. Он был упертым детерминистом, однако, как и любой другой человек, понимал, что чаще всего нам приходится оперировать далеко не всеобъемлющими наборами фактов. Тем не менее ему было интересно, какие выводы человек способен делать в ситуациях неполной информированности.

Так вот, чаще всего лучшее из всего, что мы можем предпринять, – применить принцип безразличия. Если нам не известно ничего, кроме того, что система находится в определенном макросостоянии, мы предполагаем, что все образующие его микросостояния одинаково вероятны (не забывая, однако, об одном принципиальном исключении, которое называется гипотезой о прошлом, – о нем мы поговорим в конце главы). Было бы очень здорово, если бы у нас была возможность доказать истинность данного предположения, – и действительно, многие люди пытались это сделать. Например, если бы система в процессе своего движения проходила через все возможные микросостояния (или по крайней мере через достаточно большой их набор, почти полностью охватывающий все возможные микросостояния) за разумный промежуток времени, то у нас были бы определенные основания считать все микросостояния одинаково вероятными. Система, посещающая каждое (или почти каждое) состояние в своем пространстве состояний и, таким образом, перебирающая все (или почти все) возможные исходы, называется эргодической. Проблема в том, что даже если система действительно является эргодической (а таковыми являются далеко не все системы), ей потребовалась бы целая вечность, чтобы пройти вблизи всех своих микросостояний. Ну ладно, может быть, не вечность, но это все равно заняло бы ужасно много времени. Макроскопическая система может пребывать в таком огромном числе состояний, что для того, чтобы перепробовать их все, потребуется время, сопоставимое с возрастом Вселенной.

Настоящая причина существования принципа безразличия заключается в том, что ничего лучше у нас просто нет. Ну и, конечно, потому что он вроде бы работает.

Другие энтропии, другие стрелы

В наших рассуждениях мы дали четкие определения энтропии и стрелы времени. Энтропия – это число состояний, неразличимых с точки зрения макроскопического наблюдателя, а стрела времени возникает, потому что во всей обозримой Вселенной энтропия непрерывно увеличивается. Несмотря на то что, формулируя эти определения, мы отталкивались от свойств реального мира, другие люди, употребляя те же самые термины, могут подразумевать что-то совершенно иное.

Определение энтропии, с которым мы работаем, – то самое, что выгравировано на могильной плите Больцмана, – связывает с каждым индивидуальным микросостоянием определенную энтропию. Главная особенность этого определения – его двухэтапность. Сначала мы принимаем решение о том, что же можно считать «макроскопически неразличимыми» характеристиками состояния, а затем на основании этого разбиваем все пространство состояний на части – набор макросостояний. Для вычисления энтропии микросостояния мы берем общее число макроскопически неотличимых от него микросостояний и вычисляем ее логарифм.

Однако обратите внимание на то, что здесь происходит кое-что очень интересное. Пусть некоторое состояние эволюционирует с течением времени из низкоэнтропийной области в высокоэнтропийную. Пусть мы потеряли всю информацию об этом состоянии, кроме макросостояния, которое оно проходит в данный момент времени. Тогда со временем мы будем обладать все меньшей информацией о микросостоянии, которое рассматриваем. Другими словами, когда нам говорят, что система принадлежит определенному макросостоянию, вероятность того, что она находится в конкретном микросостоянии из этого макросостояния, с увеличением энтропии уменьшается – просто потому, что число вариантов стремительно возрастает. Точность нашей информации о состоянии – насколько верно мы определили микросостояние – уменьшается по мере того, как энтропия увеличивается.

Это подразумевает необходимость иного подхода к определению энтропии, и альтернативный взгляд традиционно связывают с именем Джозайи Уилларда Гиббса (в действительности Больцман исследовал похожие определения, но нам удобнее ассоциировать новый подход именно с Гиббсом, потому что у Больцмана уже один есть). Вместо того чтобы рассматривать энтропию как характеристику состояний, а именно числа других состояний, макроскопически неотличимых от рассматриваемого, – мы могли бы считать энтропию мерой того, что нам известно о состоянии. В больцмановском подходе сведения о том, в каком макросостоянии мы находимся, по мере увеличения энтропии теряют информативность: мы не понимаем, о каком микросостоянии идет речь. Гиббс то же самое рассматривает с другой стороны, и у него энтропия определяется в терминах того, как много мы знаем. Вместо того чтобы фильтровать пространство состояний, мы начинаем с распределения вероятностей, указывающего для каждого возможного микросостояния шанс, что система действительно сейчас находится в нем. Также Гиббс дает нам формулу, аналогичную больцмановской, для расчета энтропии, связанной с данным распределением вероятностей.[144] Ничего огрублять не приходится.

И все же ни больцмановскую формулу для энтропии, ни формулу Гиббса нельзя назвать «правильной». Мы сами вводим эти определения, манипулируем ими и используем для того, чтобы лучше понять мир; у каждой свои преимущества и недостатки. Формулу Гиббса часто применяют в прикладных задачах по одной простой причине: ее проще использовать. Поскольку огрубление отсутствует, дискретного изменения значения энтропии при переходе системы от одного макросостояния к другому не происходит – это важное преимущество, упрощающее решение уравнений.

Однако подход Гиббса обладает двумя заметными недостатками. Один из них эпистемологический: идея «энтропии» здесь связывается с нашими знаниями о системе, а не с самой системой. У людей, старающихся с большой осторожностью рассуждать о том, что же такое на самом деле энтропия, это продолжает вызывать страшную головную боль, и споры насчет обоснованности этого подхода не утихают. Но тот подход, которого я решил придерживаться в этой книге: считать энтропию характеристикой состояния, но не характеристикой наших знаний о нем, – вроде бы позволяет избежать большинства проблемных вопросов.

Второй недостаток куда значительнее: если вам известны законы физики и вы примените их для изучения эволюции «энтропии Гиббса» с течением времени, вы обнаружите, что ее величина не меняется. Если вдуматься, то никакой ошибки здесь нет. Энтропия Гиббса описывает то, насколько хорошо мы понимаем текущее состояние системы. Однако при условии обратимости физических законов данная величина меняться не будет, ведь информация не возникает и не разрушается. Для того чтобы энтропия увеличивалась, в будущем у нас должно стать меньше сведений о состоянии системы, чем есть сейчас; но мы всегда можем прокрутить пленку назад и посмотреть, что было раньше, поэтому такая ситуация невозможна. Вывести второе начало термодинамики или что-то подобное, придерживаясь подхода Гиббса, можно только в том случае, если «забыть» часть информации о движении. Но если копнуть поглубже, то станет очевидно, что с философской точки зрения это то же самое, что огрубление, с которым мы имели дело в больцмановском подходе; просто мы перенесли процедуру «забывания» из пространства состояний на уравнения движения.

Тем не менее практическая польза формулы Гиббса для определенных приложений не вызывает сомнения, и ученые продолжают активно пользоваться ею. Однако и это еще не конец истории; существует несколько других известных подходов к изучению энтропии, а в литературе непрерывно продолжают появляться упоминания о новых. Ничего странного в этом нет; в конце концов, определения Больцмана и Гиббса должны были заменить вполне достойное определение энтропии, данное Клаузиусом, но оно и по сей день используется под названием термодинамической энтропии. После появления на сцене квантовой механики Джон фон Нейман предложил формулу для энтропии, особым образом адаптированную под квантовый мир. Клод Шеннон сформулировал определение энтропии, очень близкое по духу к гиббсоновскому, однако в рамках информационной теории, а не физики – об этом мы поговорим в следующей главе. Смысл не в том, чтобы найти одно-единственное истинное определение энтропии. Ученые придумывают понятия, служащие полезным целям в определенных случаях, и это абсолютно нормально. Не позволяйте никому одурачить вас заявлениями о «единственно верном определении», уникальным образом раскрывающем суть такого явления, как энтропия.

Точно так же, как существует несколько определений энтропии, есть множество различных «стрел времени» – еще один потенциальный источник мошенничества. Мы рассматривали термодинамическую стрелу времени, определяемую энтропией и вторым началом термодинамики. Но можно также говорить о космологической стреле времени (Вселенная расширяется), психологической стреле времени (мы помним прошлое, но не будущее), стреле времени излучения (электромагнитные волны расходятся прочь от движущихся зарядов, а не притягиваются к ним) и т. д. Все это разнообразие стрел времени естественным образом подразделяется на несколько категорий. Часть из них, например космологическая стрела, отражает факты об эволюции Вселенной, но тем не менее обладает свойством обратимости. Вполне возможно, что окончательное объяснение термодинамической стрелы времени также раскроет нам глаза на космологическую стрелу (и это действительно кажется весьма вероятным); в то же время с точки зрения микроскопических законов физики расширение Вселенной не представляет никакой загадки в отличие от увеличения энтропии. Другие стрелы, отражающие поистине необратимые процессы, – психологическую стрелу, стрелу излучения и даже стрелу, определяемую квантовой механикой, мы будем исследовать позже. Все они кажутся отражениями одних и тех же глубинных причин, характеризуемых изменением энтропии. Разобраться в подробностях, как они все взаимосвязаны, несомненно, важно и интересно, однако я продолжу использовать термин «стрела времени», имея в виду одну конкретную стрелу – ту, что основывается на увеличении энтропии.

Доказательство второго начала термодинамики

После того как Больцману открылся смысл энтропии как меры количества микросостояний, соответствующих выбранному макросостоянию, он поставил себе новую цель: уже на этом уровне понимания установить происхождение второго начала термодинамики. Я уже рассказывал об основных причинах, почему второе начало действительно работает: состояний с высокой энтропией намного больше, чем с низкой, а разные начальные состояния в процессе развития приходят к разным конечным состояниям, поэтому большую часть времени (с действительно подавляющей вероятностью) можно ожидать, что энтропия будет увеличиваться. Однако Больцман был истинным ученым, и ему недостаточно было лишь этого. Он хотел доказать, что второе начало термодинамики следует из его определения.

Довольно непросто вообразить себя на месте ученого, занимающегося исследованием термодинамики в конце XIX века. Эти ребята чувствовали, что неспособность энтропии уменьшаться в замкнутой системе не просто отличная идея, а закон. Мысль о том, что энтропия, вероятно, будет увеличиваться, казалась им не более правдоподобной, чем, например, предположение о том, что энергия, вероятно, будет сохраняться. И правда, числа настолько ошеломляюще велики, что вероятностные выводы статистической механики можно было бы использовать как абсолютно верные для всех практических задач. Тем не менее Больцман стремился продемонстрировать нечто более определенное.

В 1872 году Больцман (в то время ему было двадцать восемь лет) опубликовал статью, в которой предлагал использовать для доказательства того, что энтропия всегда будет либо увеличиваться, либо оставаться постоянной, кинетическую теорию. Этот результат называется H-теоремой, которая с того самого времени остается источником множества споров в научной среде. Даже сегодня одни люди уверены, что H-теорема объясняет незыблемость второго начала термодинамики в реальном мире, тогда как другие полагают ее всего лишь забавным пережитком истории интеллектуальной мысли. Правда в том, что это действительно чрезвычайно интересный результат для статистической механики, но «доказать» второе начало он все же не в силах.

Больцман размышлял следующим образом. В макроскопическом объекте, таком как наполненная газом комната или чашка кофе с молоком, присутствует невероятное количество молекул – более 1024. Он рассматривал такой случай, когда газ относительно разрежен; в этой ситуации столкнуться могут две любые частицы, но редкие события, когда одновременно друг в друга врезаются три или более частиц, можно игнорировать (это на самом деле не вызывающее претензий предположение). Нам необходимо найти способ, как охарактеризовать макросостояние всех этих частиц. Итак, вместо того чтобы отслеживать положения и импульсы всех молекул (что дало бы нам полное описание микросостояния), давайте следить за средним числом частиц, обладающих данным положением и импульсом. Например, в контейнере с газом, находящемся в равновесии при определенной температуре, среднее число частиц в каждой точке равно, а также существует некоторое распределение импульсов, такое, что средняя энергия частиц дает нам нужную температуру. Имея на руках лишь эту информацию, можно вычислить энтропию газа. А затем (если вы Больцман) доказать, что энтропия газа, пребывающего не в равновесном состоянии, будет со временем возрастать, пока не достигнет максимального значения, после чего останется на этом уровне. Очевидно, что мы вывели второе начало термодинамики.[145]

Очевидно, однако, что здесь что-то не чисто. Мы начали с микроскопических законов физики, совершенно инвариантных относительно направления времени, – они работают одинаково хорошо как вперед во времени, так и назад. А Больцман утверждал, что получил на основе этих законов результат, абсолютно точно не обладающий свойством инвариантности и приводящий к очевидной стреле времени, что подтверждается словами об увеличении энтропии по направлению к будущему. Как же можно получить необратимые результаты исходя из обратимых предположений?

Данное возражение было громко и ясно высказано Йозефом Лошмидтом в 1876 году, после того как схожие сомнения появились у Уильяма Томсона (лорда Кельвина) и Джеймса Клерка Максвелла. Лошмидт был близким другом Больцмана, взявшим молодого физика под свою опеку в Вене в 1860-е годы. И он не проявлял никакого скептицизма по отношению к атомной теории; в действительности Лошмидт первым сумел точно оценить физические размеры молекул. Однако ему было невдомек, как Больцман сделал вывод об асимметрии времени, не прибегая к помощи его предположений.

Доводы, стоящие за тем, что нам сегодня известно под названием «возражения Лошмидта об обратимости», просты. Рассмотрим какое-то конкретное микросостояние, соответствующее макросостоянию с низкой энтропией. Оно с огромной вероятностью будет развиваться в сторону высокоэнтропийных состояний. Но инвариантность относительно отражения времени гарантирует, что для каждого такого пути развития существует другой допустимый путь – зеркальное отражение оригинала, – начинающийся в высокоэнтропийном состоянии и эволюционирующий навстречу низкой энтропии. В пространстве всех процессов, которые могут происходить с течением времени, можно найти ровно столько же систем, начинающих существование в условиях высокой энтропии и приходящих в состояние с низкой энтропией, как и систем, переходящих из низкоэнтропийного состояния к высокоэнтропийному. На рис. 8.5, где показано пространство состояний, разделенное на макросостояния, мы нарисовали траекторию, берущую начало в макросостоянии с очень низкой энтропией. Однако траектория не появляется из ниоткуда; она должна была существовать и до того, и в ее истории должно было быть состояние с высокой энтропией, – явный пример пути, вдоль которого энтропия уменьшилась. Очевидно, что если вы верите в динамику, инвариантную относительно отражения времени (как все эти ученые), то совершенно невозможно доказать, что энтропия всегда только увеличивается.[146]

Однако Больцман что-то доказал, и, насколько можно было судить, в его рассуждениях не было математических или логических ошибок. Скорее всего, в его доводы каким-то образом проникло предположение об асимметричности времени, даже если эта идея не была высказана явно.

Действительно, так и случилось. Одним из важнейших шагов в аргументах Больцмана было предположение о молекулярном хаосе – Stosszahlansatz по-немецки, что можно буквально перевести как «гипотеза о числе столкновений». Суть его в том, что мы считаем движение молекул произвольным, то есть они не строят коварных заговоров с целью подчинить свое движение определенной схеме. Но для того, чтобы энтропия уменьшалась, именно это и требуется – коварный заговор! Таким образом, Больцман, в сущности, доказал, что энтропия может увеличиваться только в том случае, если с самого начала отмести любые альтернативные варианты. В частности, он предполагал, что импульсы любой пары частиц до того, как они столкнутся, независимы или не скоррелированы между собой. Однако это «до» как раз и иллюстрирует то самое предположение об асимметричности времени; если частицы никак не скоррелированы до столкновения, то после между ними установится взаимосвязь или корреляция. Вот так предположение о необратимости прокралось в доказательство.

Если взять систему в состоянии с низкой энтропией и позволить ей развиваться по направлению к увеличению энтропии (например, подождать, пока растает кубик льда), то после того, как все закончится, между молекулами можно будет найти огромное количество корреляций. В частности, среди них будут корреляции, гарантирующие, что если мы инвертируем все импульсы, то система вернется в низкоэнтропийное начальное состояние. В рассуждениях Больцмана такая возможность учтена не была. Он доказал, что энтропия никогда не будет уменьшаться, если отбросить обстоятельства, при которых энтропия могла бы уменьшиться.

Когда законов физики недостаточно

В конечном счете совершенно ясно, каким будет итог всех этих споров – по крайней мере, в нашей наблюдаемой Вселенной. Лошмидт прав; действительно, в наборе всех возможных процессов уменьшение энтропии встречается так же часто, как и увеличение. Однако прав и Больцман, поскольку статистическая механика убедительно объясняет, почему с подавляющей вероятностью мы будем встречать низкоэнтропийные условия, переходящие в высокоэнтропийные, а не наоборот. Вывод очевиден: помимо того что динамикой управляют физические законы, необходимо также предполагать, что Вселенная начала свое существование в состоянии с низкой энтропией. Это дополнительное предположение, граничное условие, которое не является частью законов физики (во всяком случае, пока мы не переходим к обсуждению того, что происходило до Большого взрыва, а такую дискуссию вряд ли можно было услышать в 1870-х годах). К сожалению, такого вывода было недостаточно для ученых того времени, и в последующие годы дискуссии о статусе H-теоремы заполонили ученый мир.

В 1876 году Больцман опубликовал ответ на возражение Лошмидта об обратимости, который, впрочем, ничуть не прояснил ситуацию. Определенно, Больцман согласился с тем, что в словах Лошмидта есть смысл, и признал, что второе начало термодинамики, несомненно, обладает вероятностными свойствами – ведь если кинетическая теория верна, то оно попросту не может быть абсолютным. В начале статьи Больцман явно говорит об этом:

Поскольку энтропия уменьшалась бы при прохождении системы через эту последовательность в обратном направлении, мы убеждаемся, что факт увеличения энтропии во всех физических процессах нашего мира невозможно было бы подтвердить, отталкиваясь исключительно от природы сил, действующих между частицами; это должно быть следствием начальных условий.

Можно ли найти заявление более недвусмысленное, чем это: «факт увеличения энтропии во всех физических процессах нашего мира… должен быть следствием изначальных условий»? Однако, не в силах расстаться с идеей о доказательстве, не зависящем от начальных условий, он тут же заявляет:

Тем не менее нам не нужно предполагать существование специального типа начальных условий для того, чтобы предоставить механическое доказательство второго начала термодинамики, – если мы готовы принять статистическую точку зрения.

«Принятие статистической точки зрения», судя по всему, означает, что он согласен с утверждением о подавляющей вероятности такого развития событий, при котором энтропия будет увеличиваться, хотя это будет происходить не всегда. Но что он имеет в виду, говоря, что нам не нужно предполагать существование специального типа начальных условий? Следующие предложения подтверждают худшие опасения:

Хотя вероятность любого индивидуального неоднородного состояния (соответствующего низкой энтропии) эквивалентна вероятности любого индивидуального однородного состояния (соответствующего высокой энтропии), существует намного больше однородных состояний, чем неоднородных. Следовательно, если начальное состояние выбирается случайным образом, то можно с уверенностью говорить, что система, скорее всего, будет развиваться по направлению к однородному состоянию, а энтропия будет увеличиваться.

Первое предложение истинно, но второе содержит очевидную ошибку. Если выбирать начальное состояние случайным образом, то оно не «скорее всего, будет развиваться по направлению к однородному состоянию», а вероятнее всего само окажется однородным (высокоэнтропийным). Почти все из небольшого числа низкоэнтропийных состояний будут стремиться к увеличению энтропии. В противоположность этому, лишь крайне малая часть состояний с высокой энтропией будет развиваться по сценарию уменьшения энтропии; в то же время самих высокоэнтропийных состояний существует невообразимо больше. Общее число низкоэнтропийных состояний, эволюционирующих по направлению к увеличению энтропии, равно, как и утверждал Лошмидт, общему числу высокоэнтропийных состояний, теряющих энтропию в процессе эволюции.

Чтение трудов Больцмана вызывает стойкое ощущение того, что этот ученый на несколько шагов опережал свое время: он видел детали, заключенные в любых приводимых доводах, куда лучше любого собеседника. Однако, перебирая эти детали, он все же не всегда умел вовремя остановиться; более того, печально известно его непостоянство в выборе рабочих гипотез, на которых он основывал ту или иную работу. Тем не менее не нам его судить. Ведь прошло уже 140 лет, а мы до сих пор не можем прийти к согласию относительно того, что же такое энтропия и в каких терминах правильно рассуждать о втором начале термодинамики.

Гипотеза о прошлом

Невозможно установить происхождение постоянного увеличения энтропии и соответствующей этому стрелы времени в пределах наблюдаемой Вселенной, опираясь только на основополагающие обратимые законы физики. Требуется некое граничное условие в начале времен. Чтобы понять, почему второе начало термодинамики действительно работает в реальном мире, недостаточно всего лишь подойти к основополагающим физическим законам со статистической точки зрения; мы должны также предположить, что обозримая Вселенная начала свое существование в состоянии очень низкой энтропии. Дэвид Альберт заботливо присвоил данному предположению удобное и простое название: «Гипотеза о прошлом».[147]

Гипотеза о прошлом представляет собой несущее огромную значимость исключение из принципа безразличия, на который мы ссылались выше. Согласно принципу безразличия, если нам известно, в каком макросостоянии пребывает система, то мы должны считать все составляющие данное макросостояние микросостояния одинаково вероятными. Это предположение здорово помогает прогнозировать будущее на основе статистической механики. Но если попытаться применить его для реконструкции прошлого, результат будет плачевным.

Больцман привел убедительные аргументы, объясняющие, почему энтропия увеличивается: возможностей оказаться в высокоэнтропийном состоянии куда больше, чем в низкоэнтропийном, поэтому большинство микросостояний в макросостояниях с низкой энтропией эволюционируют по направлению к высокоэнтропийным макросостояниям. Однако направление времени в этом объяснении никак не фигурирует. Следуя этой логике, высокую энтропию в большей части микросостояний из произвольного макросостояния мы будем наблюдать не только в будущем – в прошлом они также когда-то прошли через этап высокой энтропии.

Рассмотрим все микросостояния из произвольного макросостоянии с небольшой энтропией. Подавляющее большинство этих состояний когда-то обладали высокой энтропией. Так обязательно должно быть, потому что состояний с низкой энтропией не так много, чтобы все рассматриваемые микросостояния могли произойти из них. Таким образом, высока вероятность того, что типичное микросостояние с небольшой энтропией – «статистическая флуктуация» высокоэнтропийного прошлого. Этот довод эквивалентен утверждению о том, что энтропия в будущем должна увеличиваться, но только в противоположном направлении по времени.

В качестве примера снова возьмем контейнер с перегородкой, содержащий 2000 частиц газа. Изначально у системы низкая энтропия (80 % частиц скопились в одной половине контейнера), но затем она начинает увеличиваться, как показано на рис. 8.3. На рис. 8.7 мы дополнили график роста энтропии в будущем, показав, как энтропия эволюционирует по направлению к прошлому. Поскольку базовое правило динамики нашей системы («каждая частица каждую секунду с вероятностью 0,5 % может перелететь на другую сторону») не зависит от направления времени, неудивительно, что высокая энтропия наблюдается и справа, и слева относительно нашей стартовой точки, то есть и в прошлом, и в будущем.

Вы можете возразить: очень маловероятно, что система, начавшая существование в равновесном состоянии, вдруг начнет терять энтропию. Это верно; скорее всего, энтропия либо возрастет, либо останется примерно на том же уровне. Однако учитывая, что мы, в принципе, настаиваем на существовании низкоэнтропийного состояния, высока вероятность того, что данное состояние представляет на кривой энтропии минимум – с более высокими значениями как в прошлом, так и в будущем.


Вечность. В поисках окончательной теории времени

Рис. 8.7. Энтропия контейнера с газом, разделенного перегородкой. «Граничное» условие наложено в момент времени, равный 500, когда 80 % частиц находятся в одной половине контейнера, а 20 % – в другой (низкоэнтропийное макросостояние). Энтропия увеличивается в обоих направлениях от этой точки: и при эволюции в сторону будущего, и при движении к прошлому


По крайней мере, такая ситуация была бы наиболее вероятной, если бы, кроме принципа безразличия, нам больше не на что было опереться. Проблема в том, что никто не считает, будто энтропия реальной Вселенной ведет себя так, как показано на рис. 8.7. Все согласны с утверждением о том, что завтра энтропия будет выше, чем сегодня, и ни у кого не возникает сомнений, что сегодня она выше, чем была вчера. Это всеобщее убеждение поддерживается вескими аргументами, которые мы подробно обсудим в следующей главе: если сейчас мы живем в минимуме кривой энтропии, то никакие наши воспоминания о прошлом не могут быть достоверными, а осмыслить такой вариант Вселенной попросту невозможно.

Итак, если нам правда интересно, какие механизмы работают под капотом нашего мира, мы должны в дополнение к принципу безразличия учитывать также и гипотезу о прошлом. Когда дело доходит до выбора микросостояний из нашего макросостояния, мы не считаем их все одинаково вероятными: мы выбираем только те микросостояния, которые совместны с условием намного более низкой энтропии в прошлом (а их очень, очень мало!), и лишь им присваиваем равные значения вероятности.[148]

Однако эта стратегия поднимает важнейший вопрос: почему мы считаем, что гипотеза о прошлом верна? Во времена Больцмана никто и понятия не имел об общей теории относительности или Большом взрыве, не говоря уж о квантовой механике или квантовой гравитации. И все же вопрос остается, хотя и приобретает более конкретную форму: почему непосредственно после Большого взрыва у Вселенной была такая низкая энтропия?

Глава 9. Информация и жизнь

Вам следует назвать ее энтропией по двум причинам. Во-первых, ваша функция неопределенности использовалась в статистической механике под этим названием, так что у нее уже есть имя. Во-вторых, и это важнее, никто не знает, что же такое эта энтропия на самом деле, поэтому в споре преимущество всегда будет на вашей стороне.

Из письма Джона фон Неймана Клоду Шэннону

В знаменитой сцене из романа «По направлению к Свану» Марселя Пруста повествователя охватывает тоска и уныние. Мать предлагает ему чай, и он с неохотой соглашается его выпить. Это действо и вкус традиционного бисквита «Мадлен» заставили героя непроизвольно окунуться в воспоминания детства.

И вдруг воспоминание ожило. То был вкус кусочка бисквита, которым в Комбре каждое воскресное утро… угощала меня, размочив его в чае или в липовом цвету, тетя Леония, когда я приходил к ней поздороваться… И как только я вновь ощутил вкус размоченного в липовом чае бисквита, которым меня угощала тетя… в то же мгновенье старый серый дом фасадом на улицу, куда выходили окна тетиной комнаты, пристроился, как декорация, к флигельку окнами в сад, выстроенному за домом для моих родителей… А стоило появиться дому – и я уже видел городок, каким он был утром, днем, вечером, в любую погоду, площадь, куда меня водили перед завтраком, улицы, по которым я ходил, далекие прогулки в ясную погоду.[149]

«По направлению к Свану» – первый из семи томов магнум-опуса Пруста À la recherche du temps perdu, что переводится как «В поисках утраченного времени». Интересно, что Скотт Монкриф, первый переводчик опуса, позаимствовал для названия на английском языке строку из тридцатого сонета Шекспира Remembrance of Things Past («Память дней былых»).

Разумеется, совершенно естественно хранить воспоминания о прошлом. Что еще мы могли бы помнить? Определенно, не будущее. Из всех проявлений стрелы времени самое очевидное и самое важное для нашей повседневной жизни – это воспоминания, а конкретнее, тот факт, что помнить можно то, что уже было, но не то, что ждет нас впереди. Возможно, главное различие в нашем восприятии текущего момента и момента, который вот-вот наступит, заключается как раз в накоплении воспоминаний, вынуждающих нас двигаться вперед, в будущее.

Пока все мои рассуждения сводились к тому, что все важные различия между прошлым и будущим можно свести к одному основополагающему принципу – второму началу термодинамики. Из этого следует, что нашу способность вспоминать прошлое, но не будущее, в конечном счете можно будет объяснить в терминах энтропии, в частности, с помощью гипотезы о прошлом, которая гласит, что в ранней Вселенной наблюдалось состояние чрезвычайно низкой энтропии. Изучение тонкостей этого механизма позволит нам погрузиться в исследование взаимосвязей между энтропией, информацией и жизнью.

Картинки и воспоминания

Одна из проблем, непременно возникающих при обсуждении «памяти», заключается в том, что мы очень многого не знаем о работе человеческого мозга, не говоря уж о том, что такой феномен, как сознание, до сих пор остается для нас по большей части загадкой.[150] Нашим текущим целям это, тем не менее, не помеха. Обсуждая воспоминания прошлого, мы заинтересованы не столько в определении, что такое память с точки зрения человека, сколько в общем значении реконструкции событий прошлого исходя из текущего состояния мира. Мы ничего не потеряем, если будем рассматривать простые и понятные механические записывающие устройства или даже такие бесхитростные артефакты, как фотографии и учебники истории. (Мы делаем явное предположение о том, что люди являются частью земного бытия, поэтому под человеческим разумом можно, в принципе, понимать человеческий мозг, который так же, как и все остальное, подчиняется законам физики.)

Итак, представьте себе, что в вашем распоряжении есть нечто, что вы считаете достоверным отражением прошлого, например фотография, сделанная в ваш десятый день рождения. Вы уверенно заявляете: «Можно не сомневаться, что в тот день на мне была красная рубашка, ведь на фотографии с праздника я запечатлен именно в красной рубашке». Мы сейчас не рассматриваем возможность того, что фотография могла быть отретуширована или изменена еще каким-то способом. Вопрос в том, имеете ли вы право делать выводы касательно прошлого, основываясь на существовании данной фотографии в настоящем?

В частности, предположим, что вы не купились на всю эту чепуху с гипотезой о прошлом. Все, что у вас есть, – это некоторая информация о текущем макросостоянии Вселенной, в том числе тот факт, что в ней существует эта конкретная фотография, вы обладаете определенными воспоминаниями, и т. п. Вы совершенно точно не знаете текущее микросостояние – вам неизвестны положения и импульсы всех частиц в мире, – однако вы можете воззвать к принципу безразличия и связать равные значения вероятности со всеми микросостояниями, совместимыми с текущим макросостоянием. И разумеется, вы знакомы с законами физики – возможно, не с полной Теорией Обо Всем На Свете, но ваших знаний достаточно, чтобы делать выводы об окружающем мире. Достаточно ли всего этого – текущего макросостояния, включающего фотографию, принципа безразличия и законов физики – для того, чтобы обоснованно утверждать, что в свой десятый день рождения вы действительно нарядились в красную рубашку?

Нет, и даже близко нет. Нам кажется, что этой информации вполне достаточно, и мы, живя обычной жизнью, даже не задумываемся о том, какие невообразимо тонкие взаимосвязи существуют между повседневными объектами. Грубо говоря, мы полагаем, что подобная фотография представляет собой очень специфичную конфигурацию составляющих ее молекул (так же, как и воспоминание о соответствующем событии, хранящееся в нашем мозге). Никому и в голову не приходит, что молекулы могут случайным образом собраться так, чтобы образовать именно эту конкретную фотографию, – это астрономически маловероятно. Если же, однако, в прошлом действительно произошло событие, соответствующее изображению на фотографии, и в этот момент присутствовал человек с камерой, то существование снимка становится весьма вероятным. Следовательно, логично говорить о том, что раз мы видим эту фотографию сегодня, то на том дне рождения все было именно так, как представлено на ней.

Все эти утверждения вполне разумны, но проблема в том, что они даже наполовину не подтверждают истинность последнего вывода. Причина проста, и она не изменилась с прошлой главы, где мы обсуждали контейнер с газом. Действительно, фотография – это очень редкая и маловероятная конфигурация молекул. Тем не менее история, с помощью которой мы пытаемся «объяснить» ее существование: детальное воспроизведение событий прошлого, включающее дни рождения и камеры, и фотографии, сохраняющиеся в неизменном виде до сегодняшнего дня, – еще менее вероятна, чем сам снимок. По крайней мере если под «вероятностью» понимать ту самую равную вероятность, которую мы назначили всем возможным микросостояниям, совместимым с нашим текущим макросостоянием.

Попробуйте посмотреть на это с такой точки зрения: вы никогда не стали бы апеллировать к какой-то хитро закрученной истории из будущего, чтобы объяснить существование некоего предмета в настоящем. Мы можем рассуждать о том, что ждет в будущем нашу фотографию с дня рождения, и строить относительно нее определенные планы: вот бы поместить ее в альбом или повесить в рамке на стену… Но в то же время нам приходится мириться с огромной степенью неопределенности этих начинаний, ведь фотография может потеряться, может упасть в лужу и выцвести, а то и сгореть во время пожара. Все это абсолютно правдоподобные экстраполяции текущего состояния в будущее, пусть и привязанные к настоящему специфическим якорем, роль которого играет фотография. Так почему же мы с такой уверенностью рассуждаем о событиях прошлого, приводя в качестве доказательства собственной правоты всего лишь какую-то фотографию?


Вечность. В поисках окончательной теории времени

Рис. 9.1. Траектории, проходящие через (часть) пространства состояний и совместимые с нашим текущим макросостоянием. Мы можем безошибочно восстановить ход истории лишь в том случае, если в дополнение к информации о текущем макросостоянии примем на вооружение гипотезу о прошлом


Разгадка, разумеется, кроется в гипотезе о прошлом. На самом деле мы не применяем принцип безразличия ко всему текущему мировому макросостоянию – мы рассматриваем лишь те микросостояния из него, которые совместимы с условием существования очень низкой энтропии в прошлом. Именно это и порождает различия в наших трактовках того, какой смысл несут фотографии или воспоминания или любые другие виды записей о прошлом. На вопрос: «Каким путем данная конкретная фотография с наибольшей вероятностью могла образоваться в пространстве всех возможных путей эволюции Вселенной?», скорее всего, мы получим ответ, что она появилась как случайная флуктуация высокоэнтропийного прошлого. И доказать это можно с помощью тех же аргументов, которые убеждают нас в истинности идеи о росте энтропии в будущем. Однако вместо этого мы задаем вопрос: «Каким способом можно с наибольшей вероятностью получить данную фотографию в пространстве всех возможных эволюций Вселенной, начинающихся из очень низкоэнтропийного прошлого?» И тогда мы совершенно естественным образом приходим к тому, что, скорее всего, нам нужно будет пройти через все промежуточные этапы, включающие день рождения, красную рубашку, камеру и все остальное. Рисунок 9.1 иллюстрирует общий принцип: требуя соблюдения условия чрезвычайно низкой энтропии в начале времен, мы значительно сокращаем пространство допустимых траекторий, благодаря чему получаем возможность рассматривать лишь те варианты эволюции, в которых наши записи служат (по большей части) надежным отражением событий прошлого.

Когнитивная нестабильность

Я по своему опыту знаю, что далеко не всем эти аргументы кажутся убедительными. Очень многие спотыкаются на утверждении – критически важном, замечу! – о том, что в самом начале у нас нет ничего, кроме информации о текущем макросостоянии да незначительных сведений о фотографиях, или учебниках истории, или сохранившихся в мозге воспоминаниях. Мы на интуитивном уровне чувствуем, что обладаем знаниями не только о настоящем, но знаем что-то о прошлом, потому что видим его, – так, как, в принципе, не способны увидеть будущее. Это кажется нам совершенно нормальным. Хороший пример – космология, просто потому что скорость света играет важнейшую роль, и поэтому мы в буквальном смысле «смотрим на события прошлого». Человека, пытающегося восстановить историю Вселенной, может соблазнить идея посмотреть, скажем, на космическое микроволновое фоновое излучение и заявить: «Я вижу, какой Вселенная была почти 14 миллиардов лет назад; мне не нужно прибегать ни к какой мудреной гипотезе о прошлом, чтобы объяснить, каким путем я пришел к своим выводам».

Однако это неверно. Исследуя реликтовое излучение (или свет от любого другого удаленного источника, или фотографическое свидетельство предположительно свершившегося в прошлом события), мы не смотрим непосредственно на события прошлого. Мы наблюдаем за конкретными фотонами здесь и сейчас. Когда мы с помощью радиотелескопа сканируем небо и обнаруживаем тепловое излучение с температурой около 2,7 кельвина, практически однородное во всех направлениях, в действительности мы видим излучение, проходящее сквозь наше текущее местоположение. Чтобы «заглянуть в прошлое», эту информацию необходимо экстраполировать в обратную сторону. Нельзя исключать вероятность того, что это однородное излучение пришло к нам из чрезвычайно неоднородного прошлого – но такого, где температуры, и допплеровские смещения, и гравитационные эффекты оказались так хитро и тонко между собой скоррелированы, что сумели создать очень однородный набор фотонов, который в конечном счете и прибыл в наше время. Вы можете заявить, что такой процесс крайне маловероятен, однако процесс, полученный из него обращением времени, – это в точности то, что мы ожидаем получить, если возьмем типичное микросостояние из нашего текущего макросостояния и проэволюционируем его по направлению к Большому сжатию. Суть в том, что у нас в равной степени отсутствует прямой эмпирический доступ как к прошлому, так и к будущему, если только мы не согласимся признать истинной гипотезу о прошлом.

На самом деле с гипотезой о прошлом нужно не просто «мириться» – она нам жизненно необходима, если мы хотим, чтобы в нашей интерпретации истории Вселенной действительно был смысл. Представьте себе, что мы полностью отказались от этой идеи и оперируем исключительно теми данными, которые в состоянии предоставить нам текущее макросостояние, включая конфигурацию нашего мозга, фотографии в фотоальбоме и учебники истории. В этом случае мы бы говорили, что с большой вероятностью и в прошлом, и в будущем Вселенная находилась и будет находиться в состоянии с высокой энтропией, а все низкоэнтропийные детали настоящего являются всего лишь случайными флуктуациями. Это уже звучит не слишком хорошо, но в действительности все еще хуже. В таких обстоятельствах все источники информации, которые мы традиционного используем для подтверждения истинности нашего понимания законов природы, или, если уж на то пошло, все умственные состояния (или письменная аргументация), с помощью которых мы обосновываем и математику, и логику, и научные методы, относились бы к множеству вещей, появившихся на свет таким вот случайным образом. Другими словами, подобные предположения не дают нам абсолютно никаких причин верить, будто у нас есть возможность хоть что-то доказать; более того, они ставят под сомнение допустимость самих подобных предположений.

Дэвид Альберт называл подобные парадоксы условиями когнитивной нестабильности: мы сталкиваемся с предположениями, само существование которых развеивает любые доказательства того, что данные предположения могут быть истинны.[151] Это безвыходная ситуация, с которой невозможно справиться, если не призвать на помощь информацию, выходящую за рамки текущего момента. Без гипотезы о прошлом мы попросту не в состоянии рассказать о мире ничего вразумительного. Получается, нам без нее никуда – и, следовательно, мы не имеем права оставлять попытки найти теорию, которая даст нам полноценное объяснение этой гипотезы.

Причина и следствие

Вся эта история с тем, как мы пользуемся воспоминаниями и записями, отличается невообразимой временной асимметрией: мы всегда апеллируем только к гипотезе о прошлом, но никогда – о будущем. Строя прогнозы, мы не отбрасываем никакие микросостояния из числа совместимых с нашим текущим макросостоянием лишь на том основании, что они не удовлетворяют какому-то конкретному будущему граничному условию. А что, если попробовать сделать так? В главе 15 мы исследуем космологические положения Голда, согласно которым Вселенная в конечном счете прекратит расширяться и примется сжиматься обратно, стрела времени перевернется, а энтропия начнет уменьшаться, знаменуя приближение Большого сжатия. При таком развитии событий мы не заметим никакой разницы между фазой сжатия и текущей фазой расширения, потому что они идентичны (по крайней мере, статистически). Наблюдатели, которым доведется жить в фазе сжатия, не будут считать, что в их Вселенной творится что-то странное, – как и мы не считаем сейчас. Они будут думать, что это мы жили «в обратную сторону».

Намного интереснее представить себе, какие следствия могут иметь небольшие ограничения на допустимые траектории в ближайшем будущем. По сути, это та самая ситуация, когда мы бы могли делать надежные пророчества о будущих событиях. Когда Гарри Поттеру сообщают, что либо он убьет Волдеморта, либо Волдеморт убьет его, в действительности это означает наложение очень строгих ограничений на допустимое пространство состояний.[152]

Крэйг Каллендер весьма красочно описывает жизнь, в которой присутствует граничное условие в будущем. Вообразите, что предсказатель с внушительным послужным списком (намного более впечатляющим, чем успехи профессора Трелони из книг о Гарри Поттере) говорит вам, что однажды все существующие в мире яйца Фаберже окажутся в ящике вашего комода и именно в этот момент ваша жизнь оборвется. Не очень правдоподобное предсказание: сами вы не увлекаетесь коллекционированием дорогого антиквариата, да и не склонны впускать в свою квартиру посторонних людей. Однако каким-то образом благодаря последовательностям непредсказуемых и невероятных совпадений эти яйца все же умудряются проникать к вам в спальню и в ящик комода. Вы запираете ящик, но замок разбалтывается и открывается; вы просите владельцев яиц следить за тем, чтобы сокровища не перемещались, но действия воров и разнообразные случайные события оборачивают происходящее так, что яйца продолжают стекаться в вашу комнату. Вы получаете посылку, ошибочно доставленную по вашему адресу, – она должна была прибыть в музей, а внутри оказывается яйцо. В страхе вы выбрасываете его в окно, но оно отскакивает от уличного фонаря под совершенно невообразимым углом и залетает обратно в комнату, приземляясь точно в ящик комода. В этот момент у вас случается сердечный приступ, и вы умираете.[153]

Никакие законы физики не нарушаются на протяжении этой последовательности невероятных событий. На каждом шаге происходят события, которые нельзя назвать невероятными – они просто очень маловероятны. В результате наше привычное понимание причинно-следственной связи искажается, и мы уже не уверены, что есть причина, а что следствие. В повседневной жизни мы руководствуемся впитанным с молоком матери убеждением о том, что причина предшествует следствию: «По полу растеклось разбитое яйцо, потому что я только что уронил его», а не «Я только что уронил яйцо, потому что на полу должна оказаться лужица из желтка и белка с осколками скорлупы». В общественных науках, где порой бывает сложно установить причинно-следственную связь между различными явлениями социума, данное интуитивное понимание возведено в ранг принципа. Когда между двумя свойствами существует тесная взаимосвязь, не всегда очевидно, какие роли они играют: где причина, где следствие, а может быть, оба они стали результатом какого-то совершенно постороннего события? Обнаружив, что люди, которые счастливы в браке, едят больше мороженого, какой вывод вы сделаете? Что мороженое скрепляет брак или что счастье заставляет чаще покупать мороженое? Тем не менее в определенных ситуациях сомнений не возникает ни у кого, а именно когда одно свойство проявляется раньше по времени, чем второе. Уровень образования ваших дедушек и бабушек может влиять на ваш заработок, однако вашему заработку не под силу изменить образование ваших предков.[154]

Из-за граничных условий в будущем, то есть утверждений о том, что в будущем обязательно должны произойти какие-то конкретные, хоть и маловероятные события, наше понимание причин и следствий переворачивается с ног на голову. То же самое относится и к идее свободной воли. В конце концов, возможность «выбирать», каким образом жить дальше и как действовать в будущем, – это отражение нашего полнейшего непонимания конкретного микросостояния Вселенной; если бы неподалеку появился демон Лапласа, то он бы совершенно точно знал, каких поступков ожидать от нас. Граничное условие в будущем – это одна из форм предопределения.

Все это кажется какими-то научными бреднями, в которые совершенно не стоит углубляться, – ведь мы не думаем, что на наше текущее микросостояние наложены какие-то ограничения просто потому, что в будущем должно выполниться некое граничное условие. Мы уверены, что причина всегда предшествует следствию. И тот факт, что в прошлом существовало условие, ныне ограничивающее наше текущее микросостояние, у нас сомнений не вызывает. Однако для микроскопических законов физики никакого различия между прошлым и будущим нет, и в их формулировках мы не найдем упоминаний о том, что одно событие может «вызвать» другое или что мы можем «выбирать», как нам действовать в будущем, несмотря на то что свои поступки в прошлом изменить уже невозможно. Получается, что без гипотезы о прошлом мы попросту не в состоянии осмыслить окружающий мир, и все же она отвечает далеко не на все вопросы.

Демон Максвелла

Давайте немного отвлечемся и снова вернемся к песочнице для мысленных экспериментов – кинетической теории XIX века. В конечном итоге это приведет нас к пониманию связи между энтропией и информацией, что, в свою очередь, прольет наконец-то свет на проблему памяти.

Самым известным мысленным экспериментом в области термодинамики, вероятно, остается демон Максвелла. Джеймс Клерк Максвелл предложил своего демона – куда более знаменитого, чем демон Лапласа, и по-своему не менее пугающего – в 1867 году, когда гипотезу о существовании атомов только-только начали применять к проблемам термодинамики. Первая работа Больцмана на эту тему вышла в свет лишь в 1870-х годах, поэтому у Максвелла не было возможности сослаться на определение энтропии в контексте кинетической теории. Но ему была известна формулировка второго начала термодинамики, предложенная Клаузиусом: при взаимодействии двух систем теплота перетекает от более горячей к более холодной, что в итоге приводит к выравниванию температур. Также Максвелл достаточно хорошо разбирался в том, что такое атомы, чтобы понимать, что «температура» представляет собой меру их средней кинетической энергии. Однако благодаря своему демону он сумел придумать способ, как увеличить разницу между температурами систем без привлечения дополнительной энергии, – очевидно, в нарушение второго начала термодинамики.

Схема проста: речь идет о том же самом контейнере с перегородкой, который нам уже давно стал близким и родным. Но вместо небольшого отверстия, через которое молекулы могут случайным образом пролетать в ту или другую сторону, перегородка оснащена крохотной дверцей – такой маленькой и легкой, что, для того чтобы открыть или закрыть ее, не приходится прилагать никаких сколько-нибудь заметных усилий. У дверцы сидит демон, наблюдающий за всеми молекулами по обе стороны от перегородки. Если справа к дверце приближается быстро движущаяся молекула, демон пропускает ее на левую половину; если медленная молекула подлетает слева, то демон пропускает ее на правую половину. Однако если медленная молекула приближается к дверце справа или быстрая слева, то демон запирает дверцу и не позволяет им перелететь на противоположную сторону перегородки.

Совершенно очевидно, к чему это все в итоге приведет: постепенно и без каких-либо затрат энергии молекулы, обладающие высокой энергией, соберутся в левой половине контейнера, а молекулы с низкой энергией скопятся справа. Если в самом начале слева от перегородки у вещества была такая же температура, как и справа, то со временем эти величины начнут расходиться: в левой половине будет становиться все горячее, а правая половина начнет остывать. Однако это же прямое нарушение формулировки второго начала термодинамики, предложенной Клаузиусом! Что же здесь происходит?

Если система из высокоэнтропийного состояния с одинаковой температурой газа во всем объеме контейнера гарантированно переходит в низкоэнтропийное (то есть события развиваются по такому сценарию для любого начального состояния, а не только для некоторых, подвергшихся тонкой настройке), то это означает, что мы имеем дело с ситуацией, в которой количество возможных начальных состояний во много раз превышает количество конечных. Но это попросту невозможно, если мы говорим о динамических законах, которые сохраняют информацию и обладают свойством обратимости. Даже представить себе нельзя, что все эти разнообразные первоначальные состояния смогут уместиться в крохотном пространстве конечных состояний. Определенно, это чем-то компенсируется: пока энтропия газа уменьшается, где-то еще энтропия возрастает. И при таком раскладе единственным местом, где мы могли бы наблюдать возрастающую энтропию, остается сам демон.

Однако как же это работает? Ведь с энтропией демона вроде бы ничего не происходит: он как сидел тихо-спокойно в начале эксперимента, наблюдая за газом и пропуская через перегородку контейнера только подходящие молекулы, так и продолжает заниматься этим в конце – все так же тихо и спокойно. Поразительно, но ученым потребовалось громадное количество времени – больше века, – чтобы понять, с какой точки зрения в действительности следует рассматривать эту проблему. Критическую связь между информацией, собираемой демоном, и его энтропией сумели обнаружить венгерско-американский физик Лео Силард и физик из Франции Леон Бриллюэн (ученые, которые впервые в истории применили новую теорию – квантовую механику – для решения задач, представляющих практический интерес). Однако лишь благодаря вкладу двух физиков и специалистов по вычислительной технике, трудившихся в IBM, – Рольфа Ландауэра (1961) и Чарльза Беннетта (1982) – стало окончательно понятно, почему в соответствии со вторым началом термодинамики энтропия демона просто не может не увеличиваться.[155]


Вечность. В поисках окончательной теории времени

Рис. 9.2. Пропуская высокоэнергичные молекулы справа налево и низкоэнергичные молекулы слева направо, демон Максвелла заставляет теплоту перетекать от холодной системы к горячей, явно нарушая второе начало термодинамики


Записываем и стираем

Многие попытки разгадать загадку демона Максвелла концентрировались на способах измерения скоростей молекул, пролетающих мимо него. Ландауэр и Беннетт сделали огромный концептуальный скачок вперед, изучив вопрос о том, каким образом демон записывает эту информацию. В конце концов, демону необходимо запоминать – хотя бы на микросекунду, – какие молекулы он должен пропустить на другую сторону, а перед какими дверцу открывать нельзя. Если бы демон просто с самого начала знал, какие молекулы какими скоростями обладают, ему бы вообще не пришлось измерять скорости; следовательно, суть проблемы кроется не в процессе измерения.

Таким образом, мы должны снабдить демона каким-то средством для фиксации скоростей молекул – возможно, он носит с собой блокнотик, а мы для удобства рассуждений вообразим, что места в этом блокнотике достаточно, чтобы записать всю необходимую информацию. (От того, будем мы рассматривать большие или маленькие блокноты, ничего не изменится; главное, чтобы блокнот не был бесконечно большим.) Это означает, что состояние блокнота тоже следует учитывать при вычислении энтропии полной системы, состоящей из газа и демона. В частности, в самом начале листы блокнота должны быть чистыми и готовыми к тому, чтобы демон записывал на них скорости молекул.

Однако пустой блокнот представляет собой не что иное, как низкоэнтропийное граничное условие в прошлом. Это всего лишь гипотеза о прошлом, только в ином обличии – соответствующем миру демона Максвелла. Таким образом, если это действительно так, то энтропия полной системы газ/Демон изначально совсем не так высока, как принято было считать. И демон не уменьшает энтропию объединенной системы; он всего лишь переносит ее из одного места в другое, одновременно меняя и состояние газа, и состояние блокнота.

Этот аргумент может показаться некоторым читателям безосновательным. Действительно, разве не может демон взять и стереть записи в блокноте после того, как дело сделано? И тогда блокнот вернется в первоначальное состояние, а энтропия газа уменьшится.

Именно в этом и кроется суть озарения Ландауэра и Беннета: нельзя просто так взять и стереть записи в блокноте. По крайней мере, невозможно стереть информацию, если вы являетесь частью замкнутой системы, живущей в соответствии с обратимыми динамическими законами. В такой формулировке результат становится вполне достоверным: если бы информацию можно было бесследно уничтожать, то как бы мы могли восстановить историю вплоть до какого-то предыдущего состояния? Если в системе можно стирать информацию, то это означает, что либо фундаментальные законы необратимы – и тогда наличие демона, умеющего уменьшать энтропию, не должно никого удивлять, либо система на самом деле не замкнута. В последнем случае «уничтожение информации» является процессом переноса энтропии во внешний мир. (В случае стирания настоящих записей карандашом в реальном мире энтропия в основном принимает форму тепла, пыли и крохотных ошметков ластика.)

В конечном итоге возможны два варианта: либо демоническая версия гипотезы о прошлом (у демона в самом начале в руках чистый блокнот, обладающий низкой энтропией, и демон переносит энтропию газа в блокнот), либо процесс переноса энтропии во внешний мир, необходимый для того, чтобы стирать информацию в блокноте. В любом случае можно перевести дыхание: второе начало термодинамики в безопасности. И кстати, в ходе расследования мы неожиданно открыли дверь в захватывающий мир взаимосвязей между информацией и энтропией.

Информация – физическая величина

Несмотря на то что, обсуждая динамические законы физики, мы то и дело произносили слово «информация» – обратимые законы сохраняют информацию, само это понятие все так же кажется несколько абстрактным по сравнению с беспорядочным миром энергии, тепла и энтропии. Один из уроков, которые преподает нам демон Максвелла, заключается в том, что это мнение ошибочно. Информация – физическая величина. А именно благодаря наличию информации мы можем заставлять систему производить полезную работу, которая в противном случае была бы нам недоступна.

Лео Силард наглядно продемонстрировал это на упрощенной модели демона Максвелла. Вообразите, что в контейнере с газом содержится одна-единственная молекула; следовательно, «температура» представляет собой всего лишь энергию этой одинокой молекулы газа. Если это вся информация, которой мы обладаем, то заставить молекулу произвести полезную работу у нас не получится; она хаотично летает от стенки к стенке, как камешек в жестяном ведре. Однако теперь представьте себе, что у нас появилась дополнительная информация: нам известно, в какой половине контейнера находится молекула – в правой или в левой. Основываясь на этом знании и применив хитрые манипуляции, возможные лишь в мысленном эксперименте, мы можем заставить молекулу работать. Для этого нам нужно просто-напросто быстренько вставить поршень в противоположную половину контейнера. Молекула врежется в поршень и нажмет на него, а мы используем движение поршня для выполнения полезной работы, например поворота маховика.[156]

Обратите внимание на то, какую важную роль в эксперименте Силарда играет информация. Если бы мы не знали, в какой половине контейнера находится молекула, то не догадывались бы, в какую половину нужно вставить поршень. Если бы мы случайным образом выбирали, в какую половину контейнера вставить поршень, то в половине случаев он бы выталкивался наружу, а в половине – затягивался внутрь. В среднем никакой полезной работы бы не производилось. Информация, которой мы обладаем, позволила нам извлечь энергию из системы, и так, казалось бы, находящейся на максимальном уровне энтропии.

Повторю еще раз, чтобы ни у кого не оставалось сомнений: ни в одном из этих мысленных экспериментов мы не нарушили второе начало термодинамики. Да, эти эксперименты выглядят так, будто мы действительно нашли способ нарушить этот физический закон, – но стоит принять во внимание критически важную роль информации, как все становится на свои места. Информация, которую собирает и обрабатывает демон, должна каким-то образом учитываться в любой согласованной и непротиворечивой истории, включающей энтропию.

Конкретная связь между энтропией и информацией была установлена в 1940-х Клодом Шэнноном, инженером и математиком, трудившимся в «Bell Labs».[157] Одна из задач, которую решил Шэннон, состояла в поиске эффективных и надежных способов отправки сигналов по зашумленным каналам. Он высказал идею о том, что одни сообщения несут эффективно больше информации, чем другие, просто потому, что они более «удивительные» или неожиданные. Если я скажу, что солнце завтра взойдет на востоке, то не передам вам никакой особой информации, потому что этот факт и так уже был вам известен. Однако если я скажу, что завтра максимальная температура составит ровно 25 °C, то это уже будет сообщение, содержащее больший объем информации, потому что без этого вы бы не знали, какую точно температуру ожидать завтра.

Шэннон нашел способ, как формализовать эту интуитивную идею об эффективном информационном наполнении сообщения. Предположим, что мы рассматриваем набор из всех возможных сообщений определенного типа, которые мы могли бы получить (правда же, это навевает воспоминания о «пространстве состояний», с которым мы работали при обсуждении физических систем, а не сообщений?). Например, если речь идет о результатах подбрасывания монеты, то возможных сообщений только два: «орел» или «решка». До того как мы получаем сообщение, оба варианта одинаково вероятны; тот факт, что мы получаем сообщение, означает, что мы узнаем ровно один бит информации.

Если же, с другой стороны, нам рассказывают о максимальной температуре завтра днем, то набор возможных сообщений становится куда больше: скажем, это может быть любое целое число от –273 и до плюс бесконечности, представляющее собой температуру, выраженную в градусах Цельсия (температура –273 °C соответствует абсолютному нулю). Однако не все эти варианты одинаково вероятны. Летом в Лос-Анджелесе наиболее вероятна температура 27–28 °C, тогда как зафиксировать температуру –13 или +4324 °C относительно сложно. Узнав, что завтрашняя температура лежит в области этих «невероятных» значений, мы действительно получаем огромный объем информации (по всей видимости, связанной с какой-то глобальной катастрофой).

Грубо говоря, информационное наполнение сообщения возрастает по мере того, как вероятность получения данного сообщения уменьшается. Однако Шэннону хотелось большей конкретики в формулировках. В частности, он хотел показать, что если мы получим два сообщения, совершенно независимых друг от друга, то общая полученная информация будет равна сумме информации, извлеченной из каждого индивидуального сообщения. (Вспомните, что, когда Больцман разрабатывал свою формулу энтропии, одно из свойств, которые он стремился воспроизвести, заключалось в следующем: энтропия полной системы равна сумме энтропий подсистем.) Попробовав то и это, Шэннон выяснил, что самым правильным будет взять логарифм вероятности получения конкретного сообщения. В конечном итоге он пришел к такому результату: количество информации, содержащееся в сообщении, равно логарифму вероятности того, что сообщение примет данный вид, со знаком минус.

Многое из этого наверняка кажется вам удивительно знакомым, и это не случайность. Больцман связывал энтропию с логарифмом числа микросостояний в определенном макросостоянии. Однако с учетом принципа безразличия число микросостояний в макросостоянии очевидно пропорционально вероятности того, что одно из них будет случайным образом выбрано из всего пространства состояний. Низкоэнтропийное состояние аналогично удивительному, наполненному информацией сообщению, в то время как знание о том, что вы находитесь в высокоэнтропийном состоянии, не дает вам никакой особой информации. С учетом всего вышесказанного, если мы поставим в соответствие «сообщение» и макросостояние, в котором пребывает сейчас система, связь между энтропией и информацией будет очевидной: информация – это разность максимально возможной энтропии и фактической энтропии макросостояния.[158]

Есть ли у жизни смысл?

Неудивительно, что идеи о связи между энтропией и информацией приходят на ум сразу же, стоит нам начать рассуждать о взаимоотношениях между термодинамикой и жизнью. Нельзя сказать, что эти взаимоотношения так уж просты и очевидны; хотя в их наличии никто не сомневается, ученые все еще не пришли к общему мнению относительно того, что же такое «жизнь», не говоря уж о том, как все это работает. Эта область исследований находится сейчас в фазе активного развития, объединяя такие направления, как биология, физика, химия, математика, вычислительная техника и изучение сложных систем.[159]

Не пытаясь пока давать точное определение понятию «жизнь», мы можем обсудить вопрос, который логично было бы сформулировать следующим образом: имеет ли смысл такое понятие, как «жизнь», с термодинамической точки зрения? Сразу скажу, что ответ: «да». Но в истории науки можно было услышать и противоположные заявления, хотя, конечно, звучали они из уст не признанных и уважаемых ученых, а креационистов, целью которых было сбросить дарвиновскую теорию естественного отбора с пьедестала единственно верного объяснения эволюции жизни на Земле. Один из их аргументов основывается на неправильном толковании второго начала термодинамики, который они читают как «энтропия всегда увеличивается», делая вывод об универсальной тенденции к увеличению беспорядка и общему угасанию всех естественных процессов. Чем бы ни была жизнь, совершенно очевидно, что это сложная и хорошо организованная штука. Как же в таком случае ее можно увязать с естественной тенденцией к росту беспорядка?

Разумеется, никакого противоречия здесь нет. Из доводов креационистов совершенно четко следует, что и существование холодильников невозможно; следовательно, эти доводы попросту неверны. Второе начало термодинамики не говорит нам, что энтропия всегда увеличивается. Согласно этому закону, энтропия всегда увеличивается (или остается постоянной) в замкнутой системе – системе, которая никак заметно не взаимодействует с внешним миром. Совершенно очевидно, что жизнь не может быть замкнутой системой; живые организмы находятся в непрерывном взаимодействии с внешним миром. Это эталоны открытых систем! Вот, собственно, и всё – на этом вопрос можно закрыть и продолжать жить своей жизнью.

Однако существует и другая, более замысловатая версия этого креационистского аргумента, которая звучит уже совсем не так глупо. Несмотря на то что она также абсолютно неверна, полезно рассмотреть ее, для того чтобы понять, где именно кроется ошибка. Этот изощренный довод базируется на количественных оценках: разумеется, живые существа представляют собой открытые системы, поэтому теоретически они могут где-то уменьшать свою энтропию при условии, что в другом месте она будет увеличиваться. Однако как узнать, что увеличения энтропии во внешнем мире достаточно, чтобы отчитаться за низкую энтропию живых существ?


Вечность. В поисках окончательной теории времени

Рис. 9.3. Мы получаем энергию от Солнца в концентрированной низкоэнтропийной форме, а излучаем обратно во Вселенную в рассеянном, высокоэнтропийном виде. На каждый получаемый Землей высокоэнергетичный фотон приходится 20 излучаемых обратно низкоэнергетичных фотонов


Как я уже упоминал во второй главе, Земля и ее биосфера – это системы, которые находятся очень далеко от термического равновесия. Условие термического равновесия означает, что температура одинакова повсюду, но если мы посмотрим вверх, то увидим очень горячее Солнце на, в целом, весьма холодном небе. Возможностей для увеличения энтропии предостаточно, и это очевидно. Но для наглядности давайте все же проверим реальные цифры.[160]

Энергетический баланс Земли, если рассматривать ее как единую систему, очень прост. Мы получаем энергию излучения Солнца, а затем теряем тот же самый объем энергии. Точно так же, посредством излучения, он уходит в открытый космос. (В действительности эти две величины не совсем равны; такие процессы, как ядерные распады, тоже нагревают Землю и приводят к утечке энергии в космос, а скорость излучения, строго говоря, не постоянна. И все же это весьма точное приближение.) Однако, несмотря на то что энергия остается постоянной, получаемый и отдаваемый потоки энергии кардинальным образом различаются по своим качественным характеристикам. Вспомните, что в добольцмановские времена энтропию понимали как меру полезности определенного объема энергии; низкоэнтропийные формы энергии можно использовать для совершения полезной работы, такой как приведение в действие двигателя или перемалывание зерна в муку, тогда как с высокоэнтропийными формами ничего особенного сделать не получится.

От Солнца мы получаем энергию в низкоэнтропийной, полезной форме, а энтропия энергии, которую мы излучаем обратно в космическое пространство, намного больше. Температура Солнца примерно в 20 раз выше средней температуры Земли. Что касается излучения, то температура – это всего лишь средняя энергия фотонов, из которых оно состоит, поэтому Земле приходится излучать 20 низкоэнергетичных фотонов (с большой длиной волны – инфракрасных) на каждый полученный высокоэнергетичный фотон (с малой длиной волны – в видимом диапазоне). Простые математические расчеты демонстрируют, что «в 20 раз больше фотонов» – это то же самое, что «энтропия в 20 раз больше». Земля излучает тот же объем энергии, что приходит к ней от Солнца, но энтропия этой энергии в 20 раз больше.

Самое сложное здесь – разобраться, что в действительности имеется в виду под «низкоэнтропийностью» жизненных форм здесь, на Земле. Как провести границу? Ответ на этот вопрос существует, и даже не один, но добраться до него совсем непросто. К счастью, можно срезать путь. Рассмотрим всю биомассу Земли – все молекулы, составляющие все существующие живые организмы, к какому бы типу они ни принадлежали. Несложно вычислить максимальную энтропию, которой мог бы обладать этот набор молекул при условии термического равновесия. Подставив реальные значения (биомасса 1015 килограммов; температура Земли 255 кельвинов), получаем ответ: максимальная энтропия равна 1044. Сравним это значение с нулем – минимальной энтропией, которой могла бы обладать биомасса (если бы она находилась в каком-то одном исключительном состоянии).

Таким образом, самое большое потенциальное изменение энтропии, которое может потребоваться для приведения абсолютно беспорядочного набора молекул размером с нашу биомассу к любой другой конфигурации, включая нашу текущую экосистему, равно 1044. Если эволюция жизни происходит в соответствии со вторым началом термодинамики, то за этот период Земля выработала больше энтропии (путем преобразования высокоэнергетичных фотонов в низкоэнергетичные), чем уменьшила в ходе создания жизни. Значение 1044, несомненно, представляет собой более чем щедрую оценку – нам совершенно не нужно производить такой объем энтропии. Однако если мы можем создать столько энтропии, значит, со вторым началом термодинамики все в порядке.

Как много времени потребуется на создание такого объема энтропии путем преобразования полезной солнечной энергии в бесполезную излученную теплоту? Расчеты, принимающие во внимание температуру Солнца и т. п., позволяют дать следующий ответ: около одного года. Если ударно поработать, то за год мы могли бы из неопределенной массы размером со всю биосферу сформировать систему с такой низкой энтропией, какую только можно вообразить. В действительности же эволюция жизни продолжалась миллиарды лет, и общая энтропия системы «Солнце + Земля (включая жизнь) + ушедшее излучение» весьма заметно увеличилась. Таким образом, второе начало термодинамики идеально согласуется с жизнью как мы ее знаем, – хотя, уверен, вы в этом нисколько не сомневались.

Жизнь в движении

Приятно осознавать, что жизнь не нарушает второе начало термодинамики. Но также неплохо было бы окончательно разобраться в вопросе, что же такое «жизнь». Ученые пока не пришли к единственно верному определению, тем не менее существует ряд свойств, которые традиционно связывают с живыми организмами: сложность, организация, метаболизм, обработка информации, репродукция, реакция на стимулы, старение. Сложно сформулировать набор критериев, с помощью которого можно было бы безошибочно отделять живых существ – водоросли, земляных червей, домашних кошек – от сложных неживых объектов, таких как лесные пожары, галактики, персональные компьютеры. И все же мы можем проанализировать некоторые характерные признаки того, что принято считать жизнью, рассматривая их в контексте живого и неживого.

Одна из самых знаменитых попыток разложить по полочкам понятие жизни с физической точки зрения была предпринята в книге What Is Life? («Что такое жизнь?») небезызвестного Эрвина Шрёдингера. Шрёдингер считается одним из основоположников квантовой теории; именно его уравнение пришло на смену ньютоновским законам движения для динамического описания мира при переходе от классической механики к квантовой. Также он автор знаменитого мысленного эксперимента под названием «кот Шрёдингера», цель которого – подчеркнуть отличие нашего непосредственного восприятия мира от формальной структуры квантовой теории.

После прихода к власти нацистов Шрёдингеру пришлось покинуть Германию. Однако, несмотря на присужденную в 1933 году Нобелевскую премию, ему оказалось очень непросто найти новое место для постоянного проживания – в основном из-за весьма насыщенной личной жизни (его жена Аннемари знала о наличии у него любовниц, и у нее самой также было несколько романов «на стороне»; в то время Шрёдингер находился в интимных отношениях с Хильде Марх, женой одного из своих помощников, которая впоследствии родила ему ребенка). В конце концов он обосновался в Ирландии, где стал одним из основателей Дублинского института перспективных исследований.

В Ирландии Шрёдингер прочитал курс публичных лекций, которые затем были опубликованы в форме небольшой книги под названием What Is Life?. Феноменом жизни он интересовался с точки зрения ученого-физика, в частности эксперта по квантовой и статистической механике. Вероятно, наиболее примечательной идеей среди высказанных в этой публикации была догадка Шрёдингера о том, что стабильность генетической информации с течением времени легче всего объяснить, постулируя существование некоего «апериодического кристалла», сохраняющего информацию в своей химической структуре. Эта догадка вдохновила Фрэнсиса Крика на смену области деятельности: оставив физику, он занялся молекулярной биологией; ему, а также биологу Джеймсу Уотсону принадлежит слава открытия двойной спирали ДНК.[161]

Также Шрёдингер пытался найти определение «жизни». Он даже высказал вполне конкретное предположение – правда, в довольно небрежном и неформальном стиле, вследствие чего оно не было воспринято с той серьезностью, которой, несомненно, заслуживает:

Что является характерной чертой жизни? Когда мы говорим про кусок материи, что он живой? Когда он продолжает «делать что-либо», двигаться, обмениваться веществами с окружающей средой и т. д., – и все это в течение более долгого времени, чем по нашим ожиданиям мог бы делать неодушевленный кусок материи при подобных же условиях.[162]

Разумеется, это довольно расплывчатое высказывание: что именно подразумевается под «делать что-либо», как долго следует «ожидать», что это действо будет продолжаться, и что считать «подобными же условиями»? Помимо этого, в данном определении ни слова не говорится об организации, сложности, обработке информации или о чем-то подобном.

Тем не менее в идее Шрёдингера содержится важный намек на то, чем жизнь отличается от не-жизни. Где-то в подсознании у него наверняка крутилась версия второго начала термодинамики, сформулированная Клаузиусом: если объекты находятся в тепловом контакте, их температуры усредняются (система стремится к термодинамическому равновесию). Если поместить кубик льда в стакан с теплой водой, он довольно быстро растает. Даже если два объекта сделаны из совершенно разных материалов – скажем, мы кладем в стакан воды пластиковый «кубик льда», их температуры все равно сравняются. Неживые физические объекты вообще стремятся к снижению активности – они хотят лежать и ничего не делать. Во время лавины камень может катиться по склону горы, но вскоре он достигнет подножия, растратив всю энергию на создание шума и тепла, и полностью остановится.

В действительности Шрёдингер имел в виду, что для живых организмов этот процесс перехода к состоянию неподвижности может продолжаться намного дольше, даже быть бесконечным. Представьте себе, что вместо кубика льда мы поместили в стакан с водой золотую рыбку. В отличие от кусочка льда (неважно, сделанного из воды или пластика) золотая рыбка «придет в равновесие» с водой далеко не сразу – точно не в течение нескольких минут или даже часов. Она останется живым существом, которое будет что-то делать, плавать туда и сюда, обмениваясь веществами с окружающей ее средой. Если же мы выпустим рыбку в озеро или аквариум с изобилием пищи, то этот процесс растянется на еще более долгое время.

В этом, по мнению Шрёдингера, и заключается суть жизни: отсрочить естественное стремление прийти к равновесию с окружающей средой. На первый взгляд большинство свойств, которые мы традиционно ассоциируем с жизнью, в этом определении отсутствуют. Однако если мы задумаемся, почему организмы способны делать что-то в течение длительного времени после того, как неживые объекты остановятся и успокоятся, – почему золотая рыбка продолжает плавать, хотя кубик льда давно растаял, то немедленно придем к таким свойствам живых существ, как сложность и способность обрабатывать информацию. Способность организма «что-то делать» на протяжении долгого времени – это внешний признак жизни, однако механизм, стоящий за этой способностью, представляет собой деликатное взаимодействие множества уровней иерархической структуры.

И все же хотелось бы иметь возможность оперировать более конкретными понятиями. Когда мы говорим: «живые существа – это объекты, которые продолжают “что-то делать” намного дольше, чем можно было бы ожидать, а происходит это, потому что они очень сложные», все вроде бы понятно, но в то же время очевидно, что это далеко не конец истории. К сожалению, это чрезвычайно запутанная история, ученые пока до конца в ней не разобрались. Определенно, энтропия играет огромную роль в природе жизни, но существуют и другие важные аспекты, не связанные с энтропией. Энтропия – характеристика состояния в данный момент времени, а основополагающие свойства жизни включают процессы, которые происходят на протяжении какого-то промежутка времени. Само по себе понятие энтропии оказывает лишь грубое влияние на эволюцию с течением времени: она либо возрастает, либо остается неизменной, но никогда не уменьшается. Во втором начале термодинамики ничего не говорится о том, как быстро энтропия будет расти и каким образом она это будет делать, – он посвящен Существующему, а не Возникающему.[163]

Как бы то ни было, даже если забыть о попытках ответить на все возможные вопросы о том, что же считать «жизнью», в существовании одного понятия, играющего важнейшую роль во всем этом, сомнений не остается. Это понятие свободной энергии. Шрёдингер вскользь упоминал о ней в первом издании книги «Что такое жизнь?», а в последующих редакциях добавил примечание, в котором выражал сожаление, что не придал ей большего значения. Идея свободной энергии помогает связать вместе энтропию, второе начало термодинамики, демона Максвелла и способность живых существ продолжать «что-то делать» дольше, чем неживые.

Свободная энергия, а не свободный доступ к пивному крану

В последние годы популярность такой научной области, как биологическая физика, значительно возросла. Без сомнения, это очень хорошо: биология важна, и физика важна, и на стыке этих двух наук возникает множество важных и интересных проблем. Однако также неудивительно, что на всем протяжении своего существования эта область оставалась относительно неразвитой. Если взять и сравнить учебники начального уровня по физике и биофизике, вы сразу же заметите, как сильно различается используемая терминология.[164] Учебники по физике для начинающих изобилуют такими словами, как «сила», «импульс» и «сохранение», тогда как для книг по биофизике более характерны термины «энтропия», «информация» и «диссипация».

Различия в терминологии – это лишь отражение абсолютной непохожести двух подходов. С тех самых пор, как Галилей впервые предложил игнорировать сопротивление воздуха при изучении падения объектов в гравитационном поле, физика продолжает исповедовать принцип минимализма, пренебрегая трением, рассеянием, шумом и всем остальным, что способно невзначай отвлечь нас от неприкрытого проявления сути простых микроскопических динамических законов. В биологической физике такой подход недопустим: игнорируя трение, вы игнорируете саму жизнь. Действительно, существует даже заслуживающее серьезного рассмотрения альтернативное определение жизни: «жизнь – это организованное трение».

Вы наверняка думаете, что здесь кроется какая-то ошибка. Ведь жизнь нацелена на поддержание структуры и организации, а трение создает энтропию и беспорядок. На самом деле обе точки зрения в какой-то мере отражают истину. Жизнь занимается тем, что создает энтропию в одних местах, для того чтобы обеспечить структуру и организацию в других. Это урок, который нам преподал демон Максвелла.

Давайте попробуем разобраться, что же это может означать. В главе 2, обсуждая второе начало термодинамики, мы упомянули о различии между «полезной» и «бесполезной» энергией: полезную энергию можно преобразовать в какую-нибудь работу, тогда как бесполезная энергия попросту бесполезна. Одним из вкладов Джозайи Уилларда Гиббса была формализация этих понятий путем ввода новой величины, которую он назвал свободной энергией. Шрёдингер не использовал этот термин в своих лекциях, так как беспокоился о его возможной двусмысленности: то, что энергия «свободна», не означает, что ее можно просто взять и использовать, ничего не отдавая взамен; это означает, что она доступна для преобразования ее в работу и достижения какой-то цели[165] («свобода слова», а не «свободный доступ к пивному крану», как любит говорить гуру свободного программного обеспечения Ричард Столлман). Гиббс понял, что понятие энтропии позволяет точно поделить полный объем энергии на полезную энергию, которую он назвал «свободной», и бесполезную:[166]

полная энергия = свободная энергия + бесполезная (высокоэнтропийная) энергия.

Когда физический процесс создает энтропию в системе с фиксированной полной энергией, он расходует свободную энергию. Как только запасы свободной энергии заканчиваются, устанавливается равновесие.

Это один из способов, как можно представлять себе суть живых организмов: они поддерживают порядок в своем локальном окружении (включая собственные тела), пользуясь преимуществами свободной энергии, и своими действиями превращают свободную энергию в бесполезную. Если поместить золотую рыбку в контейнер с водой, где больше ничего нет, то она сохранит свою структуру (далекую от равновесия с окружающей средой) намного дольше, чем был бы способен кубик льда; однако в конечном итоге она умрет от голода. Однако если мы покормим рыбку, то она проживет еще дольше. С физической точки зрения еда – это банальный источник свободной энергии, которой живой организм может воспользоваться, чтобы поддержать свой метаболизм.

Получается, что демон Максвелла (вместе со своим контейнером с газом) являет собой превосходную парадигму того, как работает жизнь. Рассмотрим чуть более сложную версию истории демона. Возьмем контейнер с газом, разделенный перегородкой, и внедрим его в «среду», которую мы смоделируем в форме сколь угодно большого объема вещества, пребывающего при постоянной температуре, – физики называют это тепловой баней. (Смысл в том, что среда настолько велика, что взаимодействие с интересующей нас маленькой системой, в данном случае с контейнером газа, никак не повлияет на ее собственную температуру.) Несмотря на то что молекулы газа остаются внутри контейнера, тепловая энергия способна передаваться изнутри наружу и снаружи внутрь; следовательно, если демон примется эффективно разделять газ на «холодную половину» и «горячую половину», температура в контейнере немедленно начнет выравниваться из-за взаимодействия с окружающей средой.

Мы считаем, что демон стремится к тому, чтобы в этом конкретном контейнере равновесие не наступило; он прилагает все усилия для сохранения высокой температуры в левой части сосуда и низкой температуры в его правой части (обратите внимание на то, что мы сделали демона главным героем, а не главным злодеем этой истории). Таким образом, он занимается привычной сортировкой молекул в зависимости от их скоростей, но теперь он вынужден заниматься этим постоянно, ведь в противном случае каждая из половин контейнера придет в равновесие с окружающей средой. Мы уже знаем из предыдущего обсуждения, что демон не может выполнять сортировку, не оказывая воздействия на внешний мир; процесс стирания записей в конечном итоге создает энтропию. Следовательно, демону требуется бесконечный источник свободной энергии. Он берет свободную энергию («еду») и использует ее для стирания записей, производя, таким образом, энтропию и превращая свободную энергию в бесполезную. Бесполезная энергия затем выбрасывается в форме тепла (или чего-то еще). Стерев все записи в блокноте, демон снова готов поддерживать в своем контейнере состояние, далекое от равновесного, – по крайней мере, до тех пор, пока блокнот снова не наполнится записями, и тогда цикл опять повторится.

Эта прелестная зарисовка, разумеется, не дает полного описания того, что мы подразумеваем под идеей жизни, но все же позволяет уловить суть. Жизнь стремится к поддержанию порядка, несмотря на требования второго начала термодинамики, будь то фактическое тело живого организма, его психическое состояние или деяния Озимандии. Делает она это вполне конкретным образом: уменьшая свободную энергию во внешнем мире. И все это ради того, чтобы держаться как можно дальше от термодинамического равновесия. Как мы уже убедились, эта деятельность тесно связана с идеей обработки информации. Выполняя свою работу, демон преобразует свободную энергию в информацию о молекулах в контейнере, которую затем использует для предотвращения выравнивания температур в двух половинах сосуда. На самом базовом уровне назначение жизни заключается в том, чтобы выжить: организм стремится к обеспечению бесперебойной работы своей сложной структуры.[167] Свободная энергия и информация – это ключи к достижению данной цели.


Вечность. В поисках окончательной теории времени

Рис. 9.4. Демон Максвелла как парадигма жизни. Демон поддерживает порядок – разные температуры в разных половинах контейнера, несмотря на воздействие окружающей среды. С этой целью он обрабатывает информацию посредством преобразования свободной энергии в высокоэнтропийное тепло


С точки зрения естественного отбора существует масса причин, почему сложные устойчивые структуры могут оказаться предпочтительны в процессе адаптации; например, глаз – сложная структура, несомненно, вносящая неоценимый вклад в здоровье организма. Однако чем сложнее структуры, тем большие объемы свободной энергии приходится превращать в тепло только для того, чтобы поддерживать их невредимыми и функциональными. Такая картина взаимосвязи энергии с информацией позволяет дать логичный прогноз: чем более сложным будет становиться организм, тем более неэффективно он будет использовать энергию для «рабочих» целей – простых механических операций, таких как бег и прыжки. В то же время он будет тратить много энергии на «профилактику», то есть поддержание механизмов в хорошем рабочем состоянии. Выясняется, что это на самом деле так; что касается реальных биологических организмов, то чем они сложнее, тем менее эффективно расходуют свою энергию.[168]

Сложность и время

Взаимосвязь энтропии, информации, жизни и стрелы времени порождает массу интересных тем для исследования, которым, к сожалению, мы не сможем уделить внимание в этой книге: эволюция, смертность, мышление, сознание, социум и бесчисленное множество других. Для того чтобы обсудить все эти вопросы, потребовалась бы отдельная книга, а у нас сейчас иные цели. Однако прежде чем вернуться на относительно твердую почву традиционной статистической механики, давайте рассмотрим еще один гипотетический вопрос. Впрочем, не исключено, что новые исследования в ближайшем будущем смогут пролить на него свет.

По мере развития Вселенной энтропия увеличивается. Это очень простая зависимость: в начале времен, сразу после Большого взрыва, энтропия была очень низкой, но с тех пор она выросла и продолжит расти в будущем. Однако, грубо говоря, помимо энтропии для описания состояния Вселенной в любой момент времени мы можем использовать такую величину, как сложность, – или противоположность сложности, то есть простоту. А изменение сложности со временем происходит совсем не так прямолинейно, как изменение энтропии.

Дать количественную оценку сложности физической ситуации можно разными способами, но одна характеристика завоевала наибольшую популярность: это колмогоровская сложность, или алгоритмическая сложность.[169] Данная величина формализует наше интуитивное представление о том, что простую ситуацию просто описывать, а сложную ситуацию описать сложно. Количественной оценкой сложности описания ситуации может служить длина самой короткой из всех возможных компьютерных программ (на определенном языке программирования), выдающих описание данной ситуации. Колмогоровская сложность представляет собой всего лишь длину такой максимально короткой компьютерной программы.

Рассмотрим две строки, содержащие цифры; длина каждой строки составляет ровно миллион символов. В первой строке место каждого символа занимает восьмерка – другие цифры отсутствуют. Вторая строка представляет собой какую-то последовательность разнообразных цифр, в которой невозможно выделить повторяющийся шаблон:

88888888888888888888…

60462491123396078395…

Первая строка проста, и она характеризуется низкой колмогоровской сложностью. Суть в том, что эту последовательность могла бы сгенерировать программа, состоящая из одной команды: «напечатать цифру 8 миллион раз». С другой стороны, во второй строке мы имеем дело со сложной последовательностью. Любая программа, печатающая данную строку, должна содержать не менее миллиона символов, так как единственный способ описать эту строку – непосредственно указать каждую цифру. Это определение сложности удобно использовать для таких чисел, как π или квадратный корень из двух: на первый взгляд они чрезвычайно сложны, однако в обоих случаях вычислить их с любой желаемой точностью можно с помощью довольно простой программы, так что колмогоровская сложность этих чисел низка.

У ранней Вселенной была низкая сложность, потому что ее очень легко описать. Это было горячее, плотное состояние частиц, крайне однородное на больших масштабах, расширяющееся с определенной скоростью и включающее некоторый (поддающийся простому определению) набор разбросанных тут и там крохотных возмущений плотности. Если не вдаваться в детали, то это и есть полное описание ранней Вселенной, больше о ней сказать особо нечего. В далеком будущем сложность Вселенной снова станет низкой: это будет пустое пространство, содержащее разреженную и продолжающую разрежаться кашицу из отдельных частиц. Но между этими моментами – например, прямо сейчас – все выглядит чрезвычайно сложным. Даже после макроскопического огрубления невозможно найти простой способ описания иерархических структур, которые составляют газ, пыль, звезды, галактики и кластеры, не говоря уже о вещах, происходящих на гораздо более мелком масштабе, таких как наша экосистема здесь, на Земле.

Таким образом, хотя энтропия Вселенной с течением времени всегда только увеличивается, сложность ведет себя намного интереснее: сначала она находилась на низком уровне, затем возросла до относительно высокого, а после этого снова снизится. Но почему так происходит? И какие следствия имеет такой путь эволюции? В голове сразу начинает тесниться масса вопросов. При каких обстоятельствах сложность начинает возрастать и каковы условия ее падения? Всегда ли такое поведение наблюдается при изменении энтропии от низкой до высокой или же другие динамические свойства также играют важную роль? Является ли возникновение сложности (или «жизни») характерной чертой эволюции в присутствии градиентов энтропии? Насколько важен тот факт, что наша ранняя Вселенная была не только простой, но и низкоэнтропийной? Как долго сможет просуществовать жизнь после того, как Вселенная перейдет в простое, но высокоэнтропийное состояние?[170]

Цель науки – давать ответы на сложные вопросы, но также одна из ее задач – находить правильные вопросы. Однако в своих исследованиях проблемы жизни мы даже не можем быть уверены в том, что задаем правильные вопросы. У нас есть целый набор интригующих понятий, которые наверняка должны сыграть более или менее важную роль в поиске окончательного ответа: энтропия, свободная энергия, сложность, информация. И все же пока мы не в состоянии составить из них цельную картину. Ничего страшного; наука – это путешествие, в котором самое интересное происходит в пути, а не по прибытии.

Глава 10. Повторяющиеся кошмары

Природа – это длительная последовательность невообразимых катастроф.

Славой Жижек

В четвертой книге своего труда «Веселая наука», написанного в 1882 году, Фридрих Ницше предлагает мысленный эксперимент. Он просит читателя вообразить такой сценарий, при котором все, что случается во Вселенной, включая мельчайшие детали наших собственных жизней, однажды повторяется, и этот цикл воспроизводится снова и снова на протяжении вечности.

Представь себе, что однажды – днем или ночью – к тебе в твоем полнейшем уединении подкрался демон и говорил тебе: «Ту жизнь, которую ты ведешь теперь и которую прожил, тебе придется повторить еще раз и еще бесчисленное число раз; и не будет ничего нового, но все та же боль, все те же желания и мысли, и вздохи, и все невыразимо малые и великие события твоей жизни пройдут перед тобой в прежнем порядке и прежней последовательности – и этот паук, и этот лунный свет между деревьями, и этот миг, и я сам. Вечные песочные часы бытия будут снова и снова перевертываться, и ты с ними, пылинка из пылинок!»[171]

Интерес Ницше к бесконечно повторяющейся Вселенной носил по большей части этический характер. Он интересовался: как бы вам понравилась мысль о том, что ваша жизнь повторится бессчетное число раз? Погрузились бы вы в пучину тревоги и отчаяния – в тексте даже упоминается скрежетание зубами – от подобной ужасающей перспективы или же возликовали бы? Ницше полагал, что успешной можно назвать такую жизнь, которую вы бы с гордостью проживали в бесконечном цикле.[172]

Труд Ницше, разумеется, ни в коем случае не может считаться первоисточником идеи циклической Вселенной, или «извечного возвращения». Упоминания о ней то тут, то там встречаются во многих древних религиях: в греческой мифологии, индуизме, буддизме, некоторых аборигенных американских культурах. Колесо жизни вращается, история повторяется.

Однако вскоре после того, как Ницше предложил своего демона, идея извечного повторения проникла и в физику. В 1890 году Анри Пуанкаре доказал интригующую математическую теорему, в которой утверждается, что определенные физические системы непременно возвращаются к любой своей конфигурации бесконечное число раз – нужно лишь подождать достаточно долго. За этот результат ухватился молодой математик по имени Эрнст Цермело, заявивший, что данная идея несовместима с предложенным Больцманом выводом второго начала термодинамики на основе фундаментальных обратимых законов движения атомов.


Вечность. В поисках окончательной теории времени

Рис. 10.1. Анри Пуанкаре, пионер топологии, теории относительности и теории хаоса, позднее президент Бюро долгот


В 1870-х годах Больцман сражался с «парадоксом обратимости» Лошмидта. В противоположность этому 1880-е годы были относительно спокойным временем в истории развития статистической механики: Максвелл скончался в 1879 году, а Больцман, помимо продвижения своей научной карьеры, сосредоточил усилия на технических приложениях разработанного им формализма. Однако в 1890-х годах споры разгорелись снова – на этот раз в форме «парадокса повторения» Цермело. По сей день результаты этих споров так до конца и не приняты физиками; многие вопросы, поднятые Больцманом и его современниками, до сих пор остаются предметом жарких дискуссий ученых. В контексте современной космологии вопросы, связанные с парадоксом повторения, все еще остаются нерешенными.

Хаос Пуанкаре

Оскар II, король Швеции и Норвегии, родился 21 января 1829 года. В 1887 году шведский математик Гёста Миттаг-Лефлер подал королю идею отметить грядущее шестидесятилетие весьма необычным способом: устроив математическое соревнование, в котором участникам будут предложены на выбор четыре задачи. Приз получит тот, кто найдет самое оригинальное и творческое решение любой из них.

Одной из предложенных задач была «задача трех тел». В этой задаче требуется описать движение трех массивных объектов под влиянием взаимного гравитационного притяжения. (Для двух тел задача решается просто: еще Ньютон доказал, что планеты движутся по эллиптическим орбитам.) За эту задачу взялся Анри Пуанкаре, который в тридцать с небольшим лет уже считался одним из ведущих мировых математиков. Ему не удалось найти решение, однако он предоставил очерк, демонстрирующий одно критически важное свойство: орбиты этих планет стабильны. То есть, даже не зная точного решения, можно быть уверенным в том, что планеты по крайней мере будут вести себя предсказуемо. Метод Пуанкаре оказался настолько остроумным, что премию в итоге присудили именно ему, а его статья была подготовлена для публикации в новом журнале Миттага-Лефлера Acta Mathematica.[173]

Однако возникла небольшая загвоздка: Пуанкаре допустил ошибку. У Эдварда Фрагмена, одного из редакторов журнала, возникли некоторые вопросы относительно статьи, и в процессе поиска ответов Пуанкаре осознал, что при построении своего доказательства упустил один важный случай. Подобные малозаметные ошибки частенько закрадываются в сложные математические работы, и Пуанкаре взялся за исправление своего очерка. Но стоило ему потянуть за одну ниточку, как все доказательство разошлось по швам. В итоге Пуанкаре доказал утверждение, прямо противоположное исходному: орбиты трех тел совсем не были стабильными. Эти орбиты не только не являются периодическими – они даже примерно не описываются никаким регулярным поведением. Сегодня, благодаря существованию компьютеров, способных моделировать любое движение, подобный результат не кажется нам таким уж удивительным, но в то время это был настоящий шок. Начав с попытки доказать стабильность орбит планет, Пуанкаре пришел к чему-то совершенно иному: он изобрел теорию хаоса.

Однако история на этом не заканчивается. Миттаг-Лефлер, уверенный в том, что Пуанкаре без труда исправит свой удостоенный награды очерк, поторопился и напечатал его. К тому времени как Пуанкаре сообщил, что не стоит ждать никаких исправлений, журнал уже был отправлен крупнейшим математикам по всей Европе. Миттаг-Лефлер тут же телеграфировал в Берлин и Париж, приказывая уничтожить все копии журнала. В целом ему это удалось, но не без небольшого скандала в элитных математических кругах по всему континенту.

В ходе пересмотра своего доказательства Пуанкаре пришел к обманчиво простому и мощному результату, который сегодня известен под названием теоремы Пуанкаре о возвращении. Представьте себе, что у вас есть система, все составляющие которой движутся в какой-то ограниченной области пространства, как планеты, вращающиеся вокруг Солнца. Теорема о возвращении гласит, что если начиная с некоторой конфигурации эволюционировать систему в соответствии с законами Ньютона, то она гарантированно вернется к своей первоначальной конфигурации и будет делать это снова и снова, бесконечное число раз в будущем.

Кажется, что это довольно очевидно, и, возможно, никто даже не удивляется этому. Если мы с самого начала предполагаем, что все части нашей системы (планеты, вращающиеся вокруг Солнца, или молекулы, летающие туда и сюда внутри контейнера) связаны в ограниченном объеме, а промежуток времени мы рассматриваем бесконечный, то системе ничего не остается, кроме как возвращаться к одному и тому же состоянию бесчисленное количество раз. А куда ей деваться?

Однако в действительности все немного сложнее. Главная тонкость заключается в том, что число возможных состояний бесконечно, даже если сами объекты не убегают на бесконечность.[174] Круговая орбита заключена в конечном объеме, но сама она содержит бесконечное число точек; точно так же внутри контейнера с газом конечного объема существует бесконечно много точек пространства. В подобных случаях системы обычно не возвращаются в состояние, в точности совпадающее с исходным. Пуанкаре пришел к выводу о том, что в этом случае вполне достаточно «почти полного» совпадения. Если вы заранее объявите, насколько близкими должны быть два состояния, чтобы их можно было считать неразличимыми, то, согласно доказательству Пуанкаре, система будет бесконечно много раз оказываться близко к начальному состоянию.

Рассмотрим три планеты внутренней части Солнечной системы: Меркурий, Венеру и Землю. Венера совершает один оборот вокруг Солнца за 0,61520 года (примерно 225 дней), тогда как Меркурию для этого требуется 0,24085 года (около 88 дней). Взгляните на схему, изображенную на рис. 10.2. Мы начинаем наблюдение с конфигурации, когда все три планеты выстроились в прямую линию. Пройдет 88 дней, и Меркурий вернется к точке старта, однако Венера и Земля в это время будут находиться в каких-то других точках своих орбит. Однако если потратить на ожидание достаточно много времени, то они снова выстроятся в прямую линию – или линию, очень близкую к прямой. Скажем, через 40 лет эти три планеты образуют конфигурацию, почти идентичную той, которую мы наблюдали вначале.

Пуанкаре показал, что так себя ведут все связанные механические системы, даже те, в которых количество движущихся частей очень велико. Но необходимо помнить о том, что время ожидания, пока система вернется в состояние, близкое к начальному, по мере увеличения числа частей также увеличивается. Если бы мы захотели увидеть, как в линию выстроятся все девять планет Солнечной системы,[175] нам пришлось бы потратить на ожидание куда больше 40 лет. В какой-то степени это можно оправдать тем, что внешние планеты медленнее вращаются вокруг Солнца, но главная причина в том, что большему количеству объектов требуется больше времени, чтобы общими усилиями воссоздать данную начальную конфигурацию.


Вечность. В поисках окончательной теории времени

Рис. 10.2. Внутренняя часть Солнечной системы, в которой Меркурий, Венера и Земля находятся на одной линии (внизу), и конфигурация 88 дней спустя (вверху). Меркурий вернулся в исходное положение, а Венера и Земля находятся в других точках своих орбит


Это стоит подчеркнуть: по мере того как число частиц в рассматриваемой системе увеличивается, время, необходимое для возвращения системы в исходное положение или близкое к нему, известное под вполне логичным названием времени возврата, – также возрастает, причем очень быстро, становясь в итоге невообразимо большим.[176] Вернемся еще раз к разделенному перегородкой контейнеру с газом, с которым мы играли в главе 8. В контейнере у отдельных частиц каждую секунду есть небольшой шанс перескочить из одной половины в другую. Очевидно, что если контейнер содержит всего лишь две или три частицы, то системе не потребуется много времени, для того чтобы вернуться в состояние, с которого все началось. Но если взять контейнер хотя бы с шестьюдесятью частицами, мы обнаружим, что время возврата уже становится сопоставимым с текущим возрастом наблюдаемой Вселенной.

В большинстве реальных объектов содержится куда больше частиц. Время возврата типичного макроскопического объекта будет составлять по меньшей мере

101 000 000 000 000 000 000 000 000 секунд.

Это очень много. Для всех частиц в наблюдаемой Вселенной время возврата еще больше – но стоит ли об этом волноваться? Время возврата любого объекта, достаточно большого, чтобы представлять хоть какой-нибудь интерес, слишком велико. Мы попросту не в состоянии оценить его с точки зрения нашего жизненного опыта. Возраст обозримой Вселенной – всего лишь около 1018 секунд. Если найдется физик-экспериментатор, который предложит добавить в чашку кофе ложку молока и подождать время возврата, чтобы увидеть, как молоко снова отделяется от кофе, ему придется здорово попотеть, выбивая финансирование под такой грант.

И все же, если подождать достаточно долго, это случится. Демон Ницше не ошибается; просто он заглядывает далеко вперед.

Цермело против Больцмана

В исходной статье Пуанкаре, где доказана теорема о возвращении, ученый в основном рассматривает четкий, предсказуемый мир ньютоновской механики. Однако Пуанкаре также был знаком со статистической механикой, поэтому он очень быстро осознал, что идея вечного возвращения может показаться несовместимой с попытками вывести второе начало термодинамики. В конце концов, второе начало утверждает, что энтропия меняется только в одну сторону: она возрастает. В то же время создается впечатление, что, согласно теореме о возвращении, после того как низкоэнтропийное состояние перейдет в высокоэнтропийное, нужно всего лишь подождать достаточно долго, и оно вернется к своему низкоэнтропийному началу. Это означает, что где-то по пути энтропия должна уменьшиться.

В 1893 году Пуанкаре написал небольшую статью, посвященную исследованию этого очевидного противоречия. Он подчеркнул, что теорема о возвращении действительно подразумевает, что энтропия Вселенной в конечном счете начнет уменьшаться:

Я не знаю, было ли замечено то, что английские кинетические теории не могут выпутаться из указанного противоречия. Согласно этим теориям мир сначала стремится к состоянию, в котором он остается долгое время без заметных изменений, и это согласуется с опытом. Однако он остается в этом состоянии не всегда, если теорема, упомянутая выше, не нарушается; он просто находится в нем чрезвычайно долгое время – время, которое тем больше, чем более многочисленными являются молекулы. Это состояние будет не окончательной смертью Вселенной, а своего рода сном, от которого она пробудится через миллионы миллионов столетий.

Согласно этой теории, для того чтобы наблюдать переход тепла от холодного тела к горячему, вовсе не обязательно обладать острым зрением, разумом и проворством «демона» Максвелла – для этого достаточно иметь лишь немного терпения.[177]

Под «английскими кинетическими теориями» Пуанкаре предположительно понимал работы Максвелла, Томсона и других – никакого упоминания о Больцмане (или, если уж на то пошло, Гиббсе). По этой ли причине или просто потому, что данная статья не попалась ему на глаза, но Больцман так никогда и не ответил Пуанкаре напрямую.

Однако идея не была забыта. В 1896 году Цермело выдвинул простое возражение (ссылаясь именно на длинную статью Пуанкаре 1890 года, где формулировалась теорема о возвращении, а не на его более короткую статью 1893 года), которое теперь носит название возражения Цермело о возвращении.[178] Несмотря на известность Больцмана, в конце XIX века атомная теория и статистическая механика в немецкоговорящем мире были далеко не так популярны, как в англоязычных странах. Как и многие другие немецкие ученые, Цермело считал второе начало термодинамики абсолютным законом природы; энтропия замкнутой системы всегда, а не просто большую часть времени увеличивается или остается постоянной. Но теорема о возвращении недвусмысленно предполагает, что если энтропия сначала увеличивается, то со временем, когда система вернется к исходной конфигурации, ей непременно придется уменьшиться. Вывод, который из этого сделал Цермело, заключался в том, что система взглядов статистической механики в корне неверна; поведение теплоты и энтропии невозможно свести к движению молекул, подчиняющихся законам Ньютона.

Позднее Цермело завоюет славу в математическом сообществе как один из основателей теории множеств, но в то время он был студентом, постигающим науку под руководством Макса Планка, и Больцман не принял всерьез возражения юного выскочки. Он снизошел до ответа, не проявив, впрочем, особой терпимости:

Работа Цермело показывает, что мои статьи были поняты неправильно; тем не менее мне доставляет удовлетворение ее появление, поскольку она, по-видимому, является первым свидетельством того, что эти статьи вообще обратили на себя какое-то внимание в Германии.

Теорема Пуанкаре, которую Цермело разъясняет в начале своей работы, вне всякого сомнения, правильна, однако применение им этой теоремы к теории теплоты является неверным.[179]

Вот оно как! В от