Book: 100 знаменитых изобретений



100 знаменитых изобретений

Владислав Леонидович Пристинский

Купить книгу "100 знаменитых изобретений" Пристинский Владислав

100 знаменитых изобретений

100 знаменитых

100 знаменитых изобретений

Название: 100 знаменитых изобретений

Автор: Пристинский В.Л.

Год издания: 2012

Издательство: Фолио

ISBN: 966-03-3271-8

Страниц: 512

Формат: fb2

АННОТАЦИЯ

Вся история человечества - это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена - иначе она вся разрушится.

Сначала была палка - потом появился рычаг, сначала был огонь - потом появилась доменная печь, сначала были шкуры - потом появились ткани, сначала было колесо - потом появились автомобили... А что же стоит за этим "потом"? Годы, века, тысячелетия - и миллионы человеческих идей, которые, в конечном счете, изменили (и продолжают изменять) мир.

В этой книге рассказывается о ста знаменитых изобретениях цивилизации - тех, без которых на планете Земля не было бы жизни. Эти изобретения нельзя оценивать по степени их значимости - какое более важное, какое - менее. Главное одно: цивилизация постоянно развивается и развивается, и каждый день приносит что-то новое в науке, технике, культуре. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда - она будет лишь удлиняться.

Владислав Пристинский

100 знаменитых изобретений

От автора

Вся история человечества, начиная с момента выделения человека из животного мира, есть непрерывная цепь изобретений. При утрате хотя бы одного звена могли бы потеряться все последующие.

Наши предки сумели расселиться по всей Земле от арктических льдов до пустынь и экваториальных лесов благодаря умению приспосабливаться к окружающей среде и преобразовывать ее сообразно своим интересам. Не давая оценки последствиям всех изменений, которые человечество совершило и продолжает совершать в своей среде обитания, в этой книге мы постарались дать панораму развития нашей цивилизации как цивилизации технической, связанной с развитием средств производства.

Попробуем коротко проследить развитие изобретений.

Первым орудием человека была палка, которую он использовал как рычаг и как орудие для охоты. Позже появились топор, нож, молоток, шило, иголка.

Первым механизмом, который позволял накапливать мышечную энергию человека с последующим мгновенным выбросом, стал лук. Затем для накопления потенциальной механической энергии с дальнейшим преобразованием ее в кинетическую начали применять пружину.

Первой технической революцией в истории человечества стало освоение поддержания и использования огня. Огонь дал начало многим отраслям человеческого знания. Без него были бы невозможны керамика и металлургия, термическая обработка продуктов, двигатели, преобразующие тепловую энергию в механическую.

Первыми материалами, которые применялись для изготовления орудий, были камень и дерево. Затем, благодаря отжигу глины, появился первый искусственный материал – керамика.

Вторая революция в истории человечества состояла в переходе от собирательства и охоты к оседлому существованию, в ходе которого люди начали выращивать злаки и другие растения, одомашнивать животных.

Развитие земледелия привело к появлению новых орудий для обработки земли, уборки урожая, обмолота и измельчения зерен. Люди изобрели мотыгу, серп, цеп для обмолота, ручной жернов для размола зерна.

Переход от охоты к земледелию потребовал замены звериных шкур, применявшихся в качестве одежды. Ею стали ткани. Сначала пряжу получали, скручивая волокна вручную, позже появились прядильная машина и ткацкий станок.

Важнейшим изобретением, оказавшим влияние на все отрасли техники, стало колесо. Его начали применять в транспортных средствах, гончарном круге, ручной мельнице.

Помимо передвижения по суше, человек освоил водную стихию. Это было необходимо для рыбной ловли и передвижения на большие расстояния. Здесь развитие шло от плотов из связок камыша к лодкамоднодревкам. Они управлялись жердями, затем веслами.

После каменных орудий человек стал осваивать металлы. Это стало возможным, когда уровень развития техники позволил получать излишки еды. Это привело к выделению специалистов, занимавшихся добычей руды, литьем и ковкой. Месторождения руд часто находились на большом расстоянии от потребителя. Так развитие металлургии привело к развитию обмена продуктами труда, что было невозможно без высокого уровня развития земледелия.

В этот период люди нашли замену собственной мышечной энергии. Они стали использовать животных. Кроме того, появились водяные мельницы, которые можно считать первыми машинами, преобразовывавшими энергию воды в энергию вращения колес.

Развитие знаний требовало фиксировать их для усвоения другими людьми, так как устная форма не обеспечивала их полного сохранения. Так возникла письменность, повлекшая за собой появление писчих материалов: папируса, пергамента, бумаги.

Совершенствование водных средств передвижения привело к появлению паруса. Это было бы невозможно без развития ткачества. Кроме того, для путешествий вдали от берегов требовался компас и географические карты.

Революционное значение в истории человечества имело освоение железа. Его большая распространенность, способность в процессе обработки образовывать с углеродом прочный и твердый сплав – сталь сделали железо незаменимым в производстве различных орудий.

Для измерения промежутков времени и определения текущего времени суток были созданы часы. Их развитие шло от солнечных, водных, песочных к механическим. Механические часы были достаточно совершенным механизмом и позволяли решать многие технические вопросы своего времени.

Техническая революция XVII–XVIII вв. потребовала новых источников энергии. Вместо древесного угля стал использоваться каменный. Появились паровые машины. Сначала они применялись на заводах для привода механизмов, а позже на их основе были созданы средства передвижения: паровой автомобиль, пароход, паровоз.

Возросшие требования к качеству металла и увеличению объемов выплавки способствовали появлению новых способов его обработки. В XVII–XVIII вв. возникли прокатные станы, молоты с механическим приводом, гидравлические прессы.

В XIX в. широкое применение нашел новый источник энергии – нефть. Продукты ее переработки – керосин, мазут и др. использовались для освещения, обогрева, производства новых материалов – пластмасс. Нефть и нефтепродукты стали использоваться как топливо в двигателях внутреннего сгорания. Эти двигатели имели ряд преимуществ по сравнению с паровыми – больший КПД и удельную мощность. Их развитие привело к появлению автомобилей и теплоходов.

В XIX в. началось развитие электроэнергетики. Был пройден путь от первых опытов с электричеством до создания тепло– и гидроэлектростанций. Возможность передачи электроэнергии на большие расстояния позволили провести электрификацию промышленных предприятий и домов. Электрический телеграф соединил страны и континенты информационным мостом.

В самом конце XIX в. было изобретено радио. Приемник Попова стал предшественником ламповых и полупроводниковых электронных устройств. Созданные в XX в. на их основе электронновычислительные машины позволили обрабатывать многократно выросшее количество информации.

В начале XX в. появилась авиация, прошедшая путь от аэроплана братьев Райт до реактивных сверхзвуковых самолетов. Именно авиация проложила дорогу к космическим кораблям.

Возросшие энергетические потребности во многом были решены благодаря появлению атомной энергетики.

На протяжении всей истории человечества его спутниками были болезни, многие из которых приобретали характер эпидемий. Защитой от них служили профилактические прививки и лекарства. Их применение позволило намного увеличить среднюю продолжительность жизни людей.

Сейчас основными направлениями, в которых ведутся исследования, являются разработки новых конструкционных материалов, развитие информационных технологий и поиск новых источников энергии.

Цель этой книги – осветить наиболее важные изобретения. Мы надеемся, что она позволит оценить масштабы пути, пройденного нашей цивилизацией, и побудит к более глубокому изучению затронутых в книге тем.

Авиация

Слово «авиация» происходит от латинского слова avis – «птица» и применяется для обозначения летательных аппаратов тяжелее воздуха.

Первые попытки обосновать возможность полета на таких аппаратах сделал Леонардо да Винчи в начале XVI в. Он создал несколько проектов аппаратов с машущими крыльями.

М. В. Ломоносов доказал возможность полета такого аппарата, создав модель вертолета с приводом от пружины.

В основе полета летательного аппарата тяжелее воздуха лежит закон, выведенный Д. Бернулли в 1738 г. Он заключается в том, что при увеличении скорости потока его давление на стенки сосуда уменьшается. Этот закон был сформулирован для жидкостей, но он справедлив также и для газов. Этот закон объясняет полет птиц: дело в том, что при полете их крылья изгибаются таким образом, что на их нижнюю часть действует подъемная сила, превосходящая силу тяжести, направленную в противоположном направлении.

Для возникновения подъемной силы крыло самолета должно иметь такую форму, чтобы воздух сверху и снизу обтекал его с разной скоростью – снизу медленнее, чем сверху. Этого можно достичь, сделав нижнюю плоскость крыла абсолютно плоской, а верхнюю – выпуклой. Регулирование подъемной силы можно осуществлять, изменяя угол между плоскостью крыла и потоком воздуха (угол атаки крыла). Подъемная сила увеличивается с увеличением этого угла.

Теоретические основы полета самолета впервые разработал англичанин Д. Кейли в начале XIX в. Он построил и испытал модель планера и полноразмерный планер.

В середине XIX в. начались практические работы по созданию самолета. Разрабатывались проекты самолетов с паровыми и реактивными двигателями, делались попытки полета на планере. Несмотря на это были осуществлены лишь непродолжительные полеты моделей и кратковременные полеты на планерах.

В 1863 г. русский ученый А. В. Эвальд, наблюдая за птицами, составил идеальный проект самолета, включавший все необходимое для его полета: крыло, пропеллер, форму с малым лобовым сопротивлением, установочный угол атаки крыла, органы управления. В качестве двигателя он предлагал использовать паровой двигатель.

В 1876 г. французский ученый и конструктор А. Пено и механик П. Гошо получили патент на «бесхвостый» самолетамфибию с паровым двигателем и фюзеляжем в форме лодки. Пено предложил для достижения продольной балансировки самолета отказаться от горизонтального оперения, применив в крыле профиль с отогнутой вверх задней кромкой. Продольная устойчивость при этом должна была обеспечиваться расположением центра тяжести вблизи передней кромки крыла. Поперечная устойчивость достигалась отгибом вверх концов крыла, путевая – вертикальным килем. Для управления продольным креном были предусмотрены рули высоты, расположенные на задней части центроплана крыла. Управление по курсу могло осуществляться рулем направления, а также аэродинамическими тормозами, представляющими собой расщепляющиеся щитки на концах крыла.

В 1870–1880 гг. постройкой летательного аппарата занялся военный моряк А. Ф. Можайский. В 1881 г. он получил патент на летательный аппарат. Как следует из описания, это был самолетмоноплан. Основные элементы его компоновки применялись в самолетостроении даже спустя много десятилетий после этого.

В 1881–1883 гг. Можайский построил свой самолет под Петербургом. У него был фюзеляж с деревянными ребрами, обтянутыми материей. К бортам фюзеляжа были прикреплены прямоугольные крылья, слегка выгнутые выпуклостью вверх. Крылья и оперение были обтянуты шелком, пропитанным лаком. Аппарат стоял на стойках с колесами (шасси). На нем были установлены две паровые машины мощностью 20 и 10 л. с., построенные в Англии по заказу Можайского.

В 1883–1885 гг. изобретатель занимался доводкой аппарата при наземных испытаниях, а в 1885 г. предпринял попытку летных испытаний, закончившуюся неудачей.

Неудачей закончились также испытания аэропланов американца X. Максима в 1894 г. и француза К. Адера в 1897 г. На них устанавливались паровые машины, слишком тяжелые для самолетов.

В начале 1890х гг. немец О. Лилиенталь построил несколько моделей планеров. В их основе лежал принцип полета аиста. Крылья в своем поперечном сечении имели вогнутость, обращенную книзу. Балансировка планеров осуществлялась изменением положения центра тяжести в полете. Материалом конструкции служили ивовые прутья и полотно.

В первых опытах Лилиенталь стоял с крыльями на ветру, изучая действие аэродинамических сил и прочность конструкции, затем прыгал с крыльями с небольшого помоста в саду своего дома (иногда по 50–60 раз в день). Только два года спустя он решился приступить к полетам с возвышенности в 5–6 м.

Постепенное усложнение задач и многократность повторения опытов позволили не только самому конструктору освоиться с чувством полета, но и совершенствовать конструкцию планеров. Первые летательные аппараты Лилиенталя еще не имели хвостового оперения. Они оказались неустойчивыми и недостаточно прочными. Успех был достигнут в 1891 г., когда конструктор добавил к крылу вертикальное и горизонтальное оперение и уменьшил размеры крыла.

Благодаря наличию стабилизирующих поверхностей и сравнительно небольшим размерам аппарата его устойчивость и эффективность балансирного управления заметно улучшились. В 1891 г. Лилиенталю удалось совершить планирующий спуск до 20 м длиной. При взлете испытатель разбегался под уклон навстречу ветру. В полете он управлял планером с помощью ног, опираясь руками на крылья. При приземлении Лилиенталь резко отклонял тело назад, увеличивая угол атаки крыла, скорость полета уменьшалась, и планер совершал плавную посадку.

В 1892 г., стремясь увеличить продолжительность полетов, Лилиенталь построил планер с большим размахом крыла. Дальность полетов действительно возросла, однако изза большой парусности управлять планерами оказалось трудно, особенно при сильном ветре. Поэтому в дальнейшем конструктор избегал строить аппараты с размахом крыла больше 6–7 м.

В 1893 г. Лилиенталь изготовил планер, который стал прототипом всех его последующих монопланов. По конструкции аппарат существенно отличался от прежних машин. Лилиенталь применил складывающиеся крылья. Это было удобно при транспортировке и хранении. Развернутые для полета крылья фиксировались легкосъемными продольными нервюрами, заменяя которые можно было изменять кривизну профиля. Для большей прочности крыло поддерживалось распялками, соединенными с двумя вертикальными стойками на центроплане.

Еще одним нововведением было применение упруго подвешенного горизонтального стабилизатора. Под действием аэродинамических сил он, преодолевая силу действия пружины, мог поворачиваться на некоторый угол вверх, что облегчало быстрое увеличение угла атаки крыла, необходимое для торможения перед посадкой. Нижнее положение задней кромки горизонтального оперения фиксировалось ограничителями так, что в полете стабилизатор всегда был расположен под отрицательным углом к крылу.

В результате многолетних упорных тренировок Лилиенталь достиг высокого мастерства в полетах на планере. К середине 1896 г. им было выполнено свыше 2000 полетов, дальность некоторых из них достигала 250 м, а продолжительность – нескольких десятков секунд. В отдельных случаях удавалось подниматься выше точки старта, т. е. совершать парящий полет. Овладев техникой балансирного управления, Лилиенталь отваживался летать при значительной скорости ветра (на бипланах – до 10 м/с).

9 августа 1896 г. Лилиенталь погиб, упав на планере с высоты 15 м.

В конце XIX – начале XX века предпринимались попытки построить самолет.

В 1899 г. конструированием и испытанием планеров занялись американцы – братья Райт. В течение 1899–1902 гг. они создали несколько оригинальных моделей. Испытание всех аппаратов братья Райт производили на берегу Атлантического океана возле городка КиттиХоук.

Важным изобретением братьев Райт стало обеспечение поперечной устойчивости планера путем перекоса концов его крыльев. В своих первых моделях они отказались от хвостового оперения и от регулирования устойчивости аппарата путем перемещения центра тяжести. Вместо этого они снабдили планер рулями.

При постройке своих аппаратов братья Райт столкнулись с недостатком теоретических знаний в области аэродинамики. Тогда изобретатели соорудили аэродинамическую трубу, в которую нагнетали воздух при помощи вентилятора. В ней они испытали более 200 различных профилей из листового железа. Таким образом измерялось сопротивление различных поверхностей и профилей крыльев при различных углах атаки. Результаты опытов были сведены в таблицы. Это помогло им при конструировании нового планера. Он имел вертикальный хвост с подвижным рулем. Поворачивая руль в сторону противоположного крыла можно было восстановить поперечное равновесие, компенсируя разницу в сопротивлении опущенного и поднятого крыльев. Для одновременного воздействия руль и крылья были соединены тросами и управлялись одним рулем.



Высота полета регулировалась поверхностями руля высоты, расположенного в передней части планера. При движении вперед связанного с этими поверхностями рычага кривизна поверхностей уменьшалась, и нос планера опускался.

Между поверхностями руля высоты располагались вертикальные серповидные поверхности, вращавшиеся в направлении, противоположном направлению движения поворотного руля. Они компенсировали силу, вращающую планер вокруг собственной оси.

Новый планер показал прекрасные летные качества: он мог парить в воздухе около минуты, хорошо управлялся, поднимаясь, опускаясь, разворачиваясь в разные стороны.

В конце 1902 г. после успешных испытаний этого планера братья Райт приняли решение конструировать на его основе самолет.

Двигатель и пропеллеры были изготовлены в течение зимы и весны 1903 года. Построенный при участии братьев Райт четырехцилиндровый бензиновый двигатель водяного охлаждения мощностью 12 л. с. представлял собой облегченный вариант обычного автомобильного двигателя и весил вместе со всеми вспомогательными системами 90 кг. По расчетам изобретателей, он обладал способностью поднять их самолет в воздух.

При разработке пропеллера использовался опыт аэродинамических исследований, проведенных Райтами в 1901–1902 гг. Рассматривая воздушный винт как вращающееся крыло и стремясь подобрать наивыгоднейший для каждого сечения профиль, им удалось создать пропеллер с рекордным для своего времени, КПД – 66 %. Два деревянных двухлопастных винта соединялись с двигателем с помощью цепной передачи, уменьшавшей частоту вращения пропеллера втрое. Общий вес трансмиссии и винтов составлял 41 кг.

В связи с возросшим взлетным весом размеры крыла самолета были по сравнению с крылом планера увеличены. Увеличена была также площадь органов управления – одинарные поверхности рулей заменили двойными. Как и на планере, руль направления автоматически отклонялся при перекашивании крыла. Под крылом были установлены полозья. Отказ от применения колесного шасси объясняется преобладанием песчаной почвы в КиттиХоук, где должен был испытываться самолет.

Сборка самолета была завершена в начале ноября 1903 года. Аппарат представлял собой биплан с двумя толкающими пропеллерами, вращающимися в противоположных направлениях. Двигатель был установлен на нижнем крыле, сбоку от летчика. Пилот размещался в полете лежа и управлял перекашиванием крыла движением бедер. Перед пилотом были расположены две рукоятки, одна из которых служила для управления рулем высоты, другая – для включения двигателя. Взлетный вес самолета равнялся 340 кг, площадь крыла – 47,4 м2, размах – 12,3 м, длина – 6,4 м, диаметр винтов – 2,5 м.

В процессе наземных проб двигателя выяснилось, что прочность валов пропеллеров недостаточна. Поломки, вызванные перебоями в работе двигателя, удалось устранить только после замены пустотелых валов сплошными. 12 декабря самолет был готов к летным испытаниям.

В связи с большим весом самолета Райты отказались от прежнего метода старта, когда помощники разгоняли аппарат до скорости отрыва, поддерживая его за крыло. Кроме того, такой способ взлета мог вызвать сомнения в том, что старт происходил только за счет мощности двигателя. Разбег должен был происходить по деревянному рельсу длиной 18 м, верхняя поверхность которого была обшита железом. Самолет катился по рельсу на маленькой тележке, отделяемой от аппарата после взлета. Для уменьшения длины разбега старт должен был происходить строго против ветра.

Первые испытания «Флайера» происходили 14 декабря 1903 года. Самолет поднялся в воздух, но через несколько мгновений после взлета упал с высоты 5 м. Время нахождения в воздухе составило всего 3,5 с, дальность полета – 32 м.

17 декабря состоялись повторные испытания. Всего было выполнено четыре полета, общая продолжительность которых составила менее двух минут. Эти испытания стали выдающимся событием в истории человечества – впервые человеку удалось осуществить контролируемый полет на самолете.

В дальнейшем братья Райт усовершенствовали свой первый самолет. В 1905 г. они уже совершали полеты со скоростью 60 км/ч продолжительностью 38 мин.

В это время в Европе также шли работы над совершенствованием планеров и постройкой самолетов. В 1904 г. француз ЭсноПельтри на своем планере впервые применил элероны. Они имели вид двух независимо действующих горизонтальных поверхностей, расположенных на балках перед крылом, и предназначались для регулирования крена аппарата.

Конструированием самолетов занимались и французы Фербер, Вуазен, Блерио, СантосДюмон, в Дании – Эллехаммер.

К типичным аэродинамическим компоновкам этого периода относятся: биплан с коробчатым крылом, передним рулем высоты и, как правило, толкающим пропеллером; биплан (мультиплан) без перегородок на крыле, с тянущим винтом и с заднерасположенным оперением; моноплан «нормальной» схемы с тянущим винтом; моноплан с самобалансирующимся крылом без стабилизирующих хвостовых поверхностей.

1909 г. стал годом триумфа в истории самолета. Его перспективность доказывали постоянно улучшающиеся рекорды дальности, высоты и скорости, дальние внеаэродромные полеты. Так, Л. Блерио совершил перелет на самолете «Блерио11» из Франции в Англию через ЛаМанш. В состоявшихся в конце августа первых авиационных состязаниях в Реймсе (Франция) приняли участие 38 самолетов, на которых были выполнены 87 полетов дальностью более 5 км, 7 – дальностью более 100 км.

С 1909 г. началось серийное производство самолетов, во Франции открылись первые школы по подготовке пилотов.

Уже в то время в авиации наметились два направления: военное и гражданское.

В 1911 г. на самолете впервые был установлен пулемет. До Первой мировой войны были также созданы бомбы, самолетные радиостанции, ранцевый парашют.

В это время летчики столкнулись с таким явлением, как штопор – снижение самолета по крутой нисходящей спирали малого радиуса с одновременным вращением вокруг всех трех осей. Вначале заваливание в штопор вело к гибели самолета. В 1916 г. русский летчик К. Арцеулов впервые намеренно ввел свой самолет в штопор и вывел из него. По инициативе Арцеулова штопор как фигура высшего пилотажа был введен в программу обучения летчиков.

В Первую мировую войну самолеты вначале использовались для разведки и корректировки артиллерийского огня, затем их стали применять для поражения воздушных и наземных целей. Появилось разделение на разведывательные самолеты, истребители и бомбардировщики.

За время войны скорость самолетов возросла до 200–220 км/ч. В 1918 г. численность самолетов превысила 11 тысяч.

В послевоенные годы авиация бурно развивалась во многих странах. Появились новые конструкции самолетов, совершенствовались методы их расчетов. Если в 1920х годах наиболее распространенной была бипланная схема компоновки самолета, то к середине 1930х наметился окончательный переход к монопланной.

В СССР в 20е годы были созданы конструкторские бюро A. Н. Туполева, H. Н. Поликарпова. Среди первых самолетов – пассажирские самолеты АК1 конструкции В. Л. Александрова и B. В. Калинина, истребитель И1 Поликарпова. Под руководством Туполева были сконструированы цельнометаллический самолет АНТ2, разведчик АНТ3, тяжелый бомбардировщик АНТ4.

Со второй половины 20х гг. стал широко применяться дюралюминий, заменивший распространенные до того полотно и дерево.

Среди достижений авиации можно отметить перелет через Атлантику американца Ч. Линдберга в 1927 году.

В 20е гг. развиваются пассажирские авиаперевозки. Первые авиалинии появились в Германии и Франции. В СССР первый регулярный пассажирский маршрут был открыт в 1923 г. Он соединил Москву и Нижний Новгород.

Постоянно растут скорости самолетов. Это достигается как за счет увеличения мощности двигателей, так и благодаря снижению аэродинамического сопротивления на 20–25 %. Снижение обеспечивалось решением проблемы втягивания шасси в полете, внедрением винтов изменяемого шага, переходом к закрытым кабинам, обтекаемым формам фюзеляжей, применением гладкой обшивки крыла. Это привело к увеличению скорости полета на 20–30 % при той же мощности двигателей.

В 30е годы значительно возросла дальность полета. В 1937 г. были совершены два беспосадочных перелета из Москвы через Северный полюс в США.

18–20 июня В. П. Чкалов, Г. Ф. Байдуков и А. В. Беляков, покрыв расстояние в 8504 км за 63 ч 16 мин, совершили посадку в Ванкувере.

12–14 июля М. М. Громов, А. Б. Юмашев и С. А. Данилин преодолели 10 148 км за 62 ч 17 мин и приземлились в Калифорнии, установив мировой рекорд дальности беспосадочного перелета.

Продолжает развиваться военная авиация. Во время гражданской войны в Испании в небе столкнулись советские самолеты И15 и И16 конструкции Поликарпова, СБ и немецкие мессершмитты и юнкерсы.

Опыт войны в Испании дал новый толчок развитию авиации. Немцы решили ставить на свои самолеты новые двигатели. В СССР стали разрабатывать принципиально новые конструкции самолетов А. С. Яковлев, С. В. Ильюшин, В. М. Петляков и др.

Скорость истребителей достигла 600 км/ч и более. Повысилась дальность полета (до 3–4 тыс. км), скорость (до 550 км/ч) и бомбовая нагрузка бомбардировщиков (до 3–4 т).

В 1938 г. в КБ Ильюшина был сконструирован самолет огневой поддержки сухопутных войск – штурмовик Ил2. Он имел высокую прочность, большую огневую мощь, бронированную защиту важнейших узлов.

Во Второй мировой войне наибольшее применение получили легкие, маневренные, простые в управлении самолеты. В небе над Европой, Азией, Тихим и Атлантическим океанами развернулись ожесточенные воздушные сражения. Самолеты прикрывали войска с воздуха, наносили удары по войскам и кораблям противника, вели разведку, перебрасывали десанты.

Самыми распространенными были истребители Як3, Як7, Як9, Ла5 и Ла7 (СССР), «Мессершмитт109» и «ФоккеВульф190» (Германия), «Харрикейн» и «Спитфайр» (Великобритания), «Мустанг» и «Аэрокобра» (США). Среди бомбардировщиков следует выделить советские Пе2, Ил4, Ту2, немецкие Ю87 и Ю88, американские Б17, Б25 и Б29, английский «Ланкастер». Самым массовым самолетом Второй мировой стал штурмовик Ил2.

К концу войны поршневая авиация исчерпала свои возможности. Максимальная скорость самолетов достигала 720 км/ч. Дальнейшее ее повышение было ограничено чрезмерным ростом габаритов и веса двигателя, снижением КПД винта.

Качественный рывок в авиастроении произошел с появлением реактивного двигателя. Его разработка началась в 1930е годы. Первые полеты были осуществлены на самолетах с жидкостнореактивными двигателями. В 1939 г. в Германии был сконструирован и испытан самолет «Хейнкель». В СССР первый реактивный полет был осуществлен в 1940 г. на ракетоплане конструкции С. П. Королева. В 1941 г. в Англии поднялся в воздух самолет «Глостер» с турбореактивным двигателем конструкции Ф. Уиттла.

В 1941–1943 гг. в Германии были выпущены небольшими сериями реактивные истребители Ме262, Me163, Хе162. Но решающего влияния на ход воздушной войны они не оказали. Единственным реактивным самолетом союзников, принявшим участие в войне, стал английский «Метеор».

Первые послевоенные реактивные самолеты представляли собой обычные самолеты, на которых вместо поршневых были установлены реактивные двигатели. Однако с увеличением скорости до 1000 км/ч конструкторы и летчики столкнулись с такими явлениями, как сжимаемость воздуха, резкое повышение его сопротивления, снижение устойчивости и управляемости машин.

Исследования показали, что дальнейшее развитие реактивной авиации связано с изменением конструкции крыльев: они должны были иметь тонкий профиль и стреловидную форму в плане.

В 1947 г. в СССР был создан первый реактивный истребитель со стреловидным крылом МиГ15. На нем были установлены лицензионные реактивные двигатели «РоллсРойс», катапультирующее кресло и гидроусилители рулей. Вооружение МиГ15 составляли скорострельная пушка и 2 пулемета. Скорость достигала 1100 км/ч.

В это же время в СССР были построены реактивные истребители Ла15, Як23 и реактивные бомбардировщики Ил28 и Ту14.

В 1948 г. экспериментальный самолет Л а176 при полете со снижением достиг скорости звука.

Первые боевые столкновения реактивных самолетов состоялись в начале 1950х гг. во время войны в Корее. Там советские МиГ15 и МиГ17 показали свое превосходство над американскими «Сейбрами».

В 1950–1960х годах военная авиация получила сверхзвуковые реактивные самолеты, которые могли летать в любую погоду. На вооружении появились ракеты и ядерное оружие. Во многих странах были созданы самолеты вертикального взлета и посадки, способные взлетать и приземляться на небольших площадках. В первую очередь они нашли применение в морской авиации, в частности на авианосцах.

Увеличение скорости привело к созданию самолетов с изменяемой стреловидностью крыла: при взлете и посадке площадь крыла максимальна, в полете она уменьшается.

Дальность полета самолетов значительно возросла, благодаря дозаправке топливом в воздухе. Это позволило совершать полеты дальностью 12 000 км и более.

В послевоенные годы развивалась и гражданская авиация: создавались новые самолеты, открывались новые воздушные линии.

В 1949 г. состоялся первый рейс английского реактивного пассажирского самолета «Комета». Он был оснащен турбовинтовым двигателем. В 1956 г. на пассажирских авиалиниях появился первый турбореактивный самолет – советский Ту104. В 1958 г. взлетел американский «Боинг707», а в 1959 г. – французская «Каравелла».

В 1960е годы были созданы первые сверхзвуковые пассажирские самолеты. Первым совершил свой полет Ту144. Это произошло 31 декабря 1968 г. Несколькими месяцами позже взлетел англофранцузский «Конкорд». Их скорость достигала 2500–3000 км/ч, а дальность полета – 8000 км.

Помимо пассажирских перевозок гражданская авиация используется в борьбе с вредителями лесов и полей, разведке полезных ископаемых, метеорологических наблюдениях, исследованиях труднодоступных районов и других областях народного хозяйства.

Автомобиль

Первым практически действовавшим паровым автомобилем считается «паровая телега» француза НиколаЖозефа Кюньо. Он хотел создать мощную тяговую силу для артиллерийских орудий и перевозки снарядов.

Телегу изготовили в 1769 г. в мастерских парижского арсенала. Она весила целую тонну, столько же пришлось на воду и топливо, еще столько же на долю самой паровой машины.

Платформа для грузов крепилась к дубовой раме телеги. Рама опиралась на заднюю ось с колесами артиллерийского типа. С управлением телегой еле справлялись два человека. Перевозя до 3 т груза, телега передвигалась со скоростью пешехода – 2–4 км/ч.

Кюньо обратился к «экипажной» практике: лошадь находится впереди экипажа и тянет его за переднюю ось, значит, и машину следует поставить вперед и осуществить передачу на переднее колесо. Но тут возникла трудность: шток паровой машины перемещается в плоскости, параллельной плоскости колеса. Если закрепить двигатель на платформе телеги, то ось колеса нельзя будет поворачивать. И Кюньо смонтировал всю паровую машину на колесе, тогда машина стала отклоняться на вилке влево или вправо вместе с колесом.

Две лошадиные силы, которые развивала машина, давались нелегко. Несмотря на большой объем котла, давление пара быстро падало. Чтобы поддерживать давление, через каждые четверть часа приходилось останавливаться и разжигать топку. Эта процедура отнимала столько же времени, сколько длилась поездка.

Однажды, совершая испытательную поездку, Кюньо и кочегар не справились с управлением. Телега сделала слишком крутой поворот – котел упал и взорвался. Кюньо построил еще одну телегу, но она, как и первая, не нашла практического применения.

В начале XIX в. мощность экипажных паровых машин увеличилась в 8–10 раз по сравнению с машиной Кюньо, уменьшились их размеры и расход топлива. Машину располагали, как правило, сзади повозки. Шток, передающий движение поршня храповику на оси колес, заменили качающимся шатуном. Сложился так называемый кривошипный механизм, впоследствии почти полностью перешедший на автомобильный двигатель.

Четыре «паровика» Голдсуорси Гэрнея совершали регулярные рейсы и наездили в 1831 году 6 тыс. км. Более успешно организовал движение паровых дилижансов Уолтер Хэнкок. Правда, рейс длиной в 120 км длился около 12 ч, из которых ходовых было только 7–8 ч. Остальное время уходило на заправку водой. Потом догадались прицепить к дилижансу тендер с водой и коксом. Хэнкок использовал высокое давление пара в котле и применил цепную передачу от коленчатого вала машины к колесам. Девять 15местных повозок Хэнкока совершили около 700 рейсов и наездили 7 тыс. км со скоростью до 30 км/ч.

На какоето время паровые автомобили возродились во Франции. Их двигатели уже были оснащены керосиновыми горелками вместо угольных топок, запас воды мог быть уменьшен, змеевик быстро разогревался, непрерывно образовывалось необходимое для работы машины количество пара. На паровых повозках начали применять эластичные шины, рулевую «трапецию», механизм для вращения колес одной оси с различными оборотами – дифференциал, цепной и даже карданный привод от паровой машины к ведущим колесам.



Изобретателями автомобиля признаны Готлиб Даймлер и Карл Бенц. Работали они в одно и то же время в соседних германских городах Маннгейме и БадКанштатте (пригород Штутгарта). Оба построили действующие самодвижущиеся повозки в 1885 году и должным образом оформили патенты. Бенц – на «Экипаж с газовым двигателем», Даймлер – на «одноколейный» экипаж, а в 1886 году и на четырехколесный.

При жизни они так никогда и не встретились, хотя созданным ими автомобильным фирмам суждено было в 20е годы XX в. слиться в известную ныне всем компанию «Даймлер – Бенц».

У двухместной машины Бенца были велосипедные колеса, а кузов с установленным на трубчатую раму диванчиком напоминал пролеточный. В течение 7 лет Бенц строил моторные повозки трехколесными. Эта схема, казавшаяся простой, и ранее привлекала конструкторов по соображениям облегчения управления машиной. Первая машина Даймлера была и вовсе двухколесной, представляла собой «моторный велосипед». Даймлер и его последователи строили четырехколесные 4–6местные автомобили с экипажным кузовом, колесами и тормозами. А последователи Бенца чаще всего (до начала XX в.) – трехколесные, 2–3местные, с проволочными спицами колес, легкой трубчатой рамой, велосипедным рулем. От первых произошел собственно автомобиль, от вторых – то, что на грани веков называли «вуатюреткой», т. е. колясочкой, автомобильчиком.

«Безлошадные экипажи» Бенца и Даймлера не нашли спроса на родине. Горожан пугали хлопки от взрывов паров бензина в двигателе. Даймлеру пришлось испытывать повозки по ночам на загородных дорогах. Бенцу вменили в обязанность перед каждой поездкой сообщать в полицию маршрут и места остановок, для того чтобы можно было привести в готовность пожарные команды.

Изобретатели продали свои патенты во Францию, благодаря чему та долгое время была ведущей автомобильной державой. Автомобили, построенные по патентам Бенца и Даймлера или снабженные их двигателями, появились на рынке как изделия французских фабрикантов.

Вплоть до начала XX в. автомобиль рассматривали исключительно как занятную механическую игрушку, спортивный снаряд, экипаж для прогулок или торжественных выездов. В США до Первой мировой войны в официальных документах фигурировал термин «плежеркар» (т. е. «повозка для удовольствия»), обозначавший «легковой автомобиль». Его техническая характеристика соответствовала требованиям, обычным для конного экипажа. Журнал «МоторЭйдж» (США, 1900) в статье «Что такое превосходный автомобиль» писал:

«Это красивый стильный экипаж, который может быть пущен в ход мгновенно и без предшествующих продолжительных и трудоемких приготовлений, может быть мгновенно же остановлен, может двигаться с любой скоростью вплоть до 25 миль в час, полностью контролироваться любым лицом без специального образования, двигаться по неровным улицам и дорогам, преодолевать крутые подъемы, словом, выполнять все, что выполняет лошадь или упряжка лошадей с экипажем, и выполнять это более удовлетворительно, с меньшими затратами, и в то же время не иметь дефектов, присущих лошади, и новых собственных дефектов».

При всей, с нынешней точки зрения, скромности этой характеристики она была для своего времени именно «превосходной»: ни один тогдашний автомобиль не мог ей соответствовать. Любые, даже совсем короткие, поездки на автомобиле становились событием, в особенности, если они завершались благополучно. Начинались они с длинной процедуры запуска двигателя.

Сначала автомобилист открывал каретный сарай, где хранилась «коляска» – высокая, на больших деревянных колесах, на сплошных твердых резиновых шинахбандажах, с пролеточным кузовом. Вооружившись заводской инструкцией, автомобилист приступал к пуску двигателя. Он «устанавливал коляску по возможности горизонтально», потом соединял глушитель и выпускную трубу шлангом и наполнял бак горючим, так как на ночь топливо сливали во избежание подтекания. Затем вставлял провод зажигания в розетку, открывал кран подачи топлива, нажимал иглу карбюратора, чтобы топливо не переливалось. Закончив подготовительные операции, автомобилист прокручивал торчащую спереди, сзади или сбоку рукоятку «примерно пять раз», приоткрывал карбюратор, а затем декомпрессионный краник для устранения сжатия в цилиндре – оно затруднило бы заводку. Еще несколько оборотов рукоятки до появления вспышки в цилиндре двигателя. Тут автомобилист снова манипулирует с краниками. Если двигатель работал с перебоями, следовало отрегулировать винтом подачу горючей смеси, а если двигатель не заводился, то приходилось вывертывать свечу зажигания, промывать и просушивать ее, а из карбюратора сливать накопившееся за время тщетных попыток топливо. После того как двигатель заработал, можно было ехать.

Управление первыми автомобилями отдаленно напоминало управление современным автомобилем, но требовало значительно больших усилий, чем теперь. Кроме привычных ныне рычагов и педалей, существовали ручки на рулевой колонке для управления подачей топлива и установкой зажигания да еще насос для подкачки топлива в карбюратор. Изза малой мощности двигателя пассажиры вынуждены были на трудных участках дороги выходить из машины, чтобы облегчить ее, и идти с ней рядом, а то и подталкивать.

Тогда более перспективными считались электрические и паровые автомобили. В США, например, в 1899 году только 22 % всех выпущенных механических экипажей составляли «бензиномобили», 38 % – электромобили и 40 % – «паромобили». Но уже к 1905 году положение изменилось: 70 % автомобилей с двигателем внутреннего сгорания и по 15 % электрических и паровых, в 1910 году доля двух последних видов не превышала 1 %, а в 20х их стало ничтожно мало.

Не оказали влияния на этот процесс и такие сенсации, как мировые рекорды скорости, установленные в 1898 году на электромобиле (105 км/ч, гонщик Женатци), в 1902 и 1906 годах на паровых автомобилях (120 и даже 204 км/ч, гонщики Серполле и Стенли).

Увеличить мощность двигателя и тем самым скорость автомобиля было не такто легко. Увеличение диаметра цилиндра приводило к возрастанию сил, действующих на его стенки и на детали кривошипного механизма. Если увеличить длину хода поршня, то цилиндр трудно разместить на автомобиле изза роста размеров кривошипа. В обоих случаях двигатель становится тяжелее. Эти обстоятельства привели конструкторов к мысли – умножить число цилиндров. Даймлер уже свои самые ранние двигатели делал двухцилиндровыми (Vобразными), а в 1891 году построил первый четырехцилиндровый.

Увеличение числа цилиндров не только позволяло делать двигатель компактным при росте его мощности, но и обеспечивало плавность хода. В четырехцилиндровом двигателе каждый рабочий ход приходится на полоборота коленчатого вала, тогда как у одноцилиндрового двигателя – на два оборота.

Хотя автомобильный двигатель в отличие от стационарного можно было охлаждать потоком встречного воздуха, конструкторы скоро пришли к выводу об эффективности водяного охлаждения. Оно прошло ряд стадий развития, пока не распространились змеевиковые радиаторы, иногда опоясывавшие весь капот двигателя. На «мерседесе» (1901 г.) впервые применен знакомый ныне трубчатый или сотовый радиатор с большой поверхностью охлаждения, изменивший облик автомобиля.

Для автомобиля пришлось создать новые механизмы – привод рулевого управления и устройство для изменения на ходу усилия, передаваемого от двигателя к колесам. Примером для рулевого привода послужил судовой румпель – поводок или маховичокштурвал, передвигавший вправовлево тягу рулевой трапеции.

До конца XIX в. для автомобиля была типичной компоновка с двигателем сзади (под сиденьем) и с ременным приводом от него на поперечный вал, далее – цепной привод на задние колеса.

С ростом скорости увеличились мощность, размеры и масса двигателя. Возникли новые сложности. Становилось все труднее размещать двигатель под сиденьями. К тому же он требовал хорошего охлаждения. Приводные ремни не выдерживали передаваемых усилий, проскальзывали на шкивах.

Эмиль Левассор, главный конструктор французской фирмы «Панар – Левассор», предложил новую компоновку автомобиля: двигатель и радиатор охлаждения расположены спереди; усилие передается через механизм сцепления и коробку передач на промежуточный поперечный вал, а от него – цепями на задние колеса. Сцепление состоит из двух конических дисков, которые можно сблизить, ввести в зацепление во время движения автомобиля или отдалить при перемене передач и на стоянках. В коробке передач находятся два вала с набором шестерен различных диаметров на каждом (вместо набора ременных передач). Вводя в зацепление ту или иную пару шестерен, можно изменять частоту вращения вторичного вала и величину передаваемого колесам усилия.

Если сравнить компоновку автомобилей XX в. с компоновкой автомобиля Левассора, то они ненамного отличались. В 1898 г. французский конструктор Луи Рено заменил цепной привод карданным валом, два вала в коробке передач – тремя.

Развитие автомобиля вело к усложнению его конструкции: увеличение скорости требовало прожекторов, закрытые кузова – внутреннего освещения, пуск двигателя – особого электромотора. На автомобиле появился энергоемкий и надежный аккумулятор. Это позволило устранить сложное и тяжелое магнето, вернуться к простой и безотказной батарейной системе зажигания.

Пуск двигателя имел не меньшее значение, чем зажигание. Вращая рукоятку, нужно было преодолевать давление в цилиндрах двигателя. Обратные удары рукоятки приводили к травмам рук водителей. Конструкторы стремились заменить рукоятку более удобным устройством. Простым и надежным оказался электромотор с шестеренкой, зацепляемой в нужный момент с зубчатым венцом на маховике двигателя. Маховик начинал вращаться и запускал двигатель. Такой стартер изобрел американский конструктор Ч. Кеттеринг.

Рядом с двигателем размещали механизм сцепления. В маховике двигателя вытачивали коническую поверхность, а на первичный вал коробки передач надевали передвижной конус, покрытый кожей. Конус прижимала к маховику пружина, соединяя двигатель с коробкой передач. Чтобы выключить сцепление, нужно было нажимом на педаль преодолеть сопротивление пружины и оттянуть конус от маховика.

На смену конусному пришло дисковое сцепление. В дисковом сцеплении, нажимая на педаль, водитель отводит диск от маховика, отпуская педаль – предоставляет пружине прижимать диск. Первые такие сцепления состояли из многих дисков. Постепенно число дисков свели к одномудвум и снабдили накладками из специального, не требующего смазки, долговечного материала.

В коробках передач начала XX в. предусматривались три передачи для движения вперед и одна для заднего хода. Переключение передач требовало большой ловкости, редко проходило без угрожающего скрежета шестерен, а то и поломок их зубьев, визжали шестерни и во время движения автомобиля. Поэтому конструкторы упорно работали над совершенствованием коробки передач.

Система торможения отставала в развитии от других систем и механизмов автомобиля. Долго использовали экипажные тормозабашмаки, прижимавшиеся к шинам. Потом добавили трансмиссионный тормоз с горизонтальной педалью рояльного типа. Она стягивала ленту, охватывавшую барабан на выходном валу коробки передач. Дополнили трансмиссионный тормоз барабанами, установленными на задних колесах, но опятьтаки с ленточными тормозами, действовавшими более или менее эффективно только при движении автомобиля вперед. Лишь на отдельных машинах устанавливали на задних колесах тормоза с колодками, наподобие нынешних.

Долгое время на автомобилях устанавливалась подвеска, состоящая из листовых рессор, как на каретных экипажах. Она не устраняла тряску автомобиля на большой скорости и неровных дорогах того времени. Из множества вариантов были выбраны два: продольные и поперечные полуэллиптические рессоры. В дополнение к ним применяли фрикционные амортизаторы. Трение в их шарнирах гасило качку рамы и кузова после наезда на ухаб.

Шина на колесо автомобиля была надета в конце XIX в. братьями Мишлен. Она должна была сохранять давление воздуха и защищать камеру от проколов подковными гвоздями, в изобилии рассыпанными по дорогам. В начале XX в. самые лучшие шины, сделанные на заказ для гонок, приходилось менять десятки раз на пробеге в 200–300 км. Важно было облегчить смену шин. Вначале они не были легкосъемными, и автомобилист после замены должен был накачать шину до давления 5–6 атмосфер. Позже кольцо из резинового рукава превратили во внутреннюю камеру шины, окружив ее защитной резиновой покрышкой на парусиновой основе.

На рубеже XIX–XX вв. стали популярными автомобильные гонки. Участие в них позволяло владельцам автомобильных фирм рассчитывать на большой денежный приз, хорошую рекламу своих автомобилей, а также проверить механизмы при максимальных нагрузках. Это привело к созданию мощных гоночных автомобилей. Большинство автомобилей были сложными и очень дорогими.

Так продолжалось до тех пор, пока американец Генри Форд не начал выпускать свою знаменитую модель «фордТ». В 1899 г. молодой Форд основал Детройтскую автомобильную компанию. В интересах бизнеса он решил выпускать дешевую массовую машину. Замысел Форда заключался в разделении работы по изготовлению автомобиля на множество операций, каждая из которых поручалась 1–2 рабочим, освобожденным от выполнения вспомогательных операций. Изготовляемые детали и собираемые механизмы двигались мимо рабочих на цепях, рольгангах, лентах. Массовое производство позволило снизить цену на автомобиль.

«ФордТ» имел все необходимое для безопасного движения, на нем не было излишеств. Простота устройства, а также прочные материалы позволили снизить массу автомобиля до 550 кг. Двигатель мощностью 20 л. с. разгонял машину до скорости в 70 км/ч.

Цилиндры двигателя «фордаТ» были отлиты в одном блоке. Топливо подавалось самотеком из бака под сиденьем, поэтому на крутых подъемах горючее не поступало к карбюратору. В коробке было только две передачи. В машине отсутствовал аккумулятор, фары работали от магнето системы зажигания и при работе на малых оборотах светили слабо. Но, несмотря на эти и другие недостатки, машина удовлетворяла небогатых автомобилистов.

Уже в конце XIX в. произошло разделение автомобилей на легковые, грузовые и автобусы. Первая попытка наладить в Германии автобусное сообщение вместо омнибусного потерпела крах: на мокрых и заснеженных мостовых машины скользили на железных или сплошных резиновых ободьях. Автомобильные омнибусы возродились в 1904–1905 годах. Двигатель располагался под салоном автобуса, что позволило сократить его длину. В целях экономии площади автобусы делали двухъярусными. К 1914 г. число автобусов в одном только Лондоне достигло 2000.

Широкое производство грузовиков началось тогда, когда автомобиль стал более надежным. Сначала на шасси легкового автомобиля вместо задней части кузова устанавливались ящики. Это значительно снижало скорость и экономичность грузового фургона. С появлением в начале XX века автомобилей большей грузоподъемности облик грузовиков изменился. Они приобрели большую площадь кузова, массивную ходовую часть, двойные скаты задних колес. Однако работа водителя требовала больших физических усилий.

Долгое время на грузовых автомобилях сохранялась цепная передача. Это было связано с необходимостью большого передаточного числа. Позже стали применять двойную передачу и колесные редукторы.

В 1896 г. легковому автомобилю нашлось еще одно применение: в Париже появились моторизованные повозки – фиакры. С повозок сняли оглобли, установили бензиновый двигатель, а возле сиденья кучера поставили рулевую колонку и рычаги управления. В 1905 г. был изобретен счетчик оплаты, или таксометр, давший название таксомоторам, или сокращенно такси.

К 1914 г. количество автомобилей на земном шаре достигло 2 000 000.

В Первую мировую войну автомобили, благодаря своей подвижности, высокой скорости, грузоподъемности, сыграли большую роль. Они применялись для доставки военных грузов, переброски войск. В военных целях применялись даже парижские такси: в 1914 г. они перевезли целую бригаду на опасный участок фронта.

После Первой мировой войны начался расцвет автомобилестроения. Автомобиль доказал свою пригодность для личных поездок, крупных перевозок людей и грузов. На автомобильных заводах стал широко применяться поточный метод производства военных автомобилей. Конверсия военного производства привела к переходу многих заводов на выпуск автомобилей. На конструкции автомобилей, особенно дорогих, оказала влияние авиация. Их двигатели были авиационными, детали выполняли из легких сплавов, кузова имели «самолетные очертания», они отделывались алюминием и древесным шпоном.

Автомобили приобрели удлиненный силуэт, в салон можно было входить, не сгибаясь. Ход был плавный и бесшумный, сиденья удобные. На автомобилях стали устанавливать электрический стартер, указатели поворота, стеклоочистители, усилители тормозов, автоматические трансмиссии.

Наряду с фешенебельными машинами, которые выпускали ныне забытые фирмы, такие как «Испано – Сюиза» и «Бугатти», небольшие фирмы наладили производство 2–3местных дешевых автомобилей. На них устанавливались мотоциклетные двигатели, ременной или цепной привод, фанерные или брезентовые кузова. Такие автомобили выпускали во Франции «Ситроен» и «Пежо», в Германии «Опель» и «БМВ», в Италии ФИАТ. Простым и дешевым автомобилям сопутствовал успех.

В начале 1920х годов немцы П. Ярай и Э. Румплер провели испытания моделей автомобилей в аэродинамической трубе. Это привело к появлению автомобильных кузовов обтекаемой формы, распространенных в 30е годы прошлого века.

Немецкая фирма ДКВ первой наладила выпуск переднеприводных автомобилей. Двигатель был установлен поперек оси машины, что улучшило сцепление передних колес с дорогой, сделало капот и весь автомобиль более коротким. Двигатель был двухтактный.

В 30е годы прошлого века бурно развивалось строительство грузовиков и автобусов. Условия работы водителей этих машин улучшилось, благодаря применению пневматических шин, закрытых кабин и электрического освещения.

На большегрузных автомобилях и автобусах стали устанавливать дизельные двигатели. Кабины грузовиков сместились вперед, что позволило рационально использовать длину машины. В то время появились городские автобусы вагонного типа. В них двигатель устанавливался рядом с сиденьем водителя под кузовом или сзади. Это позволило разместить пассажирский салон практически по всей длине машины.

В 30–40е годы XX века окончательно сложились основные узлы автомобилей, их компоновка. Они сохранились и до наших дней. Несмотря на применение новых материалов и внедрение компьютеров в управление автомобилей, суть их осталась неизменной и в начале XXI века.

Антибиотики

Те, кто бывал в Европе, вероятно, обращали внимание на памятники жертвам чумы, стоящие на центральных площадях таких крупных городов, как, например, Вена. Они – красноречивое напоминание живущим о тех страшных эпидемиях, которые всего несколько столетий назад буквально опустошали Европу. Известно ли читателю о том, что в XVI в. средняя продолжительность жизни человека составляла около 30 лет, в XIX в. и даже в начале XX в. (всегото 100 лет назад) человек запросто мог умереть от незначительной раны или от обычного гриппа?

Во все времена эпидемии были самым страшным бедствием человечества. Тихим, коварным, смертельным. «Труднее всего победить врага, которого не видишь», – утверждали древние. Так и здесь: ну как можно сражаться с тем, кто в миллионы раз меньше тебя? Его не видно и не слышно, его нельзя потрогать, у него нет ни вкуса, ни запаха, ни цвета. Враг подкрадывался незаметно и убивал беззвучно…

Так было во все времена. Ученые подсчитали: от чумы, холеры, оспы погибло больше людей, чем во всех войнах! Древнегреческий историк Фукидид, описывая Пелопоннесскую войну между Афинами и Спартой, рассказал про «афинский мор» – страшную эпидемию чумы. В библейские времена чума и другие инфекционные заболевания представляли грозную опасность. Так, широко цитировалось повеление Божье из Второзакония: «…не ешьте из жующих жвачку <…> верблюда, зайца и тушканчика: потому что <…> нечисты они для вас: не ешьте мяса их и к трупам их не прикасайтесь». Однако мало кто знает, что в этом запрете – забота о людях, запрет был направлен на предотвращение элементарного и трансмиссивного заражения чумой. Другой библейский запрет гласил: «не ешьте <…> и свиньи, потому, что<…> нечиста она для вас» и был связан с профилактикой трихинеллеза – не менее страшного инфекционного заболевания.

Чума и другие инфекционные заболевания свирепствовали в Европе, в Японии, на Ближнем Востоке. Свирепствовали они и в Украине и России. Кровохарканию предшествовала острая боль в груди, затем следовали жар, обильный пот, озноб. Через три дня наступала смерть. Смертность была ужасающе высокой: мертвых не успевали хоронить, в одну могилу закапывали 5–10 трупов – вымирали целые города. Вот подлинные слова историка об эпидемии того времени: «[Мрут] бо старыя и молодыя люди, и чернцы и черницы, мужи и жены и малыя детки, не бе бо их где погребати, все могиле вскопано бяше; а где место вскопают или мужу или жене, и ту с ним положат малых деток, семеро или осмеро голов в един гроб».

Трудно себе даже представить ужас этих повальных эпидемий, как трудно представить, что еще в начале XX в., когда братья Райт уже взлетели в воздух, а Альберт Эйнштейн работал над теорией относительности, врачи лечили больных кровопусканием, порошками из высушенных земноводных и заклинаниями. А во время Первой мировой войны врачи оказались бессильны в борьбе с инфицированием ран и ожогов: при незначительных ранениях вынуждены были ампутировать руки и ноги. Сегодня, когда в любой аптеке можно купить эффективное средство от гриппа, а сама эта болезнь представляет нам лишь небольшое неудобство, отвлекающее от работы или учебы, трудно поверить, что в конце XIX в. грипп считался смертельно опасным заболеванием и уносил сотни тысяч жизней.

Человечество всегда пыталось бороться с инфекционными болезнями, но лишь с открытием бактерий и вирусов человек наконецто понял, кто является его злейшим врагом и благодаря микроскопу смог увидеть его «лицо». Вероятнее всего, человечество проиграло бы битву с микроскопическими убийцами (а многие из нас попросту не родились бы на свет, так как наши родители, возможно, тоже не родились бы на свет или же умерли в младенчестве), если бы не Божье озарение, снизошедшее на шотландского ученого, открытие которого изменило весь ход истории.

Александр Флеминг появился на свет 6 августа 1881 г. восьмым ребенком в семье фермера. В пять лет Алек пошел в школу. Путь длиною в одну милю среди вересковых пустошей. Флеминг вспоминал, что в сильные морозы мать давала каждому ребенку по две горячие картофелины, чтобы по дороге дети могли согревать руки, а придя в школу, поесть их. Флеминг всю жизнь утверждал, что ему крупно повезло, поскольку самую важную роль в его образовании сыграла именно эта маленькая шотландская школа и ежедневные прогулки туда и обратно.

В 1908 г. он выдержал вступительные экзамены в университет, работал в бактериологической лаборатории. Флеминг занялся поиском вещества, способного убить микробы. Первым его открытием был лизоцим. Лизоцим – антисептик, присутствующий в человеческом организме. Например, слезы, которые содержат лизоцим, являются прекрасным антибактериальным средством, они естественным образом защищают наши глаза от заражения микробами. Кстати, именно опыты со слезной жидкостью помогли Флемингу в открытии лизоцима. Один из его коллег вспоминал: «Мы срезали с лимона цедру, выжимали ее себе в глаза, потом пипеткой набирали слезную жидкость и переливали ее в пробирку». Вот тот мучительный опыт, посредством которого было определено, что в слезах содержится вещество, способное удивительно быстро убивать некоторые микробы. И сейчас широко используется открытое Флемингом вещество: лизоцим незаменим для предохранения продуктов питания от гниения. Кроме того, его широко применяют для лечения кишечных и глазных инфекций. И все же лизоцим был бессилен против серьезных болезнетворных микробов.

Флеминг продолжает работать. К сожалению, многие забывают, что каждое открытие – это годы, а то и десятки лет напряженной, изматывающей работы. Флеминг трудился неистово по 16 часов в сутки. Современники сравнивали его с Галилео Галилем и Джордано Бруно, ради истины пожертвовавшими жизнями. Флеминг готов был на все. Лишь в 1928 году он, еще не подозревая об этом, вплотную приблизился к главному открытию своей жизни. А произошло это так. В отличие от своих коллег, мывших чашки с бактериальными культурами после окончания работы, Александр не мыл посуду с остатками культуры по две– три недели, пока его лабораторный стол не загромождали 40 или 50 чашек, и лишь тогда принимался за уборку. Не удивительно, что, делая уборку, он заметил – остатки культур были покрыты пушистой, словно шерстка котенка, плесенью. Но вместо того чтобы выбросить заплесневелые культуры, Флеминг начал внимательно их изучать. Он заметил, что колонии стафилококка вокруг плесени растворились и вместо желтой мутной массы в чашке появились капли, напоминавшие росу. Это явление сильно заинтересовало Флеминга.

Теперь необходимо было определить вид плесени. Занявшись исследованием, Флеминг установил, что его чудодейственная плесень относится к виду «Pénicillium Notatum», виду, который был впервые открыт на сгнившем иссопе (полукустарниковом растении, содержащем эфирные масла). Осознав это, Флеминг, как глубоко верующий человек, воскликнул: «Окропи меня иссопом, и буду чист» (50й псалом Библии). Таково было первое в истории медицины упоминание о пенициллине. Во время Второй мировой войны чудодейственную плесень, антисептические свойства которой теперь не вызывали сомнений, необходимо было спасти от бомбардировок. Ради этого Флеминг и еще двое ученых из Оксфорда пропитали коричневой жидкостью подкладку своих пиджаков. Если спасется хоть один из них, он сохранит на себе споры пенициллиновой плесени и сможет вырастить новые культуры. Уже в 1943 г. американские фармацевтические компании начали производство пенициллина, и Министерство обороны дало заказ на выпуск ста двадцати миллионов единиц препарата.

Раненым перед и после операции кололи пенициллин, после чего у большинства раны рубцевались без воспалительных осложнений и нагноений. Пенициллин показался видавшим виды полевым хирургам настоящим чудом. Вскоре весь мир заговорил о чудодейственном препарате. Действительно, пенициллин спасал безнадежных больных. За всю историю человечества не было в мире лекарства, которое спасло столько жизней. Открытие пенициллина, а затем и других антибиотиков произвело настоящую революцию в медицине: пенициллин победил самые злые инфекции, увеличив тем самым среднюю продолжительность человеческой жизни на тридцать пять лет – с сорока в XVIII в. до семидесяти пяти в конце XX. Сегодня, принимая назначенные врачом таблетки бисептола или получая укол пенициллина, к сожалению, мало кто задумывается, кому мы обязаны открытием антибиотиков и что было бы с нами, если бы антибиотиков не существовало.

Но пожалуй, самое удивительное в этой истории то, что ни другие ученые, ни сам Флеминг не смогли объяснить, каким же образом обстоятельства сложились так, что в чашках с культурами оказались споры пенициллиновой плесени? А дело вот в чем. Споры плесени пенициллина, с которой Флеминг столкнулся впервые в своей лаборатории, вероятнее всего, залетели через окно. Ведь плесень, которой оказалась заражена культура, относится к очень редкому виду Pénicillium (из тысяч известных плесеней лишь одна содержит пенициллин), и чудесным образом именно она попала в лабораторию. Флеминг оставил чашку с плесенью на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а начавшееся затем потепление – для бактерий. Если бы не перепад температур, Флеминг, возможно, так никогда и не сделал бы своего знаменитого открытия. Но это еще не все. Великое открытие так и осталось бы «лежать на полке» не востребованным, если бы не еще одна счастливая случайность: ученый Чейн случайно столкнулся в коридоре с медсестрой, которая несла бутылки с мутноватозеленой жидкостью. Это была «плесень Флеминга», которой никто не занимался. Заинтересовавшись, Чейн попросил подарить ему бутылки – и начал проводить опыты, стараясь выделить чистый пенициллин.

До конца своей жизни Флеминг усматривал в этом невероятном стечении обстоятельств руку Провидения, которое позволило появиться на свет величайшему открытию, спасшему миллиарды жизней и подарившему каждому человеку пять лет жизни. Александр Флеминг никогда не считал изобретение пенициллина своей заслугой, полагая, что он лишь случайно получил в дар от Бога то, что Бог сотворил сам. Впрочем, как отмечал Пастер, судьба одаривает только подготовленные к такому дару умы.

В 1945 году Флеминг, Чейн и Флори удостоились звания лауреатов Нобелевской премии в области медицины. Это произошло именно тогда, когда завершилась Мировая война, во время которой пенициллин спас жизни миллионов людей. В последние годы жизни Флеминг был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. Но слава не вскружила ему голову. До конца своей жизни Флеминг оставался простым, скромным и веселым человеком. На его могильном памятнике нет пышной эпитафии. Только имя и два слова: «Сэр Александр Флеминг – изобретатель пенициллина».

Пенициллин так и остался не запатентованным. Ученые, получившие за открытие одну Нобелевскую премию на троих, отказались патентовать препарат. Они считали, что средство, которое может спасти человечество, не должно служить источником легкого обогащения. Вероятно, это единственное открытие такого масштаба, на которое никто и никогда не предъявлял авторских прав.

Артиллерия

Артиллерийские подразделения – старейший род войск. Рождение артиллерии связано с появлением пороха и огнестрельного оружия. Тогда на вооружении были стенобитные и метательные машины, такие как катапульта, баллист, онагр и др., однако принцип их действия, основанный на использовании силы упругости материалов естественного происхождения, принципиально отличался от действия пороховых зарядов.

Считается, что огнеметное оружие проникло в Европу с Востока, предположительно из Индии и Китая через арабов и византийцев в Iм тысячелетии н. э. Начало Ilго тысячелетия ознаменовалось повсеместным распространением и применением огнестрельных орудий в сражениях и при осаде городов.

Стволы первых «пушек» делались из кованых железных полос. Их либо сваривали при помощи кузнечной сварки, либо сворачивали железный лист вокруг стержня с последующей проковкой по шву. Дном служил конусообразный кусок железа, вбиваемый в ствол в разогретом состоянии. Стволы вкладывались в деревянную колоду (сруб) и скреплялись с ней металлическими обручами (обоймами).

Эти орудия не имели прицельных приспособлений для наводки. Прицеливание производилось путем наведения ствола на цель. Для производства выстрела поджигали пороховой заряд через специальное отверстие в казенной части при помощи раскаленного прута или тлеющего фитиля.

В качестве снарядов применялись каменные, железные и свинцовые, позже – чугунные ядра, куски железа, а также дробкартечь.

С развитием литейного дела стали отливать цельные стволы из меди и бронзы. Это позволило облегчить орудия, улучшить их баллистические свойства и обеспечило однотипность снарядов. Стволы устанавливали на колесный лафет, что резко повысило подвижность артиллерии. Были введены прицельные приспособления – прорези и мушки, это упростило наводку и сделало ее более точной. Для придания углового возвышения применялся клин, служивший подъемным механизмом.

И тут родилась идея увеличить скорострельность. Первоначально эта проблема решалась путем создания многоствольных орудий. Появились «сороки» – орудия, имевшие 7 стволов калибром 18 мм, «органы» – 4–5 рядов стволов на вращающемся барабане по пять 61миллиметровых мортирок в каждом ряду.

В XVI в. изза отсутствия унифицированной системы изготовления орудий существовало множество разных образцов и калибров. Но постепенно сложилась строгая классификация орудий по принципу их устройства и характеру боевого применения. Так, в русской армии существовала следующая классификация:

– пищали, служившие для настильной стрельбы. Они имели калибр от 38 до 219 мм, массу от 3,5 до 450 пудов. Дальность стрельбы 400–800 м;

– пушки верховые – прототипы мортир. Их калибр достигал 300–600 мм, они имели незначительную длину, масса – от 1,5 до 80 пудов. Предназначались для навесной стрельбы и разрушения городских построек при осаде города;

– тюфяки – орудия небольшого калибра (до 90 мм); стреляли картечью на расстояние 150–200 м;

– гафуницы (гаубицы), стрелявшие «каменным дробом». Они могли вести и навесной огонь ядрами.

В XVI–XVII веках зародились основы артиллерийской науки. Это стало возможным благодаря исследованиям Тартальи, Гартмана и других ученых.

В то время применялись сплошные, разрывные, зажигательные, осветительные снаряды. Сплошные – каменные, железные чугунные и свинцовые ядра, картечь. Разрывные, напоминающие бомбы и гранаты, стали предшественниками снарядов осколочного действия.

Применение зернистого пороха вместо пороховой «мякоти» позволило увеличить заряды и повысить скорострельность. Были введены картузымешочки из плотной ткани для порохового заряда. Они упростили и ускорили заряжание.

В начале XVII в. у полевых и осадных орудий имелся тяжелый деревянный лафет, который закреплялся на двухколесном передке.

В России в 60е годы XVII в. впервые появились нарезные орудия. Они были казнозарядными с поршневым затвором. В странах Западной Европы такие орудия появились примерно на 40 лет позже.

В конце XVII – начале XVIII века ведущие позиции в артиллерии занимала Швеция. Благодаря голландцу Луи де Гееру, организовавшему в стране доменное производство по новой технологии, шведская армия была вооружена легкими чугунными пушками, которые везли за армией, что обеспечивало огневое превосходство над противником.

Уже в начале XVIII в. пушкари при стрельбе пользовались таблицами. После первого произвольного выстрела определялась дальность точки падения снаряда и разница с табличными данными. Затем рассчитанную поправку вводили для уточнения наведения на цель.

В 1700–1721 гг. Россия вела войну со Швецией. Она получила название «Северная». Сначала преимущество шведской артиллерии обусловило победу под Нарвой над русскими войсками. Потом Петр I провел ряд преобразований в артиллерии, что позволило добиться перелома в войне. В 1708 г. шведский король Карл XII вторгся в пределы России. В ходе генерального сражения под Полтавой решающую роль сыграло преимущество русской армии в орудиях.

Позже Петр I устранил многокалиберность и многосистемность орудий, оставив на вооружении всего 12 образцов пушек, гаубиц и мортир. Для достижения единообразия при производстве орудий была введена единая система измерений – русская артиллерийская шкала и русский артиллерийский фунт, с помощью которых определяли калибр орудий и вес снарядов. На артиллерийские заводы были разосланы чертежи стволов с требованием, чтобы производимые орудия были однотипны. За счет улучшения конструкции была уменьшена масса орудий.

Были усовершенствованы прицельные приспособления, благодаря чему наводка орудий стала более точной. В вертикальной плоскости она осуществлялась при помощи квадранта, дугового прицела и деревянного клина, а в горизонтальной – простым перемещением орудия. Некоторые пушки имели на дульной части мушку, а на казенной – целик. В Западной Европе подобные преобразования были проведены позже – лишь во второй половине XVIII века.

В 1741 г. русский мастер А. К. Нартов сконструировал скорострельную батарею, состоявшую из 44 мортирок, расположенных на подвижном горизонтальном круге. Нартову также принадлежит прибор для наведения орудий в цель. Это была шкала, нарезанная в градусах, прикрепленная к металлическому подъемному винту.

Важнейшим нововведением в области материальной части орудий стало принятие на вооружение новой артиллерийской системы под названием «единорог», сконструированной в 1757 г. офицерами Даниловым и Мартыновым. Это была гаубица с длиной ствола 8–11 калибра, позволявшая вести настильную и навесную стрельбу всеми видами снарядов. Орудия имели калибр от 76 до 245 мм, их масса была в 2 раза меньше, чем у старых систем. Практическая дальность стрельбы достигала 1,5–2 км, а некоторых – до 5 км. «Единороги» были удобны в обращении, отличались огневой мощью и скорострельностью. Подъемный механизм состоял из вертикального винта и неподвижной гайки. В качестве прицелов вместо прорези с мушкой применялся диоптр, что повышало качество наводки.

«Единорог» был гораздо совершеннее старых артсистем. Его позаимствовали страны Западной Европы, он состоял на вооружении почти 100 лет.

В конце XVIII – начале XIX века совершенствовалась организация артиллерии. Ее стали концентрировать на важнейших направлениях, применялся новый огневой маневр – стрельба через голову своих войск.

Толчком к развитию артиллерии стали войны наполеоновской Франции. Сам Наполеон, в прошлом офицерартиллерист, умело применял артиллерию и своими победами во многом обязан этому роду войск.

В битве при Бородино важную роль играла артиллерия обеих воюющих сторон. Русская армия имела небольшое количественное и качественное преимущество перед французами. Кутузов умело маневрировал своими артиллерийскими резервами.

В первой половине XIX в. была создана горная артиллерия, изобретены боевые ракеты – прообраз современной реактивной артиллерии.

Во второй половине XIX в. произошел качественный рывок в развитии артиллерии: появились нарезные орудия. Первые образцы нарезных бронзовых орудий, заряжавшихся с дула, были приняты на вооружение в 1857 г. во Франции, в России – в 1858 г. В 60е годы XIX в. на вооружение были приняты нарезные пушки, заряжавшиеся с казенной части. К ним прилагались продолговатые снаряды со свинцовыми ведущими частями. Сами пушки уже делались из стали.

Переход к нарезной артиллерии способствовал увеличению дальности стрельбы в 2–2,5 раза и точности – более чем в 5 раз. Теперь можно было буквально расстреливать боевые порядки противника.

В 70–80е годы XIX в. все развитые государства Европы перевооружили свои армии дальнобойной стальной артиллерией. Русский изобретатель Барановский создал 2,5дюймовую скорострельную пушку с унитарным патроном. В 1884 г. француз Вьель изобрел медленно горящий бездымный порох, что ускорило развитие скорострельной артиллерии.

Русскояпонская война 1904–1905 гг. доказала преимущество скорострельной артиллерии. Благодаря применению угломера и панорамы, русские артиллеристы впервые стреляли с закрытых позиций. В ходе этой войны капитан Гобято создал новый вид артиллерийского оружия – миномет. Он предназначался для поражения живой силы противника, которая пряталась за укрытиями.

Для пробивания бронированных сооружений адмирал С. О. Макаров предложил конструкцию бронебойных снарядов с баллистическим наконечником из тигльной и хромистой стали.

Уже после Русскояпонской войны стала развиваться измерительная и наблюдательная техника. В 1909 г. в России была создана первая звукометрическая станция.

К началу Первой мировой войны артиллерия основных воюющих государств насчитывала свыше 26 000 орудий и подразделялась на полевую легкую, конную, горную, полевую тяжелую и тяжелую осадную. Кроме того, в германской армии на вооружении уже было около 160 минометов.

В ходе войны во всех армиях обнаружилось предпочтение гаубичной и тяжелой артиллерии. Это было связано с позиционным характером войны и необходимостью поражать закрытые цели. Зародилась артиллерия сопровождения пехоты, в которую входили легкие пушки (калибр – 45 мм), гранатометы и минометы. Минометов становилось все больше и больше.

Быстрое развитие авиации привело к появлению зенитной артиллерии. В 1918 г. в армиях воюющих стран насчитывалось 4200 зениток. Применение танков привело к созданию противотанковой артиллерии.

Шрапнель – основной снаряд довоенной артиллерии, был заменен гранатой. Появилось много специальных снарядов – зажигательные, химические, дымовые, пристрелочные.

Возникли и новые подходы к управлению артиллерийским огнем, более точные методы расчета данных для стрельбы, новый вид огня – заградительный, а также огневой вал как способ сопровождения пехоты. Для повышения подвижности применяется механическая тяга.

В 1920–1930е годы была полностью обновлена материальная часть, вводились новые орудия: гаубицыпушки, новые марки пороха, снарядов. Артиллерия переводилась на механическую тягу, испытывались первые образцы самоходной артиллерии.

Но увлечение перспективами воздушной и танковой войн привело к недооценке роли артиллерии в США, Франции и Англии. В Германии на вооружении стояли в основном модернизированные орудия времен Первой мировой войны.

Наиболее полно вопросы боевого применения артиллерии в 20–30е годы XX в. были отработаны в Советском Союзе. В созданной советскими военными теоретиками «теории глубокой операции» артиллерия во взаимодействии с другими родами войск должна была взламывать оборону противника, сопровождать огнем наступающие войска, вести борьбу с танками и авиацией противника. Это выразил И. В. Сталин в 1940 г. крылатой фразой «Артиллерия – бог войны».

На вооружение были приняты осколочнофугасные, фугасные, бронебойные, бетонобойные, дымовые, зажигательные снаряды. Перед самой войной в СССР была создана реактивная артиллерия – знаменитые «катюши».

Вторая мировая война способствовала всестороннему развитию артиллерии, особенно новых ее видов – зенитной, противотанковой, реактивной и самоходной. В ходе войны выявилась неспособность танков и авиации осуществлять прорыв хорошо укрепленной обороны без поддержки артиллерии. Это вызвало увеличение артиллерийского парка во всех воюющих странах.

Наша армия перешла к новым формам артиллерийского обеспечения боя – артиллерийскому наступлению, включавшему артподготовку, поддержку пехоты и сопровождение боя пехоты и танков. К концу Второй мировой войны артиллерия была переведена в основном на механическую тягу, что повысило ее подвижность.

Во второй половине XX в. происходит качественное усиление роли артиллерии. Возросла дальность, точность стрельбы, мощность снарядов. В артиллерии применяются усовершенствованные системы оптической, звуковой и радиолокационной разведки, приборы управления огнем. Были разработаны активнореактивные снаряды, боеприпасы кассетного типа, различные виды химических боеприпасов, ядерные боеприпасы.

Артиллерия остается на вооружении всех развитых стран мира.

Атомная бомба

Атомное оружие – результат всего предшествующего развития науки и техники. Открытия, которые непосредственно связаны с его возникновением, были сделаны в конце XIX в. Огромную роль в раскрытии тайны атома сыграли исследования А. Беккереля, Пьера Кюри и Марии СклодовскойКюри, Э. Резерфорда и др.

В 1896 г. французский физикА. Беккерель открыл испускаемое ураном неизвестное проникающее излучение, которое назвал «радиоактивным». Вскоре была обнаружена радиоактивность другого химического элемента – тория. В 1897 г. англичанин Дж. Томсон, будущий лорд Кельвин, изучая катодные лучи в разрядной трубке, пришел к выводу, что это – поток отрицательных электронов. Томсон измерил отношение заряда электрона к его массе, а затем и заряд частицы.

В 1898 г. супруги Кюри открыли два новых радиоактивных элемента – полоний и радий. Кюри, а также ученик Томсона Э. Резерфорд установили наличие трех видов излучения радиоактивных элементов – α, β, γлучи. βлучи имели отрицательный заряд и оказались открытыми Томсоном электронами. В 1903 г. Резерфорд и Ф. Содди обнаружили, что испускание αлучей сопровождается превращением химических элементов, например радия в радон.

В 1917 г. Резерфорд открыл положительно заряженную частицу, оказавшуюся ядром атома водорода. Ее назвали протоном. Масса протона – в 2000 раз больше массы электрона.

С 1919 г. физикиэкспериментаторы изучали ядра элементов, бомбардируя их αчастицами (ядрами гелия) и протонами. При обстреле ядра попавшая в него частица меняла заряд ядра и атомный вес, т. е. превращала один элемент в другой. Впервые это сделал Резерфорд, получив при обстреле ядер азота αчастицами ядра кислорода.

В 1932 г. английский физик Дж. Чедвик доказал, что при бомбардировке бериллия αчастицами появляются новые элементарные частицы (нейтроны), которые, как указывал в то время советский физик Д. Иваненко, вместе с протонами (ядрами атомов водорода) составляют атомное ядро (до этого предполагали, что атом состоит лишь из протонов и электронов). Нейтрон не имеет электрического заряда, поэтому его было трудно обнаружить.

Тогда же английские ученые Дж. Кокрофт и Э. Уолтон осуществили первую ядерную реакцию посредством искусственного ускорения движения протонов. В начале 1934 г. супруги Фредерик и Ирен ЖолиоКюри доложили Французской академии наук об открытии искусственной радиоактивности при бомбардировке пластины алюминия αчастицами, испускаемыми радиоактивным препаратом. Атомы алюминия при этом превращались в атомы фосфора, но не обычные, а радиоактивные, которые, в свою очередь, превращались в устойчивый изотоп кремния. Одновременно с супругами ЖолиоКюри итальянский ученый Э. Ферми наблюдал искусственную радиоактивность, вызванную бомбардировкой нейтронами ряда элементов. После первых опытов были обнаружены искусственные радиоактивные изотопы многих химических элементов. В 1940 г. было открыто более 200 искусственных радиоактивных изотопов.

После открытия искусственной радиоактивности ученые всего мира начали интенсивно изучать элементарные частицы и ядерные реакции. В 30е годы XX в. были заложены принципиальные основы новой отрасли техники. Важную роль сыграло изучение процесса ядерных цепных реакций.

В 1939 г. немецкие ученые О. Ган и Ф. Штрасман сообщили об открытии нового явления – деления атомных ядер урана под действием медленных нейтронов. Вскоре было установлено, что это деление происходит по закону цепной реакции. Нейтроны, попадая в ядра урана с атомным весом 235, не только разрушали их, но при определенных условиях вызывали появление новых нейтронов. Те, в свою очередь, разрушали последующие ядра урана и таким образом обеспечивали цепную реакцию, идущую с выделением колоссальной энергии. Среди конечных элементов облучения ученые обнаружили барий и молибден. Так было установлено, что ядро урана раскалывается на более легкие ядра. Этот процесс назвали расщеплением ядра. Позже он получил название «деление».

Опыты Ф. ЖолиоКюри показали, что при делении урана выделяется громадное количество энергии. Осколки ядер урана были обнаружены на расстоянии 3 мм от места их деления, что свидетельствовало о ядерном взрыве.

В 1940 г. советские ученые Г. Флеров и К. Петржак открыли самопроизвольное деление урана.

В декабре 1942 г. в Чикагском университете Э. Ферми впервые удалось осуществить ядерную цепную реакцию в первом ядерном реакторе с графитовым замедлителем нейтронов и естественным ураном235. Технология производства урана235 была крайне сложна, ибо в общей массе естественного урана этот изотоп составляет лишь 0,72 %, а остальное приходится на уран с атомным весом 238 (99,2 %) и отчасти – 234. Разница между изотопами урана в том, что уран238 в отличие от урана235 не делится медленными или, как их еще называют, тепловыми нейтронами. Он поглощает эти частицы, как и быстрые нейтроны, не успевшие отдать свою энергию в процессе замедления.

В связи с этим возникла проблема разделения двух изотопов урана.

В США был разработан так называемый «Манхэттенский проект». Этот проект ознаменовал создание атомного оружия. В проекте принимали участие выдающиеся европейские ученые, которые, спасаясь от фашистов, эмигрировали в Америку. Среди них были А. Эйнштейн, Э. Ферми и др.

Первое практическое использование неконтролируемой ядерной реакции было осуществлено в рамках «Манхэттенского проекта» 16 июля 1945 г., когда в штате НьюМексико была взорвана опытная атомная бомба.

6 августа 1945 г. на японский город Хиросима американцы сбросили первую атомную бомбу «Малыш» с урановым зарядом. 9 августа атомной бомбардировке подвергся другой японский город, Нагасаки. Он пострадал от взрыва «Толстяка» с зарядом из плутония – трансуранового элемента, синтезированного в 1941 г. группой американских ученых под руководством Г. Сиборга. Мощность обоих взрывов равнялась примерно 20 килотоннам в тротиловом эквиваленте.

В Хиросиме в результате взрыва погибло свыше 140 тысяч человек, в Нагасаки – около 75 тысяч человек. Тысячи людей получили большие дозы радиоактивного облучения и заболели лучевой болезнью.

Ядерный взрыв характеризуется пятью поражающими факторами. Ударная волна воздействует на все объекты, встречающиеся на ее пути, разрушая здания в радиусе нескольких километров от эпицентра взрыва; световое излучение оплавляет, деформирует и воспламеняет материалы и вызывает у людей ожоги различной степени тяжести в зависимости от расстояния до эпицентра; после взрыва в течение 10–15 секунд возникает поток гаммаизлучения и нейтронов – проникающая радиация (онато и вызывает возникновение лучевой болезни); подобное воздействие имеет и радиоактивное заражение местности: оно происходит в результате выпадения радиоактивных веществ из облака ядерного взрыва и радиации, обусловленной образованием радиоактивных изотопов под воздействием нейтронного и гаммаизлучения. В отличие от проникающей радиации, радиоактивное заражение местности сохраняется на протяжении длительного времени; последним поражающим фактором является электромагнитный импульс, воздействующий на антенны, провода, средства связи – в них наводится электрическое напряжение, повреждающее эти устройства.

США пытались использовать монополию на ядерное оружие, чтобы диктовать условия другим странам. Над разработкой атомной бомбы в Советском Союзе работала группа ученых под руководством И. В. Курчатова. Результатом их работы стал произведенный в 1949 г. в СССР атомный взрыв.

В США ускорили работы над термоядерной (водородной) бомбой. Взрыв ядерного заряда в бомбе вызывает термоядерную реакцию, подобную происходящей на Солнце и других звездах. Водород в звездных недрах постоянно находится под воздействием высочайших температур, что способствует превращению его в другой элемент – гелий – с выделением огромного количества энергии. О выделяющейся при реакциях энергии можно судить по следующим цифрам: при синтезе 1 кг тяжелого водорода (дейтерия) выделяется такая же энергия, как и при сжигании 8–12 т каменного угля.

1 ноября 1952 г. на атолле Эниветок американцы взорвали термоядерное устройство мощностью 3 мегатонны. 12 августа 1953 г. в Советском Союзе на Семипалатинском полигоне была взорвана водородная бомба. В 1954 г. американцы провели новое испытание водородной бомбы на атолле Бикини.

В 50–60 гг. прошлого века ядерные боеприпасы были созданы и испытаны в Великобритании (в 1952 г.), Франции (в 1960 г.), Китае (в 1964 г.). Термоядерное оружие появилось в Великобритании в 1957 г., в Китае в 1967 г., во Франции в 1968 г. Мощность термоядерного заряда может достигать 20 и более мегатонн.

В 1950–1960 годы появились совершенные средства доставки ядерных боеприпасов к цели. Это ракеты, базирующиеся в шахтах на передвижных ракетных установках, расположенных на автомобилях и железнодорожных платформах. Помимо того, ядерными ракетами вооружены стратегические атомные подводные лодки. Атомные и термоядерные заряды также могут доставляться стратегическими бомбардировщиками.

Начиная с 50х годов прошлого века страны, имевшие ядерное оружие, проводили испытания этого оружия на специальных полигонах. Цель – совершенствование этого смертоносного оружия. Испытания были наземными, воздушными, подводными и подземными. В 1963 г. вступил в силу договор о запрещении всех видов испытаний, кроме подземных.

В 1960–1970е годы начались переговоры глав великих держав об ограничении ядерного вооружения и предупреждения возможных конфликтов с применением ядерного оружия. Делались попытки предотвратить его распространение в другие страны. Но наряду с этим, разрабатывались новые виды оружия. В качестве примера можно привести нейтронную бомбу, уничтожающую все живое, но оставляющую в целости здания. Совершенствовались средства доставки боеприпасов.

Атомное оружие разработали в Израиле, Индии, Пакистане и, по некоторым данным, в Северной Корее.

Как это ни парадоксально, но большинство исследователей признают, что именно ядерное оружие стало фактором, сдерживающим развитие конфликтов между крупными государствами во второй половине XX в. Угроза взаимного уничтожения заставляла противоборствующие стороны садиться за стол переговоров. В качестве примера можно привести мирное разрешение Карибского кризиса в 1962 г. Причиной его возникновения стало размещение в Турции американских ракет, нацеленных на СССР, в ответ СССР разместил свои ракеты на Кубе.

Атомная электростанция

В 1922 г. в Петрограде академик Ферсман прочитал доклад. Он назывался «Пути к науке будущего». Ученый предсказывал использование грандиозных запасов внутриатомной энергии.

При сгорании ядерного топлива в урановом реакторе выделяется в 10 000 000 раз больше энергии, чем при сгорании равной по весу порции органического вещества в топке обычной тепловой электростанции.

Условием работы атомного реактора, утверждал ученый, является цепная реакция деления ядра урана, для чего следует обстреливать уран235 нейтронами. Последние, взаимодействуя с атомами урана, вызывают деление их ядер. Деление одного ядра, в свою очередь, вызывает деление других. При этом происходит выделение нейтронов. Для обеспечения самоподдерживающейся цепной реакции необходимо такое количество урана, критическая масса которого была бы около 50 кг.

Уменьшить критическую массу можно, смешав уран с какимлибо неделящимся веществом. Принцип работы реактора был открыт Э. Ферми. В 1934 г. он вместе со своими сотрудниками Б. Понтекорво и Амальди исследовал радиоактивность различных элементов. Образцы представляли собой пустотелые цилиндры со вставленными в них источниками нейтронов. При облучении материала цилиндра нейтронами образовывались радиоактивные ядра. В ходе экспериментов было обнаружено, что активность материала зависит от предметов, стоящих вблизи цилиндра. Наибольшая радиоактивность была достигнута при погружении цилиндра в бассейн с водой. Ферми объяснил это тем, что, сталкиваясь с почти равными по весу атомами водорода, нейтрон теряет большую часть своей энергии. Его скорость равна примерно 2000 м/с. Такие нейтроны называют медленными, а нейтроны, образующиеся при делении и имеющие скорость 20 000 км/с, – быстрыми.

Снижение скорости нейтронов позволяет увеличить количество нейтронов, взаимодействующих с ядрами, а следовательно, и число делящихся ядер. Открытие Ферми позволило построить реактор, в котором происходило удержание достаточного количества нейтронов, рождающихся при делении.

Работы по созданию ядерного реактора велись в начале 40х годов прошлого века в Германии, США и СССР.

Немецкие ученые, спеша создать атомную бомбу, построили в подземной лаборатории Хайгерлох реактор, в котором в качестве замедлителя применялась «тяжелая вода» – соединение кислорода с дейтерием – тяжелым изотопом водорода. Не хватало критической массы: для осуществления самоподдерживающейся цепной реакции необходимо 1,5 тонны урана и 2 тонны тяжелой воды. В Норвегии в это же время был выведен из строя завод по производству тяжелой воды.

В 1942 г. в Чикагском университете был запущен ядерный реактор, в котором в качестве замедлителя использовался особо чистый графит. В 1946 г. реактор такого же типа был запущен в СССР. Оба реактора гетерогенного типа: в них уран был собран в блокистержни, между которыми размещались блоки графита. Благодаря такой конструкции быстрые нейтроны замедляются в блоках графита, не поглощаясь атомами урана238. В качестве замедлителя в таких реакторах применяется тяжелая вода.

В гомогенных реакторах горючее в виде тонкого порошка находится во взвешенном состоянии в жидком замедлителе (обычно соль урана, равномерно распределенная в тяжелой воде). Позже появились реакторы, в которых использовался расплавленный висмут, содержащий торий и небольшое количество урана233.

Запуск реактора осуществлялся следующим образом: вначале реактор приводят в состояние надкритичности, вводя больше урана, чем это необходимо для поддержания цепной реакции. Мощность реактора возрастает. Для ее ограничения в реактор вводят поглотитель нейтронов – бор в количестве, достаточном для поддержания критического уровня работы реактора. Для управления процессом в рабочем объеме реактора предусмотрены пустоты для поглотителя – отверстиятоннели, проходящие через весь реактор. Мощность регулируют, погружая стержни в тоннели или выводя их.

В 1945 г., когда атомные бомбы уже уничтожили Хиросиму и Нагасаки, крупным американским ученым задали вопрос: «Удастся ли и когда использовать атомную энергию в мирных целях?». Почти все ученые назвали одну цифру: 50 лет (1995 г.). Почему же именно этот срок называли американцы?

Американские специалисты руководствовались не столько техническими, сколько экономическими соображениями. Они исходили из того, что атомная энергия дороже энергии, вырабатываемой тепловыми или гидроэлектростанциями. Поэтому ее производство станет экономически обоснованным только тогда, когда начнут истощаться запасы нефти.

Эксперты ошиблись: уже в 1954 г. в СССР в Обнинске была пущена в эксплуатацию первая атомная электростанция мощностью 5 мегаватт.

Реактор первой советской атомной электростанции работал на обогащенном естественном уране, в котором содержание урана235 было доведено до 5 %. Реактор находился в стальном баке диаметром 3 м и высотой 4,6 м. Он был заполнен графитом, в центральной его части было 128 рабочих каналов, туда опускались стержни урановых тепловыделяющих элементов. Эти стержни были окружены длинными графитовыми цилиндрами и образовывали активную зону диаметром 150 см и высотой 170 см.

Работа реактора начиналась лишь после того, как в него опускали более 60 стержней. Общая загрузка урана в реактор составляла 550 кг. Суточный расход урана – примерно 30 г, что эквивалентно 100 т угля. Регулировка мощности реактора осуществлялась при помощи стержней из карбида бора, активно поглощающего нейтроны. В качестве теплоносителя в первичном контуре применялась циркулирующая вода, имевшая давление 100 атм и температуру 280–290 °C.

В теплообменнике (парогенераторе) образовывался перегретый пар с давлением 12–13 атм и температурой 260–270 °C, поступавший в турбину электростанции. Полный КПД электростанции – 17–19 %. За первые два года эксплуатации Обнинская АЭС израсходовала несколько килограммов урана. Тепловая электростанция такой же мощности сожгла бы за тот же период более 75 тыс. т угля.

В 1956 г. в Англии в КолдерХолле была введена в эксплуатацию АЭС промышленного назначения мощностью 46 МВт. В 1957 г. заработала первая американская АЭС мощностью 60 МВт в Шиппингпорте.

В реакторах, работающих на быстрых нейтронах, замедлитель отсутствует, а теплоносителем обычно является жидкий металл. Цепная реакция поддерживается непосредственно быстрыми нейтронами. В таком реакторе применяется практически чистый изотоп урана235 или искусственно полученное вторичное ядерное горючее – плутоний239 и уран233. Это вторичное горючее получают в таком же реакторе в ходе процесса расширенного воспроизводства горючего.

Такие реакторы получили название бридерные, или реакторыразмножители. В 1951 г. в США был построен первый опытный бридерный реактор, ас 1953 г. развернулись работы по созданию крупного реактора такого типа.

В Советском Союзе в 1950–1960е годы использовались реакторы на быстрых нейтронах типа «БР1», «БР2», «БР5». Определив коэффициент воспроизводства и другие физические характеристики, советские ученые спроектировали реакторы на быстрых нейтронах мощностью в 50 и 250 тыс. кВт. Промышленные АЭС на быстрых нейтронах были построены в городах Шевченко и Белоярске.

Одной из наиболее важных задач в области атомной техники является совершенствование методов очистки и переработки тепловыделяющих элементов реактора. В процессе работы ядерного реактора свойства топлива ухудшаются. В нем накапливаются продукты деления (шлаки). Они захватывают нейтроны, уменьшая их число и препятствуя протеканию самоподдерживающейся цепной реакции. Поэтому в реакторе периодически заменяют тепловыделяющие элементы (ТВЭЛы). На специальных химических заводах они подвергаются переработке с целью удаления осколков деления и выделения накопившихся плутония и урана. Это львиная доля расходов на эксплуатацию реактора.

Первые исследовательские реакторы с графитовым или тяжеловодным замедлителем и естественным ураном были дорогими и громоздкими. Принципиально новым шагом явилось создание водоводяных реакторов. В них замедлителем и отражателем нейтронов, а также теплоносителем и частично защитой служит обычная вода.

Помимо описанных выше водоводяных и графитоводных реакторов также применяются и другие виды реакторов на тепловых нейтронах. Это тяжеловодные с водяным теплоносителем и тяжелой водой в качестве замедлителя и графитогазовые, в которых в качестве теплоносителя применяется газ (гелий или углекислый газ), а в качестве замедлителя – графит. В качестве теплоносителя и охладителя могут использоваться также жидкие или расплавленные металлы: натрий, свинец, калий.

Выбор типа реактора определяется накопленным опытом в реакторостроении, наличием необходимого оборудования и запасами сырья. В СССР строились преимущественно графитоводные и водоводяные реакторы, в США – водоводяные, в Великобритании – графитогазовые.

Атомные электростанции, в зависимости от системы теплопередачи, могут иметь одно, двух– и трехконтурные схемы. Если теплоноситель – жидкий металл, то он в особом теплообменнике отдает тепло другому теплоносителю – газу или воде, использующимся в турбинах в виде пара или горячих газов. Такая схема с промежуточным теплообменником называется двухконтурной. Ее применение позволяет ограничиться установкой биологической защиты лишь для реактора и теплообменника и исключает ее необходимость для всего теплосилового оборудования.

Для регулирования работы реактора применяются кадмиевые стержни или стержни из бора и гафния, изменяющие величину потока нейтронов.

Биологическая защита реактора представляет собой слой вещества, отражающего нейтроны, и защитные слои веществ (бетона, свинца, воды, серпентинового песка). Оборудование реакторного контура устанавливается в герметичных боксах. Места возможной утечки контролируются специальными системами. При авариях в системе охлаждения реактора предусматривается быстрое глушение ядерной реакции.

В 1960е годы в мире стремительно строились мощные АЭС, каждая из которых состояла из нескольких блоков. Кроме выработки электроэнергии на некоторых АЭС устанавливались устройства для опреснения морской воды.

Темпы строительства атомных электростанций резко упали после аварии в 1986 г. на Чернобыльской АЭС. При разгерметизации реактора в окружающую среду было выброшено огромное количество радиоактивных веществ.

Это вызвало дискуссии о целесообразности применения ядерной энергии, влиянии атомной энергетики на окружающую среду. Возникли проблемы с переработкой и захоронением радиоактивных отходов. Некоторые страны отказались от строительства новых АЭС и стали консервировать действующие. Но растущее потребление электроэнергии и назревающий кризис добычи энергоносителей заставляют ученых и инженеров проводить дальнейшие исследования в области атомной энергетики. Наиболее актуальным направлением является осуществление управляемой термоядерной реакции.

Бетон

Бетон представляет собой смесь вяжущего вещества, наполнителя и воды. После высыхания образуется прочная монолитная масса. Используя специальную форму, опалубку, этой массе можно придать различную форму.

Само слово «бетон» родилось во Франции в XVIII веке. Римляне материал, подобный бетону, называли поразному. Так, литую кладку с каменным заполнителем они именовали греческим словом «эмплектон» (emplekton ). Встречается также слово «рудус» (rudus ). Однако чаще всего при обозначении таких понятий, как раствор, используемый при возведении стен, сводов, фундаментов и тому подобных конструкций, в римском лексиконе употреблялось словосочетание «опус цементум» (opus caementitium ), которым и стали называть римский бетон.

Самое раннее применение бетона, обнаруженное археологами, можно отнести к 5600 г. до н. э. Найден на берегу Дуная в поселке Лапински Вир (Югославия). В одной из хижин поселения каменного века был обнаружен бетонный пол толщиной 25 см. Бетон был изготовлен из гравия и извести.

Древнейшими вяжущими веществами, используемыми человеком, были глина и жирная земля, которые после смешивания с водой и высыхания приобретали некоторую прочность. По мере развития и усложнения строительства возрастали требования, предъявляемые к таким веществам. В Египте, Индии и Китае еще в третьем тысячелетии до н. э. начали изготавливать искусственные вяжущие вещества, такие, как гипс, позднее – известь, которые получали посредством умеренной термической обработки исходного сырья.

Наиболее раннее применение бетона в Египте, обнаруженное в гробнице Тебесе (Теве), датируется 1950 г. до н. э. Бетон использовался при строительстве галерей египетского лабиринта и монолитного свода пирамиды Нима тоже задолго до нашей эры.

Многие алхимики считали, что «философский» камень был известен еще в Древнем Египте, там его получали, дробя определенные камни. Французский химик Д. Давидович дробил в порошок известняк, гранит, базальт, смешивал порошок с нильским илом, водой, в качестве связующего вещества использовал сок чеснока. Полученную смесь он отливал в форму и получал искусственный камень, который трудно отличить от природного. Давидович предположил, что и блоки египетских пирамид были сделаны из такого бетона.

В Древнем Риме бетон изготавливали, используя гашеную известь, к которой добавляли вулканическую пыль – пуццолану или кирпичную пыль. Эту смесь тщательно уплотняли. Повышению долговечности бетона способствовали и географические условия Италии с ее теплым и влажным климатом, в то время как в других странах с более суровым климатом постройки из такого же бетона сохранялись плохо. Даже сегодня не потеряли своей значимости конструктивные особенности римских бетонных дорог, полов, сводов и куполов. Не умея бороться с растягивающими и изгибными напряжениями бетонных конструкций, римляне заставили их работать на сжатие. Сочетание этих нововведений и явилось, видимо, основной причиной долговечности римского бетона.

Появление современного бетона связано с появлением цемента. Этот материал был изобретен в 1824 г. английским каменщиком Джозефом Аспдином. Он предложил способ обжига смеси гашеной извести с глиной, в результате чего получалось порошкообразное вещество, которое при смешении с водой затвердевало на воздухе в камнеподобную массу. Аспдин назвал цемент портландским изза внешнего сходства с серым камнем, добываемым около г. Портланда в Англии.

Цемент в большинстве случаев применяется не в чистом виде, а в смеси с заполнителем – песком и каменным щебнем, – образуя бетон. В конце XIX в. бетон стал одним из основных строительных материалов. Необходимость строительства крупных сооружений не только на поверхности земли, но и под водою, сделала бетон, особенно в сочетании с железной арматурой (железобетон), незаменимым материалом. Он использовался для строительства мостовых быков, фундаментов зданий, массивных свай, молов, плотин, тоннелей и т. д.

Тогда же появляется и совершенно новый строительный материал – железобетон, представляющий собой комплексное соединение, состоящее из бетонной массы и распределенного внутри нее металлического скелета, или арматуры. Идея сочетания камня и металла возникла еще в начале XIX в., но широкое применение железобетона началось лишь после создания цемента.

Первые попытки соединить металлическую арматуру с бетоном относятся к середине XIX в. На Всемирной Парижской выставке 1855 г. французский инженер Ламбо представил лодку, корпус которой состоял из железного каркаса, залитого цементным раствором. В 1861 г. вышла книга французского ученого Коанье, где описано уже несколько конструкций из бетона с металлической сеткой. Тем не менее, изобретателем железобетона считается французский садовник Монье, применивший в 1867 г. железобетон для изготовления цветочных кадок. Стенки кадок Монье изготовлялись из цементного раствора с каркасом из металлической сетки. За первым изобретением последовали другие. В 1868 г. он получил патент на изготовление труб и резервуаров из железобетона, в 1869 г. – патент на изготовление из железобетона плоских плит, в 1877 г. – железнодорожных шпал. В 1885 г. Mонье продал право на эксплуатацию своих изобретений. С этого времени началось широкое применение железобетона в строительстве.

Железобетон – основной строительный материал современности. К его основным достоинствам относятся прочность, жесткость, возможность получать сложные формообразования, высокие гигиенические качества (отсутствие грибка, гнили, насекомых), огнестойкость, долговечность (прочность бетона с течением времени лишь возрастает). Кроме того, бетон сопротивляется сжатию, а сталь – растяжению, бетон защищает металл от коррозии.

Современный мир трудно представить без бетона. Дома и мосты, плотины и тоннели – далеко не полный список того, что делается из бетона. Поэтому бетон заслуживает звания настоящего философского камня.

Бумага

С появлением письменности возникла потребность в материалах для письма. Первоначально для этого использовался камень. Но, несмотря на распространенность, постепенно пришлось отказаться от него ввиду сложности обработки и невозможности быстрой записи.

Позже с этой целью стали использовать глину. Мягкая и податливая во влажном состоянии, она хорошо запечатлевала знаки, наносимые твердой заостренной палочкой, а после высушивания или обжига надежно их сохраняла. Наибольшее распространение в этом качестве глина получила в Передней Азии и Междуречье, где были найдены целые библиотеки из глиняных табличек.

В различных районах Земли для сохранения информации использовались различные материалы: кора дерева, листья, кожа, кости, металл. На Руси долгое время наиболее распространенным носителем информации была береста – слои березовой коры.

В древнем Египте примерно в IV в. до н. э. начали применять папирус. Его изготовляли из стеблей нильской лилии. Стебли разрезали на узкие полоски, затем складывали рядами в два слоя крестнакрест на плоской каменной плите, покрывали куском ткани и отбивали плоским камнем. Полученную пленку сушили, разглаживали и лощили. Полосы папируса имели ширину 30–40 см и длину, иногда достигавшую 40 м. На папирусе писали тушью с помощью заостренной палочки или кисти из тростника.

Позже стали использовать письмо по воску, который заливался в деревянные таблетты. Для письма брали специальный металлический инструмент – стилус. Когда запись была не нужна, ее стирали обратным плоским концом стилуса.

Письмо по воску существовало до появления пергамента – специально обработанной кожи животных. Он изготавливался по довольно сложной технологии, но зато был долговечен и позволял делать записи высокого качества.

Считается, что бумага была впервые изготовлена примерно в 105 г. н. э. китайцем Цай Лунем из особого сорта крапивы. Отделенные от склеивающего вещества волокна мелко перетирались и путем многократного встряхивания в специальной форме переплетались. Готовый лист выкладывался на гладкий стол, накрывался каменной плитой и высушивался. Китайская бумага была легкой и мягкой, для производства не требовалось больших усилий и дорогого сырья.

В 751 г. производство бумаги из тряпья началось в Самарканде, в 794 г. – в Багдаде. В X в. бумагу стали делать в Египте и Северной Африке. Там наряду с плотной писчей и оберточной бумагой делали тончайшие листы для голубиной почты.

Примерно в 1150 г. бумага попала в Испанию. Здесь заработали первые в Европе бумажные мельницы. Высокого качества бумагу производили в Валенсии и Толедо. Сначала бумагу делали из хлопка, позже – из очесов, ветхого белья, старых канатов и парусов.

Основными операциями в бумажном производстве были очистка и промывка тряпья, толчение его пестами в деревянных корытах, разрыхление полученной массы в чанах с водой и ее разливка на тонкие проволочные сетки. В целом технология насчитывала около 30 операций.

В Италии бумага появилась в 1154 году. Там центром ее производства стал город Фабриано. Итальянские мастера значительно облегчили способы изготовления бумаги, применив для превращения волокнистого сырья в кашицеобразную массу так называемые толчеи. Они представляли собой толстое бревно с выдолбленными в нем углублениями или каменное корыто. Их заполняли измельченным тряпьем, добавляли воду и толкли деревянными пестами, окованными железом. Песты приводились в движение деревянным валом с кулачками, соединенным с колесом водяной мельницы. Итальянцы ввели в практику проклейку бумаги животным клеем. Это повысило ее прочность и снизило капиллярность.

Первая бумага была рыхлой, непрочной, сероватого или желтоватого цвета. Со временем ее качество росло, с конца XIII в. на бумаге европейского производства появились водяные знаки.

С появлением книгопечатания к бумаге стали предъявлять новые требования. Она должна была стать более гладкой, ровной, прочной, упругой, эластичной, хорошо впитывать краску.

На рубеже XVII–XVIII веков в Голландии появился новый размалывающий аппарат – ролл. Он представлял собой ванну объемом от 3 до 18 м3, разделенную на две части (канала). В одном из каналов установлен ножевой размалывающий барабан, под которым закреплялись ножи, собранные в планки. При прохождении водного раствора, содержащего волокнистый материал, между ножами планки и вращающегося барабана материал размалывался и ножами барабана перебрасывался через перегородку в другой, оборотный канал, по которому вновь попадал в барабан. Ролл применяли в производстве тонких сортов бумаги.

В конце XVIII в. появилась цилиндрическая машина для бесконечной бумаги, т. е. машина, в которой рабочим органом является цилиндр (барабан), обтянутый металлической тканью. Ее изобретателем был Лейстеншнейдер из французского города Понсэ.

В 1799 г. француз Л. Робер создал «самочерпалку» – машину с механизированным отливом бумаги на бесконечной сетке с ручным приводом, расположенную над черпальным чаном. Позже к этому оборудованию были добавлены непрерывные секции прессования, сушки, каландрирования (пропускания между валами для придания гладкости), намотки бумаги в рулоны.

Появление полиграфических машин увеличило потребность в бумаге. В связи с этим, наряду с производством бумаги из тряпья, появилась бумага из целлюлозы. Ее производство впервые наладил в Германии в 1844 г. Ф. Келлер.

Во II половине XIX в. бумагоделательная машина была значительно усовершенствована: увеличилась ширина бумажного полотна, достигающая на современных машинах 9 м, возросла скорость выработки. Появились новые виды бумажной продукции, например многослойный картон, фильтрующая бумага для очистки моторных масел и топлива, конденсаторная бумага, прокладочный картон для автомобилей.

Современная бумага значительно отличается от первых ее видов качеством и спектром применения. Она делится на классы, среди которых: бумага для печати, письма, чертежнорисовальная бумага, электроизоляционная, впитывающая, светочувствительная, переводная, оберточная, промышленнотехническая.

Велосипед

Велосипед «изобретали» несколько раз в разное время и в разных странах. Еще в 1680 году в Нюрнберге Стефан Фарфлер сконструировал трехколесную самодвижущуюся машину с ручным приводом. С 1690 года во Франции была построена подобная машина под названием «селерифер». Само слово «велосипед» пришло к нам из Франции в конце XVIII века. В переводе оно означает «быстрые ноги». В России считают, что еще в 1801 г. крепостной крестьянин Ефим Артамонов проехал от Урала до СанктПетербурга на двухколесной тележке собственного изобретения. Изобретатель приводил свое детище в движение, отталкиваясь ногами от земли. За это изобретение Артамонов получил вольную. Многие исследователи отрицают существование велосипеда Артамонова.

Еще одним претендентом на авторство велосипеда является немецкий лесничий Карл фон Дрез, живший в начале XIX в. в г. Карлсруэ. Он был талантливым изобретателем, создавшим, в частности, прообраз пишущей машинки, мясорубку. Его любимым творением стала «беговая машина», построенная им в 1817 г. Ее конструкция очень проста: два высоких колеса – одно за другим, между ними узенькое сиденье. Седок отталкивался от земли ногами и мог передвигаться со скоростью 20 км/ч. Над Дрезом, ехавшим по улице на велосипеде, все смеялись. Но его машина, названная по фамилии изобретателя дрезиной, имела успех, правда, недолгий, в Лондоне и Париже. То, как выглядел велосипед Дреза, известно по карикатурам в юмористических журналах. Насмешки стали причиной забвения дрезины. Сам Дрез умер в нищете, его велосипед продали за 5 марок. А название «дрезина» закрепилось за другим изобретением Дреза – тележкой, передвигающейся по железнодорожным рельсам.

Увлечение самокатом пережила Англия в 20х годах XIX в. Там он сделался фирменным средством передвижения лондонских денди. Их самокаты изготавливались в виде потешных лошадок и назывались «дендикони». Именно в Англии в 1818 г. был выдан первый патент на велосипед. Запатентованное устройство описывалось как «машина, служащая для уменьшения трудов и усталости от хождения, позволяющая в то же время использовать большую скорость и обгонять пешеходов».

Следующий этап в истории велосипеда связан с изобретением в 1836 г. шотландцем Гевином Дальзелем педалей, избавивших ездока от необходимости отталкиваться ногами. Размеры переднего колеса начали неудержимо расти, пока не превысили человеческий рост. Такая конструкция была весьма неустойчива, особенно изза отсутствия тормозов. Последние были придуманы в середине XIX в. одновременно в Германии и Франции. Филипп Фишер, слесарь из немецкого городка Оберндорф, до старости ездил на велосипеде собственного изготовления – с тормозами. В 1884 г. его сын Фридрих открыл фабрику по производству велосипедов. В отличие от Фишера француз Пьер Мишо, сконструировавший велосипед с тормозами в 1855 г., сам поставил на конвейер производство своих «мишолинов» и, продавая их по 500 франков за штуку, первым разбогател на этом изобретении. В 1858 г. англичанин Джон Шергольд придумал велосипедную цепь, а седло переместил к середине рамы.

Во второй половине XIX столетия велосипед постоянно усовершенствовался. В 1867 г. появились спицы, в 1868м – резиновый обод, в 1869м – ведущее заднее колесо. Велосипеды постепенно перестали восприниматься как экзотика: в Париже в 1869 г. их насчитывается уже 1300 штук, а через тридцать лет – в пятьсот раз больше. Но основным недостатком велосипеда оставалась тряска при передвижении. В 1885 г. шотландский врач Данлоп, купивший своему сыну новый «бициклет», задумался над тем, как избавиться от непрерывной тряски. Он взял садовый шланг и обернул в него колеса. Сначала шланг наполнялся водой, но эта конструкция оказалась слишком тяжелой. Данлоп стал надувать отрезок шланга воздухом, ему же принадлежит идея ниппеля. Количество изобретений и усовершенствований, связанных с велосипедом, не иссякало: в 1892 г. во Франции было выдано 1000 патентов, в Англии – 2400, в США – 4000. В 1893 г. оба колеса стали одинакового диаметра, а в 1898 г. была придумана «трещотка», то есть свободный ход. Вот так постепенно велосипед получил привычный для нас вид.

В начале XX в. велосипед был невероятно популярен: проводились бесконечные соревнования «циклистов», выпускалась специальная обувь и «велодоги» – револьверы для защиты от собак. Велосипедами снабжали почтальонов и курьеров. В Германии, а затем и в других странах начали создаваться велосипедные подразделения (в России они назывались «самокатными»). Разрабатывались велосипеды спортивные, охотничьи, складные, детские, дамские и т. д.

В XX в. велосипед стал излюбленным средством передвижения во многих странах Европы и в Китае. В странах Азии на смену традиционным рикшам пришли велорикши. Развитие велоспорта привело к разделению спортивных велосипедов на шоссейные и трековые. Кроме того, долгое время в программе Олимпийских игр были трековые гонки на тандемах – велосипедах с двумя спортсменами.

Технический прогресс второй половины XX в. не обошел и велосипед. Даже дорожные велосипеды стали многоскоростными. В изготовлении велосипедов стали применяться новые материалы – легированные стали, алюминиевые сплавы, композиты. Это позволило облегчить машины, сделать их более прочными. В конце XX в. стали популярны горные велосипеды с прочной рамой, широкими шинами. Велосипеды стали практически «вездеходными».

Вертолет

Первый эскиз вертолета с кратким описанием сделал в 1489 г. Леонардо да Винчи. Его вертолет приводился в движение мускульной силой. Неизвестно, проводил ли Леонардо испытания своего аппарата, поскольку не осталось никаких документов, свидетельствующих об этом. Ученые долго считали, что летательный аппарат невозможно привести в движение мускульной силой. Но не так давно был построен такой вертолет. Он смог взлететь и летать.

Триста лет спустя после Леонардо М. В. Ломоносов построил первую модель вертолета. Она состояла из фюзеляжа и двух винтов, вращавшихся в разные стороны. Эта модель предназначалась для подъема термометров с целью измерения температуры воздуха в верхних слоях атмосферы. Двигателем служила часовая пружина.

В 1784 г. французские изобретатели Лоннуа и Бьенвеню использовали в своей модели вертолета силу упругости сжатого лука. Вес их модели составлял около 80 г.

В 1863 году француз Г. де Ланде издал книгу, в которой излагал проект аппарата под названием «аэронеф». У «аэронефа» были крылья, тянущий винт и вертикальные мачты, на которых располагались подъемные винты. Из проекта де Ланде изобретатели в дальнейшем многое позаимствовали.

В 1869 г. русский изобретатель А. Н. Лодыгин обратился в Главное инженерное управление русской армии с проектом аппарата вертикального взлета с электрическим двигателем. Этот аппарат, названный изобретателем «электролет», предназначался для воздушной разведки и бомбардировки.

В 90е годы XIX в. созданием вертолета начал заниматься H. Е. Жуковский вместе со своими учениками. Ученый считал, что за геликоптером всегда будет оставаться преимущество безопасного подъема и спуска.

И вот в 1907 году появился вертолет, который смог оторваться от земли. Его сконструировали французы, братья Л. и Ж. Бреге, совместно с профессором Ш. Рише.

Русский изобретатель И. И. Сикорский в 1901 г. еще в детстве построил модель своего первого вертолета с двигателем на резинке. Позже он создал большую модель с двумя пропеллерами, которая поднялась в воздух и летала в нескольких метрах над землей.

В 1903 г. Сикорский поступил в Российскую военноморскую академию в Петербурге, а в 1906м продолжил изучение инженерного дела в Париже. В 1907 г. он возвратился в Киевский политехнический институт. Игорь Сикорский вернулся к своей идее летательного аппарата, который бы поднимался в воздух вертикально с помощью вращающегося пропеллера. Во время путешествия по Германии Сикорский производил в гостиничных номерах расчеты, необходимые для запуска вертолетного пропеллера диаметром 120 см. Благодаря финансовой поддержке сестры Сикорский возвратился в Париж для изучения аэродинамики и приобретения необходимых компонентов для создания своего первого вертолета.

В 1909 г. Сикорский вернулся в Киев с трехцилиндровым двигателем от мотоцикла «Анзани» мощностью 25 л. с. и на его основе создал вертолет с двумя одновременно вращающимися винтами. Конструкция была довольно неудобна для пилота, в кабине везде торчали провода, приводившие в движения лопасти пропеллера. Однако Сикорский добился главного: он решил проблему вибрации и продемонстрировал способность своей машины подняться в воздух посредством «роторных крыльев». По расчетам инженера, его вертолет мог подниматься в воздух с грузом в 140 кг.

Конструкция была еще очень несовершенна, и Сикорский отказался от своей первой модели. В октябре 1909 г. он вернулся в Париж для изучения уже имеющихся к тому времени моделей аэропланов.

После приезда в Россию молодой изобретатель в феврале 1910го использовал моторы для создания второй, вновь неудачной, модели вертолета. Маленький биплан «S1» так и не взлетел. Биплан «S2» и большая модель «S3» смогли лишь ненадолго подняться в воздух. А модель «S5» с мощностью двигателя 50 л. с. в мае 1911 г. не только поднялась в воздух, но и продемонстрировала свою способность летать. Игорю Сикорскому Российским Императорским аэроклубом была выдана лицензия на изобретение.

Еще в конце XIX в. было предложено несколько схем вертолета: одновинтовая, соосная, поперечная и продольная схема расположения винтов.

Недостатком одновинтовой схемы был реактивный момент, возникающий при вращении винта. Он заставлял вращаться не столько сам винт, сколько гондолу вертолета. Для его компенсации предлагалось устанавливать рулевые винты или применять двухвинтовую соосную схему. Для обеспечения поступательного движения вертолета предлагалось применять пропеллеры или наклон оси вращающегося винта. Были также предложения использовать машущие крылья, гребные колеса, наземные буксиры и парус.

Особую роль в истории мирового вертолетостроения занимает работа в 1908–1914 гг. студента Московского технического училища Б. Н. Юрьева. Он возглавлял группу студентов, членов комиссии по геликоптерам при Воздухоплавательном кружке МТУ. В 1911 г. Юрьев разработал проект одновинтового вертолета с хвостовым рулевым винтом. В этом проекте Юрьев смог решить проблему уравновешивания реактивного момента, действующего на гондолу. Для этого он применил рулевой винт, установленный на хвосте вертолета и приводимый в движение передачей от двигателя. Поскольку у силы, создаваемой хвостовым винтом, было большое плечо относительно центра тяжести вертолета, ее действие уравновешивало реактивный момент. Для поворота вертолета Юрьев предложил делать шаг лопастей хвостового винта изменяемым. При увеличении тяги этого винта можно было преодолевать реактивный момент главного винта и разворачивать машину в нужном направлении.

Чтобы обеспечить управляемость вертолета относительно продольной и поперечной осей, можно было поставить сбоку и спереди машины по одному винту. Боковой винт управлял бы креном вертолета, а передний регулировал высоту полета аппарата. Однако такая схема была очень сложной и делала вертолет неустойчивым. Поэтому Юрьев сконструировал несущий винт таким образом, что тот самостоятельно создавал оба момента, необходимые для управления вертолетом. С этой целью изобретатель создал аппарат перекоса. Принцип его работы состоял в том, что управление полетом осуществлялось путем изменения угла наклона лопастей к плоскости вращения, что достигалось подвижностью лопастей относительно их продольных осей. Если разные участки описываемого круга лопасть проходила с различными углами установки, то это приводило к увеличению или уменьшению тяги на этих участках. В результате несущий винт поворачивался в соответствующую сторону.

Необходимую установку лопастей и обеспечивал автомат. Он состоял из двух колец, связанных жесткой скользящей связью и подвешенных на кардане на неподвижной опоре. Внутреннее, подвижное, кольцо было связано тягами с рычагами, поворачивающими лопасти, и вращалось вместе с валом винта. Внешнее, неподвижное, кольцо было связано с тягами продольного и поперечного управления. Оно передавало усилие от этих тяг на подвижное кольцо, изменяя при этом угол наклона последнего. Наклоняясь, подвижное кольцо вызывало изменение углов установки лопастей относительно продольной оси и появление горизонтальной составляющей тяги несущего винта. Эта составляющая сообщала вертолету поступательное движение и наклоняла его в сторону движения. Для поворота было необходимо направить в нужную сторону внешнее кольцо.

Для вертикального перемещения вертолета служила система управления общим шагом винта. Оно достигалось одновременным увеличением или уменьшением углов установки всех лопастей несущего винта путем поднимания или опускания скользящего кардана автомата перекоса. Одновременно увеличивалась или уменьшалась тяга двигателя.

В 1912 г. вертолет Юрьева был выставлен на Международной выставке воздухоплавания в Москве. Работа была отмечена Малой золотой медалью. После замены макетных деталей настоящими были проведены испытания для получения характеристик несущего винта. Они были прерваны изза плохой работы двигателя и поломки вала винта. Дальнейшей работе помешала мировая война.

Бурное развитие самолетостроения привело к тому, что конструкторы на время оставили вертолет без внимания. Лишь в 1923 г. испанец Пескара создал вертолет, который десять минут парил в воздухе на высоте трех метров и пролетел в общей сложности 300 м.

В 1924 г. француз Эмишен построил вертолет, который поднялся и пролетел на высоте полтора метра около 120 м. Управлял им сам Эмишен. Эта машина умела зависать в воздухе, разворачиваться на месте и лететь задним ходом.

Надежно действующий вертолет удалось создать группе сотрудников Центрального аэрогидродинамического института под руководством Юрьева. Это был одноместный 1ЭА с одним несущим и двумя рулевыми винтами. На нем была достигнута высота 605 м. В 1938 г. под руководством Братухина был создан вертолет 11ЭА, на котором была применена поперечная схема.

Аналогичную схему использовал в 30е годы и немецкий конструктор Фокке. В 1937 г. его машина FW61 установила мировые рекорды скорости – 123 км/ч и высоты – 2439 м. В 1941 г. FW223 был выпущен небольшой серией.

Свою детскую мечту И. Сикорскому удалось реализовать. В 1919 г. он эмигрировал в США, где создал свою фирму «Сикорский». В 1939 г. изобретатель создал свой первый вертолет S46. Он отказался от полных расчетов машины и вносил изменения прямо в ходе испытаний. Вертолет имел простую конструкцию: фюзеляж представлял собой ферму из стальных труб, кресло пилота было открытым и находилось впереди двигателя мощностью 65 л. с. Вращение посредством ременной передачи передавалось на редуктор, приводящий в движение трехлопастный несущий винт. Рулевой однолопастный винт устанавливался в хвосте на коробкообразной балке.

Испытания показали несовершенство конструкции. Изза неправильного расчета плохо работал автомат перекоса. Это привело к плохой управляемости вертолета. При одном испытании он опрокинулся и разбился. После этого Сикорский применил схему с тремя рулевыми винтами. Эта машина хорошо управлялась, и в мае 1940 г. Сикорский показал ее летчикам. Вертолет свободно перемещался в разные стороны, зависал неподвижно и разворачивался на месте, но при этом не летел вперед. После определения и устранения недостатка летные качества машины значительно улучшились. Два года Сикорский менял конструкцию, используя различные системы управления. Это помогло ему в создании новых вертолетов.

В 1941 г. Сикорский получил военный заказ на вертолет, предназначенный для корректировки артиллерийского огня и связи. На этой модели был вновь применен автомат перекоса, рассчитанный более тщательно. В апреле 1942 г. машину показали военным. Во время полета S47 продемонстрировал свои огромные возможности, перемещаясь в разные стороны, зависая на месте. В зависший вертолет поднимался пассажир.

После запуска в серийное производство S47 получил название XR4. Свое боевое крещение он получил в джунглях ЮгоВосточной Азии, где стал единственным средством снабжения армии. Позже был сконструирован XR5, на который установили специальный вертолетный двигатель. В дальнейшем вертолеты Сикорского получили распространение в различных отраслях хозяйства.

После войны в СССР были созданы конструкторские бюро М. Л. Миля и Н. С. Камова. В первом разрабатывались одновинтовые вертолеты, во втором – вертолеты, работающие по двухвинтовой соосной схеме. Кроме них вертолетами занималось КБ А. С. Яковлева. Первым советским серийным вертолетом стал Ми1, выпуск которого начался в 1951 году.

На современных вертолетах устанавливают поршневые и воздушнореактивные двигатели. Для кратковременного увеличения мощности при взлете и посадке вертолета может применяться ракетный двигатель. На некоторых вертолетах применяли самолетные одновальные турбовинтовые двигатели и двухвальные турбовинтовые двигатели со свободной турбиной. Возможен также реактивный привод несущего винта, в котором окружное усилие создается автономными реактивными двигателями, расположенными на лопастях несущего винта, или истечением газа из сопловых отверстий, расположенных на концах лопастей.

Вертолеты применяются в вооруженных силах для перевозки войск и грузов, огневой поддержки сухопутных войск, разведки, поиска и уничтожения подводных лодок. В народном хозяйстве вертолеты используются для перевозки пассажиров, грузов, уничтожения вредителей сельхозкультур, удобрения полей, монтажных работ.

Видеомагнитофон

Видеомагнитофон предназначен для записи на магнитную ленту и последующего воспроизведения электрических сигналов изображения и звукового сопровождения телевизионных передач.

Казалось бы, что после создания магнитофона запись изображения на магнитную ленту не будет представлять больших проблем.

Вначале предпринимались попытки записи изображений с помощью продольного способа, который применялся для магнитной записи звука. При этом способе лента протягивается относительно неподвижной головки. Но этот способ оказался неэффективным.

Причина в следующем: чтобы записать спектр звука с максимальной частотой 20 кГц, ленту протягивают мимо головки со скоростью около 9,5 см/с; при скорости вдвое меньшей, то есть 4,7 см/с, предельная частота записи 10 кГц, а при скорости 2,4 см/с – не более 4–5 кГц. Таким образом, для увеличения максимальной частоты записываемого сигнала нужно в два раза повысить скорость протягивания ленты.

В действительности многое зависит от состава ферромагнитного слоя, его зернистости, толщины и ширины зазора в головке. Но, в общем, суть проблемы не меняется: чем меньше скорость, тем ниже частота, которую еще можно записать.

Приведенные цифры относятся к магнитной записи звука. А вот как обстоят дела с записью изображения.

В большинстве телевизионных стандартов мира при считывании картинки электронный луч прочерчивает по ней 625 строк, в каждой строке может быть воспроизведено примерно 800 точек различной яркости. То есть телевизионная картинка – это мозаика из 625×800=500 000 точек. Для воспроизведения движения картинка передается 25 раз в секунду, поэтому каждую секунду в телевидении может передаваться 500 000×25=12,5 млн сообщений о яркости различных точек. То есть ток считывающего луча может меняться более 12 млн раз в секунду и в спектре видеосигнала могут быть составляющие с частотой более 6 мегагерц. Это в 300 с лишним раз превышает наибольшую частоту в спектре звукового сигнала (20 кГц). Если для записи звука магнитная лента протягивается мимо головки со скоростью 9,5 см/с, то для записи видеосигнала нужно протягивать ленту в 300 раз быстрее, т. е. со скоростью 30 м/с или около 100 км/час.

На заре видеозаписи были попытки записывать видеосигнал, протягивая пленку на больших скоростях. Подобные попытки не дали желаемых результатов. Несмотря на это, видеозапись стала реальностью – решение проблемы в принципе оказалось очень простым.

Первые серьезные результаты были получены в начале 1950х годов благодаря использованию поперечнострочного способа магнитной записи видеосигналов. При поперечнострочной записи одна или несколько головок располагались на вращающемся диске, ось вращения которого совпадала с направлением движения ленты. При одновременном движении ленты и вращении диска головки «прочерчивали» на ленте практически поперечные строчки записи. Причем относительная скорость головки относительно ленты была гораздо более высокой, чем скорость протягивания самой ленты. Это существенно повысило плотность записи и уменьшило скорость движения ленты, а следовательно, и ее расход.

Этот способ изобрели американские инженеры Гинзбург и Андерсон из фирмы АМРЕХ, которую создал русский эмигрант А. М. Понятов. В его честь сам процесс записи долго называли «ампексированием».

Еще одним новшеством было применение переноса спектра телевизионного сигнала при записи в более высокочастотную область. Оно осуществлялось путем частотной модуляции несущего колебания. Его частота была чуть больше, чем верхняя частота видеосигнала. Это позволило регистрировать сигнал изображения в необходимой полосе частот 50 Гц–5,5 МГц.

Конструкция механизма видеомагнитофона с поперечнострочной записью была достаточно сложной. Более простым решением оказалось применение наклоннострочного способа записи, при котором лента со сравнительно небольшой скоростью протягивается вперед, а вращаются головки, закрепленные на барабане. Ось вращения барабана расположена под определенным углом к продольной оси ленты. Дорожки видеозаписи представляют собой отдельные строчки, расположенные одна рядом с другой под углом к продольной оси ленты.

Необходимая скорость движения головки относительно ленты достигается довольно легко – если головка расположена на барабане диаметром 10 см и он совершает 6 тысяч оборотов в минуту, то скорость движения головки относительно ленты составляет около 30 м/с.

Первые видеомагнитофоны были катушечными и предназначались для профессионального использования. Одной из причин, по которой распространение видеомагнитофонов в быту было медленным, являлась сложность заправки ленты в лентопротяжный механизм катушечного видеомагнитофона.

Первые кассетные видеомагнитофоны, в которых заправка ленты происходила автоматически, стала выпускать фирма «Сони» в формате UMatic в 1971 г. и фирма «Филипс» в формате VCR в 1972 г.

Сейчас наиболее распространенным форматом бытовой видеозаписи является VHS (Video Home System), разработанный японскими фирмами «Мацусита» и JVC в 1975 г., а также его модификации.

В этом стандарте лента шириной 12,65 мм располагается в кассете размером 188×104×25 мм. Продолжительность записи зависит от толщины ленты и может достигать 300 минут для одной кассеты при стандартной скорости движения ленты.

Сначала для записи и воспроизведения изображения применялся вращающийся барабан с двумя видеоголовками, расположенный наклонно относительно ленты. Одна из них записывала один полукадр на одной наклонной строчке. После окончания записи полукадра, первая головка отходила от пленки, а вторая подходила к ней и начинала писать на соседней строке следующий полукадр. Эти строки располагались рядом без зазора.

В дальнейшем стали использовать четыре видеоголовки. Это позволило вести экономную запись и воспроизведение при меньшей скорости ленты (режим «long play»). Кроме того, их применение улучшило качество воспроизводимого изображения при замедленном, ускоренном и покадровом воспроизведении.

По верхнему краю видеоленты проходит продольная дорожка, на которой при помощи неподвижной головки осуществляется запись звука.

Для записи стереозвука позже начали применять блок из двух головок. Изза малой скорости движения ленты – всего 2,4 см/с, диапазон записываемых звуковых частот был узким – 70–8000 Гц. Затем, благодаря улучшению качества лент и применению более совершенных головок, его удалось расширить до 40–13 000 Гц.

В нижней части ленты находится дорожка управления, на которой записываются управляющие сигналы. Они синхронизируют вращение барабана при воспроизведении так, чтобы головки точно попадали на дорожки записи. Относительная скорость видеозаписи составляет 4,84 м/с. Это позволило записывать и воспроизводить видеосигналы с разрешающей способностью около 240 линий по горизонтали.

В 1984 г. формат VHS был утвержден в качестве формата бытовой видеозаписи.

Позже были разработаны и другие форматы видеозаписи, представляющие собой усовершенствованный формат VHS: VHSHQ, HiFi VHS, Super VHS и др.

В 1980е годы были созданы и другие стандарты видеозаписи, например Video8 (Hi8) и Бетакам.

В 1986 г. фирма «Сони» создала первый промышленный цифровой видеомагнитофон DVR1000 формата D1. Так начался этап цифровых видеомагнитофонов, обеспечивающих более высокое качество записи и воспроизведения.

Воздушный шар

Хотя история воздухоплавания насчитывает чуть более двухсот лет, стремление человека оторваться от Земли и взлететь, подобно птице, проявлялось еще в глубокой древности. Умение летать считалось чемто необычайным, присущим могущественным волшебникам или, по мнению наших предков, богам. Неслучайно многие из богов изображались в виде крылатых существ. Наиболее известное предание о полетах человека – миф о великом мастере Дедале и его сыне Икаре. Скрываясь от гнева царя Миноса, они улетели с Крита на крыльях, сделанных из птичьих перьев, скрепленных воском. Мудрый Дедал летел невысоко. А его сын, несмотря на предостережения отца, устремился к Солнцу. Солнечные лучи растопили воск, и Икар упал в Эгейское море.

Желание овладеть воздушной стихией привело к появлению множества проектов, большей частью неосуществимых. Тема воздухоплавания присутствует во многих литературных произведениях. Так, известный забияка и дуэлянт Сирано де Бержерак в своем романе «Иной свет, или Государства и империи Луны» описал несколько летательных аппаратов для путешествия по воздуху. Один из этих аппаратов поразительно похож на аэростат Монгольфье. Герой романа с помощью двух наполненных дымом герметических оболочек долетает до Луны, где выпускает дым и, пользуясь оболочками как парашютом, опускается на ее поверхность.

В 1670 г. итальянец Лан предложил проект воздушного корабля. Он представлял собой гондолу, к которой канатами прикреплялись четыре полых шара из меди или жести диаметром 7,5 метра и толщиной стенок 0,5 миллиметра. Посредине гондолы была прикреплена мачта с парусом. Изобретатель предлагал выкачать воздух из шаров, с тем чтобы разность между массой вытесненного шарами воздуха и их собственной массой была достаточной для поднятия гондолы с пассажирами.

Этот проект был не выполним, поскольку при такой толщине стенок шара силы внешнего атмосферного давления неминуемо бы его смяли. Но вместе с тем, это был первый проект летательного аппарата, принцип работы которого основан на законе Архимеда.

Важнейшим событием, оказавшим влияние на развитие воздухоплавания, стало открытие и исследование Генри Кавендишем в 1766 г. водорода, или, как его называли тогда, «горючего воздуха». Изза малой плотности его сразу начали рассматривать как несущий газ для воздушных шаров.

Мир стоял на пороге воздухоплавания. Но многие авторитетные ученые того времени отвергали возможность этого. Так астроном Лаланд в 1782 г. писал: «Невозможность подняться вверх с помощью ударов крыльями столь же твердо установлена, как и невозможность подняться с помощью тел, из которых выкачан воздух».

Действительность не преминула в очередной раз опровергнуть заявление непререкаемого «авторитета».

В 1783 г. наблюдения Жозефа и Этьена Монгольфье за облаками привели их к мысли использовать для аэростата водяной пар. Но первые опыты оказались неудачными изза слишком тяжелой оболочки и быстрой конденсации пара. Тогда они решили использовать дым, образующийся при горении шерсти и сырой соломы. По мнению братьев, дым имел электрические свойства, а электричеству они приписывали свойства отталкиваться от поверхности земли.

После ряда неудач пришел успех – одна оболочка, наполненная дымом, оторвалась от удерживающих веревок и поднялась на высоту около 300 метров. После десятиминутного пребывания в воздухе оболочка рухнула на землю.

5 июня 1783 г. прошло официальное испытание нового аппарата. В присутствии зрителей наполненная дымом оболочка объемом 600 м3 поднялась на высоту около двух тысяч метров и затем упала на расстоянии двух километров от места подъема. Так началась эра воздухоплавания.

27 августа 1783 г. в Париже состоялся полет аэростата профессора Шарля. В отличие от аппарата Монгольфье с матерчатой, оклеенной изнутри бумагой камерой, аэростат Шарля был сделан из шелка, пропитанного каучуком. Объем его был 35 м3. Но главное отличие состояло в том, что оболочка наполнялась водородом. Аппарат Шарля быстро поднялся на высоту 950 метров и скрылся в облаках. От избыточного давления на большой высоте его оболочка лопнула, деревенские жители, напуганные непонятным предметом, свалившимся с неба, поспешили уничтожить шар.

После этого полета аэростаты, наполненные горячим воздухом или дымом, стали называть монгольфьерами, а наполненные водородом – шарльерами.

19 сентября 1783 г. в воздух поднялся монгольфьер с подвешенной на цепях клеткой. В ней находились первые «воздухоплаватели» – петух, утка и баран. Они благополучно перенесли полет. Теперь стало возможным поднять на аэростате человека.

21 ноября 1783 г. в воздух на монгольфьере поднялись Пилатр де Розье и Арланд. Их аппарат, преодолев 8 километров, приземлился в пригороде Парижа. В полете они едва не погибли изза пожара.

1 ноября того же года профессор Шарль вместе с единомышленником Робером поднялся в воздух на аэростате собственной конструкции. Они пробыли в воздухе 2 часа 15 минут, пролетев за это время 40 километров.

Следует отметить, что конструкция шарльера была более совершенной, чем монгольфьера. Первый обладал большей подъемной силой. Кроме того, недостатком монгольфьера была высокая пожароопасность изза соседства открытого огня и легковоспламеняемой оболочки.

Полеты на воздушных шарах становились все более популярными. С начала XIX века их стали использовать для научных целей. В 1802 г. Гумбольдт и Бомплан исследовали зависимость изменения температуры воздуха от высоты. В полетах принимали участие русский академик Захаров и ГейЛюссак. Исследования позволили получить данные о зависимости температуры, давления, влажности воздуха, его состава от высоты. Было изучено воздействие высоты на организм человека.

В 1887 г. Д. И. Менделеев совершил самостоятельный полет, чтобы наблюдать солнечное затмение.

В первых научных полетах аэронавтам удавалось подняться на высоту семь и более тысяч метров. Начиная с 5000 метров у них появлялась слабость, головокружение, снижение остроты слуха и зрения. С увеличением высоты эти симптомы усугублялись. На высоте более 8000 метров человек терял сознание.

В некоторых высотных полетах стали использовать баллоны, позволяющие вдыхать чистый кислород. Но полностью решить эту проблему не удавалось. Несмотря на это, к концу XIX века на аэростатах были поставлены рекорды.

В 1894 г. немец Берсон на аэростате «Феникс» поднялся на высоту 9150 метров, а в 1900 году во время Всемирной выставки в Париже французы де ла Во и Костельон на аэростате «Центавр» за 35 часов 45 минут преодолели расстояние в 1922 километра, приземлившись в Киевской губернии.

Успехи аэронавтики рассматривали как доказательство возможности достичь на воздушном шаре Северного полюса. Такую попытку предпринял в 1897 г. швед С. А. Андре. Его аэростат «Орел» был сконструирован с учетом суровых климатических условий Арктики. Для повышения надежности на нем было предусмотрено три клапана для выпуска газа. Гондола представляла собой закрытую со всех сторон каюту, на крыше которой находилась площадка для наблюдений. При необходимости она могла быть переоборудована в лодку или сани.

11 июля 1897 г. Андре вместе со Стриндбергом и Френкелем поднялся в воздух с острова, расположенного неподалеку от Шпицбергена. Спустя два дня после начала полета Андре послал с почтовым голубем свое последнее сообщение. Лишь в 1930 г. был обнаружен лагерь отважных воздухоплавателей.

Гибель экспедиции Андре показала, что аэростат нельзя считать надежным средством воздушного передвижения. Несмотря на все усовершенствования, они всецело зависели от погодных условий: силы и направления ветра, температуры, давления и влажности воздуха.

С момента своего появления воздушные шары использовались в военных целях – для наблюдения за наземными войсками, в составе кораблей на море – для обнаружения мин и подводных лодок противника. С появлением боевой авиации стали применять привязные аэростаты заграждения, связанные с землей прочным стальным тросом.

В 20–30е годы XX в. были созданы стратостаты – аэростаты с герметичной гондолой для исследования верхних слоев атмосферы. Они достигали высоты 20 километров.

В настоящее время воздушные шары нашли себе применение в метеорологии для запуска на большие высоты автоматических метеорологических станций. Появление современных прочных газонепроницаемых материалов, газовых горелок, позволяющих длительное время поддерживать высокую температуру внутри шара, дали возможность создать воздушные шары для спортивных целей.

Воздушные шары, несмотря на все свои недостатки, позволили человечеству расширить свои возможности, освоить «пятый океан» – атмосферу Земли.

Географические карты

Географические карты – средство выражения наших представлений об окружающем мире, способ осмысления пространственной информации. Это язык с историей более древней, чем письменность. Известны наскальные картографические изображения, датированные каменным веком.

У каждого народа на разных этапах развития были свои особые карты.

Одним из основных занятий первобытного человека было собирательство злаков, заставлявшее его постоянно перемещаться. Человек учился ориентироваться в окружающем мире и создавать изображения природных объектов. Так появились простейшие картографические рисунки, дававшие изображение местности в плане или перспективе. На них были изображены наиболее важные объекты: пути сообщения (в частности реки), охотничьи угодья, места рыбной ловли.

Пространственные представления и картографические изображения племен были тем совершенней, чем больший путь они прошли. Так, индейцы Северной Америки, кочуя вместе со стадами бизонов, проходили расстояние до 2000 км. У них были свитки карт, нарисованных на бересте и коже. У народностей Сибири и Дальнего Востока были карты, начерченные на коре деревьев, поразительно точно изображавшие местность.

Жители лесов и степей поразному ориентировались на местности. Первые определяли свое местоположение по природным объектам – рекам, горам. Степняки, ввиду отсутствия таких природных ориентиров, выработали систему ориентирования по сторонам света. Поэтому лесные племена при составлении карт брали за основу реки, горы, тропы, а степные жители – направления и расстояния пути. Именно в степи появились представления о сторонах света и господствующих на их просторах ветрах.

Кочевники сперва знали лишь два слова для обозначения сторон света: «вперед» и «назад».

Прибрежные племена, занимавшиеся морским рыболовством, использовали для ориентирования очертания побережья и направление между отдельными пунктами. Например, эскимосы Гренландии и Аляски, охотясь на морского зверя среди островов и побережий с изрезанной береговой линией, научились прекрасно в них ориентироваться. Они отображали рельеф при помощи резьбы на дереве или моделировали его из подручного материала – песка и камня.

Уникальными в истории картографии являются карты, распространенные на Маршалловых островах Тихого океана. Изза малой высоты Маршалловы острова не могли служить надежным ориентиром. Поэтому для создания карт туземцы архипелага использовали выявленные многими поколениями закономерности взаимодействия морской зыби, создаваемой господствующими северовосточными ветрами с побережьями этих островов.

Карты аборигенов Маршалловых островов имели каркас из черенков пальмовых листьев. Положение черенков указывало фронт морской зыби, поднимавшейся господствующими ветрами. Другая система черенков обозначала расстояния, на которых острова становились видимыми. Острова на этих картах обозначались раковинами, крепившимися к каркасу.

Для того чтобы совершить переход от одного острова к другому, аборигены располагали карту на палубе лодки так, чтобы угол между курсом судна и видимым фронтом волн был постоянным. Нужный угол определялся по карте.

Способ изготовления этих карт передавался от отца к сыну и держался в секрете.

На ранних этапах развития человеческого общества карты были практическими пособиями в труде, указателями кочевых путей, мест охоты и рыбной ловли, способом ориентирования. Они ограничивались небольшими территориями и были предельно конкретны.

При составлении карты древний картограф обязательно помещал в центре свое жилище.

С переходом к оседлой жизни и земледелию потребовалось умение составлять план земельного участка. Карты этого периода посвящены земельным ресурсам и их использованию. Здесь приоритет принадлежит египтянам. Среди древнеегипетских карт есть планы угодий и планы различных строений, рудников, схемы ирригационных систем.

В Древнем Египте и Греции появились два направления в картографии. Первое представляли египетские землемеры – геометры, занимавшиеся съемками небольших участков земли и планированием сооружений. Представители другого направления изучали природу и форму Земли в целом, решали задачи, связанные с изображением выпуклой земной поверхности на плоскости.

География Древней Греции состояла из страноведения и космографии. Развитие первого направления было связано с развитием торговли и мореплавания. Второе направление выразилось в выдвижении различных естественнонаучных теорий о происхождении и строении мира.

Одной из первых моделей Земли, предложенных греками, был круглый диск, слегка выпуклый посередине, омываемый бурно текущими водами реки – Океана. Среднюю часть диска занимали территории, населенные эллинами. В центре – гора Олимп, обитель богов. Над дискообразной Землей с рекой – Океаном – опрокинут неподвижный небесный свод, радиус которого равен радиусу Земли. В некоторых вариантах этой модели свод опирался на колонны, иногда его поддерживал титан Атлант.

По модели, предложенной Анаксимандром, Земля имеет форму отрезка круглой колонны, высота которой в три раза меньше ее диаметра. На верхней плоскости живут люди. Сама колонна находится в центре мироздания и ни на что не опирается. Демокрит во время своих путешествий обнаружил, что Земля продолговата и ее длина в полтора раза больше ширины.

Гипотезу о шарообразности Земли приписывают Пифагору. Ученый Евдокс сделал попытку доказать эту гипотезу научным путем: круглая тень на Луне во время ее затмения, расширение горизонта при подъеме в гору и т. п.

Считают, что именно Евдокс первым использовал гномон для определения широты места. Он высказал догадку, что если Земля шарообразна, то расстояние пунктов от экватора можно определить, используя соотношение продолжительности летнего и зимнего дней в дни солнцестояния.

Фалес Милетский предложил для построения карты звездного неба первую картографическую проекцию – гномоническую.

Пифей определял широту места с помощью гномона в день летнего солнцестояния. Считают, что он установил наличие беззвездной точки Северного полюса, образующую с тремя соседними звездами почти правильный четырехугольник.

Александрийский ученый Эратосфен из Кирены обобщил накопленные данные о поверхности земного шара. Ему приписывается введение самого термина «география». Он определил размер Земли с точностью, превзойденной лишь в конце XVIII в. Весь обитаемый мир Эратосфен разделил на 7 параллелей, или климатов. Перпендикулярно параллелям он провел 9 меридианов. Сетка параллелей и меридианов позволила ему вычертить карту земли обитаемой – Ойкумены.

Эратосфен предположил, что Ойкумена – известная грекам часть обитаемой суши – это небольшой остров среди обширного океана. Из этого он сделал вывод, что кроме этой Ойкумены должны существовать и другие обитаемые земли. Эратосфен выдвинул гипотезу о четырех массивах суши, отделенных друг от друга океанами и симметрично расположенных по обе стороны «жаркого необитаемого пояса» (экватора). Страбон приписывает эту гипотезу смотрителю Пергамской библиотеки Кратесу Малосскому. Тот изготовил большой глобус, на него нанес маршрут плавания героев «Одиссеи» и изобразил эти четыре массива суши.

Сфера Кратеса стала моделью символа царской власти – державы, шара, разделенного на четыре части и увенчанного крестом. Держава была символом власти и византийских императоров, и русских царей.

Считается, что ученые античности применяли ряд проекций для изображения поверхности шара на плоскости. Так, Страбон предложил принцип цилиндрической проекции. Древние астрономы использовали стереографическую, ортографическую и другие проекции для построения карт звездного неба.

Первым научным трудом по картографии считается восьмитомное «Руководство по географии» Клавдия Птолемея. Оно включало общее определение географии, инструкции для составления конической и псевдоконической проекций для карт мира, предложения о разделении общей карты мира на региональные карты большего масштаба. Сохранились копии этого труда Птолемея с 12 картами Азии, 10 – Европы и 4 – Африки.

Известны варианты, содержащие 64 карты со списком географических объектов, количество которых доходит до 8000. Координаты этих объектов определялись с помощью двух систем: долгота и широта в градусах и в единицах времени, широта – по продолжительности наиболее длинного дня, долгота – в часах от начального меридиана. Начальный меридиан Птолемея проходил через «Счастливые» (Канарские) острова, а его карта мира простиралась на 180 градусов на восток до Китая.

Кроме карты Птолемея до нашего времени дошла «Поздняя копия дорожной карты Римской империи», названная исследователями «Пейтингеровой таблицей». Это свиток длиной 6,74 метра и шириной 34 сантиметра. На ней – известные римлянам страны от Британских островов до устья Ганга. Изображение намерено сжато с севера на юг. Моря вытянуты вдоль карты в виде узких лент. На таблице изображена сеть дорог с обозначениями станций.

Для измерения земельных наделов в Древнем Риме существовали землемеры. Во время раскопок в Помпее были обнаружены простейшие геодезические инструменты, использовавшиеся землемерами. Это «грома» – комбинация визирных линеек для построения прямых углов на местности, солнечные компасы, линейки, солнечные часы.

Император Константин содержал целый корпус гражданских землемеров. Главной их обязанностью было центуризировать земли, то есть деление земли на квадратные участки со стороной 2400 римских футов (1 римский фут = 294,9 мм). После построения сетки центурий землемер составлял карты соответствующих районов. Они гравировались на меди. Один экземпляр такой карты отсылался в императорский архив, другой оставался у местных властей. Кроме того, планы центурий наносились на специальные камни, лежащие на границах центурий.

В древности в Индии карты чертили на пальмовых листьях и коре дерева. В разных источниках упоминаются инструменты, использовавшиеся для съемок: гномон, линейки, шнуры и жезлы для измерения расстояний, вехи, бычьи шкуры для измерения площадей.

Хроника «Суриасиддханта» сообщает о создании в IV–V вв. н. э. глобуса из дерева с небесной сферой и главными кругами, изображенными при помощи бамбуковых палочек. В ней искусство картографии названо секретом богов, доступным избранным.

В «Брахмасиддханте» рассказывается о глобусе, на котором были показаны континенты, океаны, горы, реки, города.

Дошедшие до нас индийские карты чеканились на металле. Они хранились в храмах и использовались в ритуальных целях. Изображены были 7 материков и океанов. Сушу рассекали реки, изображена была флора и фауна.

С распространением христианства в Европе и Малой Азии возникли библейские представления о мироустройстве. Они во многом совпадали с представлениями эллинов. Так, в Ветхом Завете сказано, что Земля – это плоский круг, ограниченный куполообразным небесным сводом. Хотя в некоторых эпизодах она представлена как плоскость, имеющая концы, а небо зиждется на опорах и столпах, но не лежит непосредственно на Земле. По форме небо напоминает шатер, но иногда о нем говорится как о тонкой ткани, распростертой над Землей. В Библии сказано, что есть два Неба. Нижнее – Твердь небесная. К ней крепятся светила, ее противоположная плоскость – служит дном Небесного моря. Верхнее небо – крыша строения, состоящего из двух этажей. Это Вселенная.

Воды, сосредоточенные над Твердью небесной, проливаются на Землю дождем через особые окна.

Согласно Святому Писанию, посреди Земли стоит Святой город Иерусалим, Рай находится на Земле. Его омывают четыре реки: Тигр, Евфрат, Геон и Фисон.

В восточнохристианском богословии сложились две основные космогонические школы: антиохийская и каппадокийскоал ександрийская.

Представители антиохийской школы отвергали теорию шарообразности Земли, считали Землю плоской. Некоторые богословы, такие как Феодор Мопсуэстийский, считали форму Земли прямоугольной. Края неба при этом смыкались с Землей. Ефрем Сирин считал Землю не прямоугольником, а плоским кругом. Теория плоской Земли отвергала возможность ее вращения.

Идея шарообразной Земли предполагала наличие антиподов – жителей противоположной стороны земного шара. Лактанций заявлял, что принять возможность существования антиподов – значит согласиться с тем, что есть люди, ходящие вверх ногами, деревья, растущие наоборот, моря и горы, висящие в воздухе, снег и дождь, падающие вверх.

Согласно другой, каппадокийскоалександрийской школе, Земля – шар, заключенный внутри другого шара – небесной сферы. Последняя вращается вместе со светилами вокруг своей оси и вокруг Земли. В Византии географы использовали глобусы для изображения небесной сферы.

В Византии развивалась и практическая картография. Византия была крупнейшей морской державой, нужды мореплавания требовали создания пособий для моряков – периплов и лоций. Периплы – это описание морских плаваний вдоль берегов. В них приводились расстояния между портами. С изменением маршрутов обновлялись и периплы.

Для путешествий по суше были созданы итинерарии. Особо тщательно составлялись итинерарии для паломников к святым местам.

Византийцы пользовались специальными военными картами и планами.

Популярными в Византии были труды античного автора Клавдия Птолемея. К ним прилагались карты, имевшие сетку параллелей и разделенные на географические зоны. Их особенность заключалась в том, что ширина географических поясов постепенно увеличилась от 42 до 100 мм. Такая проекция напоминала появившуюся в XVI в. проекцию Герарда Меркатора.

На европейских географических картах раннего Средневековья были нарушены реальные пропорции. Для удобства изображения очертания суши и морей могли быть изменены. Они были вычерчены без соблюдения масштаба и координатной сетки. Но карты эти имели особенности, которых лишены современные карты.

На средневековых картах мира были изображены священные и земные исторические места. На них были изображения Рая и библейских персонажей. Там же помещалась Троя и государство Александра Македонского, провинции Римской империи и современные христианские государства. Таким образом, пространство и время совмещались. Картина мира завершалась сценами Конца света, предсказанного в Библии.

Разные части света, страны и объекты обладали различным, по представлению средневековых жителей, статусом. Были места священные и проклятые. Среди последних жерла вулканов, считавшиеся входом в Геенну огненную.

Практически все сохранившиеся до сегодняшнего времени образцы западноевропейских карт, изготовленные до 1100 г., можно разделить на 4 группы.

К первой относятся чертежи, иллюстрирующие предложенное Макробием деление земной поверхности на зоны. Они появляются в рукописях с IX в. Их нельзя назвать картами в полном смысле этого слова.

Ко второй группе относятся простейшие схематические изображения, часто называемые картами типа ТО или ОT. Известный тогда мир изображен в виде круга, в который вписана буква Т, разделяющая его на три части. Восток находился в верхней части карты. Вверху находилась Азия, в двух нижних частях – Европа и Африка. На многих картах главные материки названы по именам сыновей библейского Ноя – Сима, Хама и Яфета, которым по разделу Земли после Всемирного потопа достались Азия, Африка и Европа. Иногда вместо их имен даны названия материков, на некоторых картах присутствуют оба названия.

Чертежи третьей группы похожи на карты типа TО, но более сложны. Их общий вид сопровождается пояснительными надписями и рисунками. В центре таких карт – Иерусалим.

Четвертую группу карт средневековой Европы составляли иллюстрации и комментарии к Апокалипсису, написанные в конце VIII в. испанским священником Беатом. На них мир разделен между 12 апостолами.

Помимо библейских сюжетов на картах изображались мифические земли, монстры и т. п.

В период Крестовых походов географические представления европейцев расширились. Это было отражено в Герефордской карте мира (около 1275 г.), вычерченной на пергаменте, сделанном из кожи целого быка. Карта помещалась в алтаре Гересфордского кафедрального собора.

На других картах того времени было показано, как распределяются суша и водные массы обитаемого мира по природным зонам – тропическим, умеренным и полярной. На некоторых показаны пять климатических зон, или климатов Земли, на других – семь. Такие карты получили название «зональных», или «макробиевых». На них Земля шарообразная. Земной шар опоясывался двумя океанами – Экваториальным и Меридиональным.

Мусульманская география была ограничена рамками Корана. Она базировалась на представлениях о плоской Земле, на которой воздвигнуты горы и плещутся два моря, отделенные друг от друга специальной перегородкой. Арабы называли географию наукой о «почтовых сообщениях» или о «путях и областях». Изза интенсивного развития астрономии и математики, выводивших географию за пределы Корана, ее стали трактовать как математическую «науку о широтах и долготах». Основателем одной из картографических традиций стал ученый АбуЗейд Ахмед ибн Сахл алБалхи, служивший при дворе персидских владык Сасанидов. Он написал «Книгу земных поясов», которая представляла из себя географический атлас с пояснительным текстом. Карты из этого атласа перешли в сочинения других авторов.

Эти карты чертились при помощи циркуля и линейки. Геометризм и симметрия преобладали в них над практическими знаниями. Геометрическая правильность очертаний искажала реальные очертания морей и суши. Дороги и реки изображались прямыми линиями. Сеть меридианов и параллелей отсутствовала, хотя в сопроводительных текстах были указания широты и долготы.

Условногеометрическая традиция царила в арабской картографии до XIV века.

В арабских странах проводились исследования по определению размеров земного шара и измерению длины земного градуса. Помимо того, для религиозных нужд требовалось определение географических координат местности. Это было необходимо для строительства мечетей, которые обязательно должны быть ориентированы в сторону Мекки. Точных координат требовала и популярная в то время астрология.

В арабских астрономических трудах мы находим формулы, позволяющие вычислить координаты местности, таблицы широт и долгот различных мест мира.

Для арабской картографии было характерно и сугубо религиозное картографирование. Были созданы так называемые «карты киблы», указывавшие правоверным мусульманам направление на Мекку, взор их во время ежедневных молитв, где бы они ни находились, должен был устремляться в том направлении. В центре таких карт было изображение мечети Кааба в Мекке. Вокруг было изображено 12 овалов, 12 михрабов исламского мира. Каждая часть была представлена наиболее известными городами.

В XIII в. люди поняли, что географические реалии лучше описывать графически, нежели в виде текста. Около 1250 г. монах Матвей Парижский составил дорожные карты Англии и Уэльса. Это были итинерарии, т. е. списки дорожных станций с указанием расстояний между ними, иллюстрациями.

Наиболее быстро развивалось морское картографирование. Периплы, т. е. описания маршрутов, можно использовать в основном для плавания в виду берегов, чтобы можно было следить за указаниями в документе об очередности портов и расстояний между ними в днях пути. Но для плавания в открытом море нужно знать направления между портами.

Уже в XII в. у арабов были детальные описания побережий с указанием расстояний и магнитных румбов между пунктами. Позже подобные карты у итальянцев получили название портоланов.

Такие карты фактически были ключом к заморским рынкам и колониям и обеспечивали своим владельцам богатство. На государственном уровне картыпортоланы были секретными, их свободное обращение исключалось. На испанских кораблях портоланы и навигационные карты должны были храниться прикрепленными к свинцовому грузу, чтобы при захвате судна неприятелем немедленно сброшенные в воду, пошли ко дну.

Основой картпортоланов служила роза ветров. Вначале роза ветров была способом деления кругового горизонта. Из розы ветров прочерчивались лучи по числу основных компасных румбов. Сначала было 8 основных ветров, затем 12. Позже число ветров дошло до 32. На периферии карты на лучах основной розы изображались вспомогательные. Роза ветров использовалась для нанесения на карту береговой линии, портов, а также для определения курсового магнитного румба.

Картыпортоланы первоначально применяли на морских торговых кораблях Италии и Каталонии, они охватывали те участки морей, по которым проходили торговые пути от Фландрии до Черного моря.

Затем морская картография стала развиваться в Голландии. Хорошо изучив побережье Северной Европы, голландцы создали морской атлас «Зеркало моряка». Его первый том вышел в 1584 г. Голландская ОстИндская компания составила Секретный атлас, включавший 180 портоланов.

В 1492 г. Мартин Бехайм в сотрудничестве с художником Георгом Хольцшуером создал первый современный глобус Земли с диаметром около 50 см.

На нем были нанесены экватор, разделенный на 360 неоцифрованных частей, два тропика, арктический и антарктический полярные круги. Был показан один меридиан, поделенный на градусы. Протяженность Европы составляла 234° вместо 131°.

Расстояние от западной Европы до Азии было уменьшено с 229° до 126°.

Глобус Бехайма был последним отражением доколумбовых представлений о мире.

Даже имея первичные материалы съемок – навигационные описания, портоланы, судовые журналы, картографсоставитель не всегда мог связать их с имеющимися картами. Возможность определять неограниченное количество точек на поверхности Земли картографы получили лишь с изобретением метода триангуляционной съемки (триангуляции).

Принципы метода триангуляции сформулировал в 1529 г. математик Г. Ф. Регниер. В 1533 г. в своем труде «Книжка» он детально описал метод съемки обширного региона или целого государства с помощью триангуляции.

Баварский ученый Петр Апиан составлял различные географические карты, среди которых известны карта мира в сердцевидной проекции, карта Европы. В своем сочинении «Космография, или Полное описание всего мира» Апиан дал указания, как определять географические долготы путем измерения расстояний от Луны до звезд.

Триангуляция для картографических целей впервые была использована фламандским картографом Г. Меркатором, издавшим в 1540 г. карту Фландрии, состоящую из четырех листов. Триангуляционная съемка ознаменовала начало нового этапа в развитии картографии. Теперь появилась возможность оперативного внесения новых сведений в карты с точной локализацией данных. Появились новые картографические проекции. Проекция Меркатора, позволяющая прокладывать курсы судов по прямой линии, до сих пор используется в навигации.

В начале XVII в. в Нидерландской войне и в Тридцатилетней войне 1618–1648 годов происходили массовые перемещения войск на местности. Для их обеспечения требовалось детальное изучение ландшафта для составления карт. Особое внимание уделялось условиям проходимости местности для больших подразделений пехоты, кавалерии и артиллерии. В связи с этим в обязанность военных инженеров вменялось также делать съемки и рекогносцировку местности в топографических масштабах.

Поскольку было необходимо, чтобы военные карты имели хорошие измерительные свойства, уже в 1540–1570х годах на картах, созданных военными инженерами, указывался масштаб. Первой картой, где строго соблюдался масштаб, считается план города Имола, составленный Леонардо до Винчи во время его службы у Чезаре Борджа в 1502–1504 годах.

Николо Тарталья в своей книге, изданной в 1546 г., отмечал важность угловых измерений для составления военных карт. Он описал компас с визирами, приспособленный для угловых измерений.

Исследованием отдельных картографических проекций в XVIII в. занимались математики Лагранж и Эйлер. Развитие военной картографии и увеличение объема топографических работ требовали создания математической основы крупномасштабных карт и введения системы прямоугольных координат. Для этого потребовалась новая картографическая проекция. Это привело К. Гаусса к созданию геодезической проекции.

Современные географические карты – плод тысячелетних трудов людей разных профессий: купцов, моряков, математиков, астрономов, инженеров, географов.

Гидравлический пресс

Появление крупных паровых молотов выявило ряд недостатков, затруднявших их технологическое использование и эксплуатацию. Прежде всего, это проявилось в сильных ударах, сотрясающих почву, что стало опасным для целостности окружающих кузнечные цеха строительных сооружений, производственных построек и самих паровых молотов.

Перед инженерами и конструкторами встала задача создать принципиально новое кузнечное оборудование, свободное от указанных недостатков. Научнотехническая мысль пошла по пути конструирования кузнечных машин для обработки металлов давлением статического (неударного) действия. В результате были созданы гидравлические прессы, буквально перевернувшее кузнечное производство.

Появление гидравлических прессов относится к концу XVIII в. Их работа основана на законе Паскаля, гласящем, что внешнее воздействие на жидкость распространяется равномерно во все стороны. В 1795 г. английский механик Дж. Брама, владелец крупного машиностроительного предприятия в предместье Лондона Пимлико, взял патент на гидравлический пресс, предназначенный для выполнения различных тяжелых работ. Пресс состоял из большого и прочного цилиндра с поршнем внутри. Цилиндр сообщался с нагнетательным насосом. Вода перегонялась в цилиндр, постепенно приподнимая поршень. В процессе работы над прессом изобретатель разрешил ряд сложных технических проблем. Одна из них состояла в обеспечении герметичности между поршнем и стенками цилиндра. При действии поршня вода в больших количествах просачивалась через зазор в другую часть цилиндра, не обеспечивая нужного давления. Эту задачу помог разрешить Браме его сотрудник, будущий известный изобретатель и машиностроитель Г. Модели. Он предложил уплотнение поршня в виде самоуплотняющегося манжета, без которого гидравлический пресс фактически не мог действовать. Для этого Модели поставил кольцеобразный вкладыш из крепкой кожи, выпуклый сверху и вогнутый снизу. При заполнении цилиндра водой под высоким давлением края кожаного манжета раздвигались, плотно прижимаясь к поверхности цилиндра, и закрывали собой зазор.

Построенный Дж. Брамой пресс вначале использовался для перемещения и подъема тяжелых металлических конструкций. Так, Дж. Стефенсон применил его для поднятия гигантских конструкций строящегося через реку Темзу Британского моста. Каждый пресс воспринимал на себя нагрузку в 1114 тонн. С помощью гидравлического пресса Брамы был спущен на воду крупный пароход «Great Easten». Пресс применяли для разрезания железных полос, вытаскивания плотинных свай, корчевания деревьев и выполнения других работ, требующих сверхмощных механизмов.

В конце XVIII – начале XIX в. гидравлический пресс применялся в сельском хозяйстве для пакетирования сена, получения виноградного сока, отжима масла.

В 1797 году Дж. Брама выдвинул идею применения гидравлического пресса для изготовления свинцовых труб путем продавливания металла через кольцевидное отверстие матрицы.

Однако практическая реализация этого проекта была осуществлена другим инженером, Т. Бурром, построившим в 1820 г. гидравлический пресс для прессования свинцовых труб. На конце плунжера располагался прессштемпель, диаметр которого был немного меньше внутреннего диаметра контейнера. Это было необходимо для того, чтобы прессштемпель мог свободно перемещаться в контейнере. На торце прессштемпеля укреплялась стержневидная оправка или игла, диаметр которой соответствовал внутреннему диаметру прессуемой трубы. Внешний диаметр свинцовой трубы определялся диаметром матрицы. Перед прессованием прессштемпель опускался в крайнее нижнее положение, затем в контейнер заливался жидкий свинец. После застывания металла в верхней части контейнера устанавливалась матрица, ввинчивающаяся в специальное гнездо с нарезкой. Процесс прессования начинался с подъема плунжера и связанного с ним прессштемпеля, в результате чего в контейнере создавалось гидростатическое давление, значительно повышающее пластичность металла. В результате из контейнера выпрессовывалась бесшовная свинцовая труба с заданными значениями внешнего и внутреннего диаметров. Этот метод получил впоследствии название метода прямого прессования.

Т. Бурр впервые доказал возможность и перспективность гидравлического пресса для обработки металлов и сплавов. Теперь к гидравлическому прессу приковано внимание металлургов – технологов, стремившихся использовать возможности нового технического средства в различных производствах. К середине XIX в. определились два основных направления применения гидравлического пресса: первое – для продавливания (экструдирования) металла из контейнера пресса через матрицу и второе – для изменения формы металлической заготовки путем воздействия на нее бойков и штампов пресса.

В основу процесса экструдирования положено свойство металла повышать пластичность при высоком гидростатическом давлении. До 90х годов XIX в. метод экструзии применяли исключительно для обработки высокопластичных металлов – свинца, олова и их сплавов. Полуфабрикатами для экструдирования служили трубки и прутки. С 70х годов XIX в. возникает новая область использования экструзионных прессов – электрокабельное производство. В 1879 г. французский инженер Барелл сконструировал гидравлический пресс для наложения свинцовой оболочки на электрический кабель, что позволило соединить страны и континенты телефонными и телеграфными кабелями. Разработанный Барелл ом способ наложения защитной оболочки на электрические кабели сохранился до сих пор.

Развитие процесса экструдирования побудило инженеровметаллургов перенести полученный опыт на прессование труднодеформируемых металлов. Особенно большой спрос был на трубы из меди и ее сплавов. Впервые проблему прессования медных труб и прутков осуществила в 1893 г. фирма «Троус Коппер Компани», построившая специальный пресс высокого давления. Для прессования применяли нагретую до температуры 850 °C медную заготовку. Ее помещали в вертикальный контейнер гидравлического пресса. Затем сверху в контейнер опускался плунжер, соединенный с гидросистемой пресса, который прошивал заготовку в центре. При этом металл выпрессовывался вверх, образуя короткий полый цилиндр. Так появился обратный метод прессования металла.

Прессование стало важной областью обработки металлов давлением. С 40–50х годов XIX в. предпринимались попытки использовать гидравлический пресс для ковочноштамповочных работ. В 1851 г. гидравлический ковочный пресс экспонировался на Международной промышленной выставке в Лондоне. Этот пресс, снабженный четырьмя гидравлическими цилиндрами, обеспечивал давление в 1500 тонн и предназначался для штамповки небольших предметов малой толщины.

Начало промышленному применению гидравлических прессов положил английский инженер, директор мастерских государственных железных дорог в Вене Дж. Газвелл. Предприятие было расположено в черте города, вблизи жилых построек, и установка на нем парового молота оказалась невозможной. Газвелл спроектировал пресс, который в 1859–1861 гг. был изготовлен и установлен в железнодорожных мастерских. Этот пресс обслуживался мощной паровой машиной двойного действия с горизонтальными цилиндрами диаметром 1200 миллиметров. Благодаря значительной разнице между диаметрами парового и гидравлического цилиндров, удалось создать высокое давление – 400 атмосфер. Вода насосами накачивалась в рабочий цилиндр пресса, плунжер которого приводил в действие подвижную траверсу с укрепленным на ней верхним бойком или штампом. Движение подвижной траверсы направлялось четырьмя массивными колоннами. Подъем траверсы осуществлялся штангой, связанной с поршнем небольшого гидравлического цилиндра, расположенного над прессом.

Стол пресса Газвелла был снабжен наковальней, которую при необходимости можно было менять. Управление прессом производилось вручную при помощи рычагов. Пресс мог осуществлять периодическое и непрерывное давление с различной скоростью. Он предназначался для штамповки паровозных деталей.

Первые построенные Газвеллом гидравлические прессы были мощностью 700, 1000, 1200 тонн. Позже были изготовлены более крупные прессы. Они успешно демонстрировались на Всемирных промышленных выставках в Лондоне (1862 г.) и в Вене (1873 г.).

Для того чтобы увековечить выдающееся изобретение Газвелла, чертежи его первых прессов были переданы на хранение в консерваторию искусств в Вене.

Пресс Газвелла предназначался для штамповки деталей. Поэтому во второй половине XIX в. велась работа над созданием специального гидравлического пресса для ковки слитков. Основоположником этого направления стал английский инженер и предприниматель Дж. Витворт. В 1865 г., ознакомившись с работами Газвелла, он применил гидравлический пресс для прессования жидкой стали с целью получения однородного беспузырчатого слитка. Продолжая исследования в области прессования, Витворт стремился использовать гидравлические прессы для получения необходимых полуфабрикатов и готовых изделий непосредственно из слитков.

В 1875 г. Витворт запатентовал во Франции гидравлический пресс. Он состоял из 4 колонн, укрепленных в фундаментной плите. На верхней части колонн располагалась неподвижная траверса с двумя гидравлическими подъемными цилиндрами. Они перемещали вверх и вниз подвижную траверсу, в нижней части которой был установлен штамп.

Оригинальность этого изобретения состояла в том, что были соединены подвижная траверса, несущая гидроцилиндр, и приспособление для быстрого подъема, спуска и установки траверсы в нужном положении. Такая компоновка при коротком ходе поршня позволяла обрабатывать изделия различной высоты. В прессе был предусмотрен механизм для поворачивания заготовки, что помогало более равномерно обрабатывать заготовки по всему объему.

Пресс Витворта впервые был применен для ковки слитков в 1884 г. Тогда ковка орудийных стволов велась при помощи паровых молотов. С появлением пресса Витворта они стали отходить на задний план. Преимущества гидравлических прессов перед паровыми молотами были бесспорны. Так, для ковки орудийного ствола из слитка массой 36,5 тонн на 50тонном паровом молоте требовала 3 недели работы и 33 промежуточных нагрева слитка. Использование гидравлического пресса для ковки слитка массой 37,5 тонн сократило срок ковки до 4 дней при 15 промежуточных нагревах.

Прессы Витворта широко применялись не только для ковки слитков, но и в производстве броневых плит, изготовлении стволов артиллерийских орудий, крупных валов. Они выпускались мощностью 2000, 5000 и 10 000 тонн. Крупнейшим был пресс мощностью 14 000 тонн, установленный в 1893 г. на Вифлеемском заводе в США. Для привода этого пресса применялись паровые двигатели мощностью 16 000 л. с. Колонны пресса, поддерживающие верхнюю траверсу, располагались на расстоянии 4,4 м друг от друга. Пресс имел два гидравлических цилиндра диаметром 1270 мм. Ход поршня составлял 1430 мм.

В конце XIX в. происходила замена тяжелых паровых молотов гидравлическими ковочными прессами. В 1893 г. был демонтирован 125тонный молот на Вифлеемском заводе в США. Завод Круппа в Эссене заменил 75тонный паровой молот 2000тонным прессом. Отказался от 108тонного молота завод в Терни (Италия), установив вместо него 4500тонный пресс.

К концу 20х – началу 30х годов XX в. в Германии создаются новые конструкции тяжелых гидравлических прессов. В 1930 г. был построен самый крупный на то время гидравлический штамповочный пресс мощностью 6300 тоннасил (61,8 МПа) для изготовления авиационных деталей из легких сплавов. В 1931 г. в Германии же были построены два штамповочных пресса мощностью 15 000 тоннасил (147 МПа). В 1939 г. французские машиностроители строят пресс мощностью 20 000 тоннасил (196 МПа).

Среди наиболее важных усовершенствований, повысивших эффективность работы прессов, следует отметить введение в схему привода мультипликатора (от латинского «умножающий», «увеличивающий»). Мультипликатором служил паровой цилиндр. Он устанавливался в верхней части пресса. Его поршень при помощи штока соединялся с гидравлическим цилиндром. Для того чтобы произвести нажатие на поковку, в верхнюю часть мультипликатора впускался пар под давлением 6–10 атм. За счет введения мультипликатора можно было довести рабочее давление до 600 атм.

Прессы, оснащенные мультипликатором, получили название парогидравлических. Их стоимость по сравнению с чисто гидравлическими, оснащенными насосами и аккумуляторами высокого давления, была значительно ниже. Но эксплуатация парогидравлических прессов сопряжена с большим расходом пара.

У гидравлического пресса с насосным приводом в отличие от парогидравлического есть возможность осуществлять непрерывный рабочий ход. У гидравлического пресса с аккумулятором сеть, подводящая воду, постоянно находится под высоким давлением (250–300 атм). Установка с мультипликатором имеет более короткую сеть, находящуюся под давлением лишь во время рабочего хода. Это позволило увеличить давление воды до 400–600 атм. Такое высокое давление позволило значительно уменьшить диаметр рабочих цилиндров парогидравлических прессов, сделав их более компактными и дешевыми.

Интенсивное развития серийного и массового производства автомобилей в 40–50е годы XX в. вызвало рост удельного веса процессов объемной и листовой штамповки. А применение прессовых кузнечных машин подняло эти процессы на более высокий уровень. На автомобильных и тракторных заводах стала использоваться высокопроизводительная горячая штамповка в многоручьевых штампах. В автомобильной, тракторной, вагоностроительной, судостроительной, авиационной и других отраслях промышленности широкое применение нашла листовая холодная штамповка.

Распространение штамповки повысило эффективность производства по сравнению с ковкой за счет увеличения производительности и за счет значительной экономии металла.

В 50е годы XX в. в СССР были разработаны мощные гидравлические штамповочные прессы. На Уральском заводе изготовили 2 гидравлических пресса усилием 294 МН. Новокраматорский машиностроительный завод (НКМЗ) в 1960 г. выпустил уникальные штамповочные прессы 735 МН. Для их изготовления была применена принципиально новая технология соединения основных элементов пресса: станина и поперечины были собраны из катаных и кованых плит, соединенных электрошлаковой сваркой.

В 1976 г. НКМЗ изготовил для Франции пресс усилием 637 МН. В его конструкцию были внесены некоторые усовершенствования по сравнению с прессами 735 МН. Они обеспечили большую жесткость конструкции.

Кроме ковки, гидравлические прессы широко применяются для прессования металлов экструдированием. После создания в 1894 г. А. Диком экструзионного гидравлического пресса высокого давления процесс прессования получил распространение на предприятиях цветной металлургии. Прессование применялось для обработки пластичных металлов и сплавов – меди, латуни, алюминия и его сплавов, магния и его сплавов, медноникелевых сплавов и других материалов.

В XX в. прессование является составной частью процессов обработки титана, бериллия, новых легких и специальных сплавов. Процесс прессования через матрицу оказался наиболее экономичным для получения профилей, прутков, проволоки и труб из цветных металлов. Он обеспечивает высокую точность параметров изделий.

В процессе развития прессового производства создавались новые виды прессов. Стали применяться вертикальные прессы. Хотя они более сложны в эксплуатации и уступают горизонтальным в мощности, у них есть свои преимущества: низкая стоимость, меньшая площадь, возможность изготовления труб с минимальной разностенностью и малого диаметра. Вертикальные прессы имеют большую производительность и меньшие отходы.

В последние десятилетия процесс прессования применяется для обработки труднодеформируемых материалов – сталей, титановых сплавов, вольфрама и молибдена.

Гидроэлектростанция

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния.

С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

Первой электростанцией трехфазного тока была Лаутенская гидроэлектростанция. На ней были установлены два одинаковых трехфазных синхронных генератора. Фазное напряжение при помощи трансформаторов повышалось с 50 до 5000 вольт. Ее электроэнергия использовалась для питания осветительной сети города Хейльбронна, а также ряда небольших заводов и мастерских. Понизительные трансформаторы устанавливались непосредственно у потребителей. Эта первая в мире промышленная установка трехфазного тока была запущена в эксплуатацию в начале 1892 г. Использование энергии вод в этой установке показало возможность использования гидроресурсов, отдаленных от промышленных центров. С тех пор число гидроэлектрических установок все время возрастает. Например, в 1892 г. H. Н. Бенардос предложил организовать электроснабжение Петербурга путем утилизации энергии Невы на специально построенных электрических станциях (мощностью до 20 000 л. с.). В 1893 г. Н. С. Лелявский разработал схему использования гидроэнергии Днепровских порогов. В. Н. Чиколев, пропагандировавший еще в начале 80х годов XIX в. использование водяных турбин в качестве первичных двигателей электростанций, в 1896 г. совместно с Р. Э. Классоном построил в Петербурге на р. Охта гидроэлектростанцию и линию электропередач трехфазного тока.

В течение 90х годов XIX в. гидроэнергия играет все более заметную роль в электроснабжении С каждым годом возрастало число крупных гидроэлектростанций.

В конце XIX в. были сооружены: Рейнфельдская гидроэлектростанция (Германия, 1898 г.) мощностью 16 800 кВт при напоре воды 3,2 м, Ниагарская (США) мощностью 50 тыс. л. с. при напоре 41,2 м, Жонажская (Франция, 1901 г.) мощностью 11 200 л. с. В начале второго десятилетия XX в. были пущены в ход гидроэлектростанции АугстВиллен (Германия, 1911 г.) мощностью 44 тыс. л. с., Кеокук (США, 1912 г.) мощностью 180 тыс. л. с. Качество турбинного оборудования было еще недостаточно высоким, КПД колебался в пределах 0,8–0,84. Несовершенными были формы и конструкции гидросооружений, что объясняется недостаточной изученностью вопросов инженерной гидравлики и гидротехники. Поэтому некоторые ГЭС, построенные в эти годы, в последующем подверглись более или менее серьезной реконструкции.

В дореволюционной России гидроэлектростанций было мало. Первой была установка на Охтинском заводе в Петербурге мощностью 350 л. с. (1896 г.). Кроме того, действовали ГЭС «Белый уголь» на р. Подкумок (1903 г.) мощностью 990 л. с., напряжением 8000 В, Гиндукушская ГЭС (1909 г.) на р. Мургаб, мощностью 1 590 л. с. Кроме того, действовали несколько более мелких по мощности (Сашнинская, Аллавердинская, Тургусунская, Сестрорецкая и др.). Общая мощность гидростанций дореволюционной России составляла 8000 кВт.

Рассмотрим основные виды ГЭС.

Деривационные ГЭС . В них существенная (а иногда и большая) часть напора создается посредством деривационных водоводов, являющихся искусственными сооружениями в виде открытых каналов, лотков, туннелей или трубопроводов. Водяные турбины ставятся на деривационном водоводе. Такие ГЭС подходят для горных рек.

Приплотинные ГЭС. Они устроены так, что напор в них создается посредством специально сооруженной плотины, которая, подпирая уровень воды, образует верхний бьеф. Здание ГЭС обычно располагается вблизи плотины: вода из водохранилища поступает к турбинам по напорным водопроводам, проходящим через тело плотины, либо под плотиной, либо непосредственно из верхнего бьефа. После использования вода из турбин отводится в русло. Для пропуска избытков воды устраиваются особые водосливные плотины. К этому типу ГЭС относятся ДнепроГЭС и Волжская имени В. И. Ленина.

На некоторые ГЭС в турбинных блоках сделали отверстия для холостых сбросов паводковых вод и подведения воды к турбинам. Эти ГЭС называются совмещенными. В гидроэлектростанциях встроенного типа агрегаты размещаются в теле бетонной плотины, так что необходимость сооружения особого машинного здания отпадает.

На современных средних и крупных гидроэлектростанциях, а также на многих мелких ГЭС широко применяются методы автоматики и телемеханики, причем на некоторых ГЭС полностью автоматизированы пуск, регулирование, управление и остановка агрегатов, а также управление затворами гидросооружений и напорных водотоков. Эти операции могут производиться телемеханически, т. е. диспетчерским персоналом пунктов управления. Многие ГЭС работают без персонала, управляются на расстоянии (например, с другой станции каскада либо с диспетчерского пункта). На отдельных автоматизированных ГЭС управление и поддержание нужного режима работы осуществляются при помощи автооператоров, выполняющих свои функции по заранее намеченным для них планам и графикам. На полностью автоматизированных ГЭС, управляемых дистанционно или посредством автооператоров, надзор за оборудованием осуществляется путем периодических инспекторских осмотров ГЭС. При какойлибо аварии подается сигнал дежурному для восстановления нормального режима работы ГЭС.

Достоинства и преимущества гидроэлектростанций по сравнению с тепловыми электростанциями весьма значительны и состоят прежде всего в том, что ГЭС экономят топливо, рационализируют топливный баланс, содействуют экономическому развитию районов, не обеспеченных достаточными топливными ресурсами. Конструкция агрегатов гидроэлектрических станций проще, чем агрегатов тепловых электрических станций, а процесс производства электрической энергии на гидростанциях значительно менее сложен, чем на тепловых станциях.

Работа гидроэлектростанции не связана с таким количеством отходов, как работа ТЭС. Строительство гидроэлектростанций приводит к рациональному решению не только энергетической проблемы, но и ряда иных проблем, имеющих большое значение. Среди них– проблемы судоходства, ирригации и мелиорации земель, водоснабжения, рыбного хозяйства и очень важная проблема преобразования природы.

Опыт эксплуатации первых гидроэлектростанций показал, что они имеют большую маневренность, хорошую надежность работы и малые эксплуатационные расходы, не требуют многочисленного обслуживающего персонала и допускают полную автоматизацию процесса производства электроэнергии с весьма широкими возможностями телеуправления. Современные гидравлические турбины обладают КПД, доходящим до 0,93. Энергия, производимая гидроэлектростанциями, дешевле, чем электроэнергия, доставляемая тепловыми электростанциями.

В техническом и эксплуатационном отношениях очень важно, что гидроэлектрические установки обладают большой маневренностью. Эта особенность гидроагрегатов имеет существенное значение для крупных энергетических систем, так как резкий прирост нагрузки, в том числе при аварийных сбоях в системе, можно быстро компенсировать включением резервных гидроагрегатов. Таким образом, гидроагрегаты оказались очень удобными для покрытия пиков нагрузки в системах, в которых работают как тепловые, так и гидравлические станции.

Недостатком гидравлических станций является их «локальность», т. е. возможность эффективного строительства гидростанций только в относительно немногих районах. Эта локальность преодолевается передачей энергии на расстояние электрическим током, однако в некоторых случаях транспорт энергии путем перевозки топлива экономически эффективнее, особенно при применении нефтепроводов и газопроводов. Первоначальные затраты на сооружение ГЭС выше, чем на тепловые электростанции.

Большим недостатком равнинных ГЭС является отчуждение земель, затопляемых водохранилищем. Постепенно происходит размывание берегов искусственных водоемов, их заиливание, нарушение экологического равновесия в зоне водохранилищ.

Двигатель внутреннего сгорания

Создатели первых двигателей внутреннего сгорания отталкивались от конструкции паровой машины. Еще в 1860 году французский механик Этьен Ленуар построил газовый двигатель, напоминавший паровую машину. Он работал на смеси светильного газа и воздуха. Для зажигания служили две электрические свечи, ввернутые в крышки цилиндра. Двигатель Ленуара – двусторонний (или, как принято говорить, двойного действия; рабочий процесс происходит с двух сторон поршня) и двухтактный, т. е. полный цикл работы поршня осуществляется за два хода. При первом ходе происходят впуск, воспламенение и расширение смеси в цилиндре (рабочий ход), при втором ходе – выпуск отработавших газов. Впуском и выпуском управляет задвижказолотник, а золотником – эксцентрик, смонтированный на валу двигателя.

В отличие от паровых двигателей, газовые двигатели не требовали разведения пара, обслуживать их было сложно. Но масса нового двигателя оставалась почти такой же, как и у паровой машины. Единица выработанной мощности двигателя обходилась в 7 раз дороже, чем у паровой машины. Только половина теплоты сгоревшего газа совершала полезную работу, т. е. коэффициент полезного действия двигателя составлял 0,04. Остальное уходило с отработавшими газами, тратилось на нагрев корпуса и отводилось в атмосферу. Когда частота вращения вала достигала 100 об/мин, зажигание становилось ненадежным, двигатель работал с перебоями. На охлаждение расходовалось до 120 м3 воды в час. Температура газа доходила до 800 °C. Перегрев вызывал заедание золотника. Несгоревшие частицы смеси засоряли каналы впускавыпуска.

Причина низкой производительности двигателя заключалась в самом принципе его действия. Давление воспламененной смеси не превышало 5 кг/см2, а к концу рабочего хода снижалось втрое. Одноцилиндровый двигатель объемом 2 л при таком давлении, частоте вращения вала 100 об/мин и КПД 0,04 мог развивать мощность не более 0,1 кВт. Другими словами, ленуаровский двигатель был в тысячу раз менее производителен, чем двигатель нынешнего автомобиля.

Сделать газовый двигатель более эффективным удалось в 1876 году служащему коммерческой фирмы НиколаюАвгусту Отто из Кёльна совместно с Евгением Лангеном.

Полученный Отто патент был в 1889 году аннулирован, так как четырехтактный цикл якобы обосновал ранее француз Л. БодеРоша. Лишь посмертно заслуги Отто признала мировая техническая общественность, цикл назвали его именем.

Наблюдая работу газового двигателя, Отто пришел к выводу, что сможет добиться более производительной работы, если будет зажигать смесь не на середине хода поршня, а в его начале. Тогда бы давление газа при сгорании смеси действовало на поршень в течение всего хода. Для наполнения цилиндра смесью до начала хода Отто поступил следующим образом: вращая маховик вручную, он наполнил цилиндр и включил зажигание лишь в тот момент, когда поршень вернулся в исходное положение. Маховик резко «взял» обороты, а до этого сгорание смеси задало ему лишь слабый толчок. Отто не придал значения тому, что смесь была сжата перед зажиганием, он считал улучшение процесса результатом продолжительного расширения смеси в процессе сгорания.

Отто понадобилось 15 лет, чтобы сконструировать экономичный двигатель с КПД, равным 0,15. Двигатель назвали четырехтактным, так как процесс в нем совершался в течение четырех ходов поршня и соответственно двух оборотов коленчатого вала. Золотник в нужный момент открывал доступ в цилиндр от запальной камеры, где постоянно горел газ. Происходило зажигание смеси. Золотниковое распределение и зажигание горелкой не применяются в современных двигателях, но цикл Отто полностью сохранился до наших дней. По этому принципу работает подавляющее большинство автомобильных двигателей.

Итак, при первом такте поршень удаляется от исходной «мертвой точки» – головки цилиндра, создавая в нем разрежение, при этом засасывается приготовленная особым прибором (карбюратором) горючая смесь. Выпускное отверстие закрыто. Когда поршень достигает нижней «мертвой точки», закрывается и впускное. При втором такте закрыты оба отверстия. Поршень, толкаемый шатуном, идет вверх и сжимает смесь. Третий такт – рабочий ход. В начале его происходит зажигание сжатой смеси. Движение поршня через шатун преобразуется во вращение коленчатого вала. Оба отверстия закрыты. Давление в цилиндре постепенно уменьшается до атмосферного. При четвертом такте маховик, получив импульс движения, продолжает вращаться, шатун толкает поршень и вытесняет отработавшие газы в атмосферу через открывшееся выпускное отверстие, впускное закрыто.

Инерции маховика хватает на то, чтобы поршень совершил еще три хода, повторяя четвертый, первый и второй такты. После них вал и маховик снова получают импульс. При пуске двигателя первые два такта происходят под действием внешней силы. Во времена Отто и еще в течение полувека маховик проворачивали вручную, а теперь его вращает электродвигатель – стартер. После первых рабочих ходов стартер автоматически отключается и двигатель работает самостоятельно.

Впускное и выпускное отверстия открывает и закрывает распределительный механизм. Своевременное воспламенение смеси обеспечивает система зажигания. Цилиндр может быть расположен горизонтально, вертикально или наклонно, процесс работы двигателя от этого не меняется.

К недостаткам двигателя Отто относят его тихоходность и большую массу. Увеличение числа оборотов вала до 180 в минуту приводило к перебоям в работе и быстрому износу золотника. Давление в цилиндре требовало мощного кривошипного механизма и стенок цилиндра, поэтому масса двигателя достигала 500 кг на 1 кВт/ч. Для размещения всего запаса газа нужен был огромный резервуар. Все это предопределило неудачу: газовый двигатель Отто, так же как и первый его вариант, был непригоден для установки на автомобиль, однако получил широкое распространение в стационарных условиях.

Двигатель внутреннего сгорания стал пригодным для применения на транспорте, после того как изобрели жидкое топливо, он приобрел быстроходность, компактность и легкость.

Наибольший вклад в его создание внесли технический директор завода Отто в Дойце Г. Даймлер и его ближайший сотрудник В. Майбах, позднее основавшие собственную фирму.

Поначалу Даймлера увлекало конструирование машины. Потом возникла мысль о постройке второго, третьего вариантов машины, исходя из опыта работы над предыдущей, и о ее продаже.

Но прежде чем конструировать и строить самодвижущуюся повозку, нужно было создать для нее двигатель.

Первый двигатель Даймлера годился и для транспортного, и для стационарного применения. Работал на газе и на бензине. Все позднейшие конструкции Даймлера рассчитаны исключительно на жидкое топливо. Скорость вращения вала двигателя, обеспечиваемую, в частности, интенсивным воспламенением смеси, Даймлер справедливо считал главным показателем работы двигателя на транспортной машине. Скорость вращения вала двигателя Даймлера была в 4–5 раз выпе, чем у газовых двигателей, и достигала 450–900 об/мин, а мощность на 1 л рабочего объема – вдвое больше. Соответственно могла быть уменьшена масса. Появился закрытый картер (кожух) двигателя, заполненный смазочным маслом и защищавший подвижные части от пыли и грязи. Охлаждению воды в окружающей двигатель «рубашке» способствовал пластинчатый радиатор. Для пуска двигателя служила заводная рукоятка. Теперь имелось все необходимые составляющие для создания легкого самодвижущегося экипажа – автомобиля.

Первые двигатели Бенца имели скорость вращения вала, не превышающую 400 об/мин. Кривошипный механизм был открытым, как у стационарных двигателей. Электрическое зажигание в двигателе было сходным с зажиганием современных двигателей.

Было сложно наращивать мощность двигателя: увеличение диаметра цилиндра влекло за собой возрастание сил, действующих на его стенки и на детали кривошипного механизма. А при увеличении длины хода поршня росли размеры кривошипа, и цилиндр было трудно разместить на автомобиле. Все это влекло за собой увеличение массы двигателя.

И у конструктора возникла мысль увеличить количество цилиндров. Даймлер сконструировал двухцилиндровые (Vобразными) двигатели. В 1891 г. он построил первый 4цилиндровый двигатель.

Количество цилиндров обеспечивало не только компактность двигателя при увеличении его мощности, но и обеспечивало плавность хода. Вместе с тем возрастала сложность конструкции двигателя.

К концу XIX в. 1, 2, 4цилиндровые двигатели выпускались многими фирмами. Каждая фирма стремилась сделать свои цилиндры взаимозаменяемыми. Это позволило бы наладить массовое производство и упростить замену в случае повреждения. Головку цилиндра пытались сделать съемной, но трудно было обеспечить герметичность зазора. Тогда цилиндры стали отливать заодно с головкой, а для доступа к клапанам делали лючки с пробками. Рубашка водяного охлаждения была съемной.

Важную роль в двигателе играла система распределения, наполняющая цилиндры горючей смесью и очищающая их от газов. У первых двигателей впуск смеси в цилиндр осуществлялся автоматическим клапаном на стержне. Он открывался благодаря разрежению в цилиндре при впуске смеси, а все остальное время удерживался в закрытом положении пружиной и давлением в цилиндре. Выпускной клапан управлялся при помощи эксцентрика. Увеличение числа цилиндров привело к созданию кулачкового вала с приводом от коленчатого вала. В нужный момент кулачки приподнимали стержни клапанов, а при дальнейшем движении кулачка пружина удерживала клапан закрытым.

Хотя автомобильный двигатель можно охлаждать и потоком встречного воздуха, более эффективным оказалось водяное охлаждение. Долгое время были популярны змеевиковые радиаторы, часто опоясывавшие капот двигателя. В 1901 г. на «мерседесе» впервые был установлен сотовый радиатор с большой поверхностью охлаждения. В конце XIX в. появились водяные насосы, вращавшиеся от коленвала. Для продувки воздуха через радиатор применили радиатор.

Смазка двигателя осуществлялась при помощи разбрызгивания. Черпачки на нижних головках шатунов взбалтывали масло в картере и смазывали им цилиндры и подшипники.

Для распыления бензина применялись хитроумные приспособления, такие как карбюратор Маркуса. Его работа напоминала процесс стряхивания краски со щетки. А во взбалтывающем карбюраторе Бенца воздух проходил через бензин в баке. По мере расходования бензина смесь становилась беднее.

В конце концов остановились на карбюраторе, работавшем по принципу пульверизатора. Пульверизационный карбюратор Бенца и Майбаха состоял из поплавковой и смесительной камер. В поплавковой камере автоматически поддерживался постоянный уровнень топлива. Благодаря разрежению бензин выходил из жиклера смесительной камеры распыленной струей. Схожая конструкция применяется и до сих пор.

Большие сложности были с зажиганием. На первом автомобиле Бенца были установлено ленуаровское зажигание, и он работал на ровной дороге в сухую погоду с запасом сухих элементов. Динамомашина при малых оборотах не работала, поэтому для запуска двигателя было необходимо сильно раскрутить вал или разогнать автомобиль. Кислотный аккумулятор был тяжелым, заряд был малым.

До конца XIX в. на «Даймлерах» устанавливались платиновые калильные трубки, несмотря на их дороговизну и пожароопасность. Позже Даймлер применил на своих автомобилях магнитоэлектрическую машину инженера Боша. Она вырабатывала ток благодаря движению якоря в электрическом поле между полюсами магнита. В момент наибольшей силы тока электрическую цепь разрывала тяга, соединенная с якорем. Разрыв происходил в камере сгорания, вызывая искру, воспламенявшую смесь. Машину Боша назвали «магнето высокого напряжения».

Пуск двигателя имел не меньшее значение, чем зажигание. Вращая рукоятку, нужно было преодолевать давление в цилиндрах двигателя. Обратные удары рукоятки травмировали руки водителей. Конструкторы принимали меры к тому, чтобы заменить рукоятку более удобным устройством. Простым и надежным оказался электромотор с шестеренкой, сцепляемой в нужный момент с зубчатым венцом на маховике двигателя. Маховик начинал вращаться и запускал двигатель. Стартер изобрел американский конструктор Ч. Кеттеринг.

Особую роль в развитии двигателей внутреннего сгорания сыграл немецкий инженер Рудольф Дизель. В 1892 г. он получил патент на двигатель нового типа, общие принципы работы которого изложил в брошюре «Теория и конструкция рационального теплового двигателя», вышедшей в 1893 году.

Предложение Дизеля сводилось к осуществлению в полости двигателя высокого сжатия воздуха с целью повышения его температуры выше температуры воспламенения горючего. Поданное в полость двигателя в конце хода сжатия горючее воспламенялось от нагретого воздуха и нагнетаемое постепенно, осуществляло процесс подвода тепла без изменения температуры в соответствии с циклом Карно. Произведя тепловой расчет своего двигателя мощностью 100 л. с., Дизель получил в конце сжатия температуру 1 073 °C, давление 250 атм и КПД, равный 0,73.

Предлагая свой рациональный двигатель, Дизель считал, что широкое распространение его «будет противодействовать развитию централей», что мелкая промышленность будет размещаться вне больших городов, не будет «…централизованной в городах без света, без воздуха и без достаточного пространства…». Работа Дизеля получила широкий отклик среди ученыхтеплотехников. Многие отрицательно высказывались об идее Дизеля. Но наряду с отрицательными отзывами имелось и восторженные, принадлежавших весьма авторитетным ученым, среди которых были К. Линде, Г. А. Цейнер и М. Шредер.

Положительные отзывы о работе Дизеля помогли ему заинтересовать два крупных предприятия: фирму Круппа и Общество аугсбургских машиностроительных заводов. В 1893 г. были подписаны договоры, по которым фирма Круппа брала на себя финансирование разработки нового двигателя; Аугсбургский завод предоставлял помещение и оборудование в одном из своих цехов.

Первый двигатель, отличавшийся рядом необычных свойств, был готов летом 1893 г. Он должен был работать на угольной пыли, вводимой в полость двигателя насосом в конце хода сжатия, когда давление в полости достигало 90 атм, а температура – 800 °C. Охлаждение двигателя отсутствовало, так как предполагалось, что горение не вызовет большого повышения температуры, а эффективность цикла будет настолько велика, что лишнее тепло будет успешно эвакуироваться из полости двигателя с выхлопными газами. Двигатель был запущен от трансмиссии и взорвался, чуть не покалечив изобретателя. В этом же месяце был готов второй двигатель. Дизель, учтя неудачу с первым опытным образцом, отказался от угольной пыли и применил водяное охлаждение. В этом двигателе удавалось получить лишь одну вспышки при впрыскивании бензина. В августе испытанию подвергся третий опытный двигатель, который уже делал несколько оборотов на холостом ходу. Испытания показали несовпадение результатов с предварительными расчетами Дизеля.

Дизель с исключительным остроумием вышел из казалось бы безвыходного положения. В ноябре 1893 г. он получил новый патент (являющийся дополнением к основному патенту), который предусматривал метод регулирования мощности двигателя «…путем видоизменения характера кривой процесса сгорания…». При этом, несмотря на снижение давления в конце сжатия с 90 до 35–40 атм, в связи с чем температура в конце сжатия достигала величины 600 °C вместо 900 °C, в конце сгорания температура повышалась до 1500 °C. Это потребовало интенсивного охлаждения стенок цилиндра.

Упорные работы над усовершенствованием нового двигателя продолжались. Двигатель 1894 г. работал только на холостом ходу. Двигатель 1895 г. с распыливанием керосина от компрессора и хорошим водяным охлаждением был первым опытным двигателем, способным работать с небольшой нагрузкой. Только в 1896 г. испытание нового опытного образца принесло успех. Но в этом образце двигателя был сделан ряд отступлений от принципов, изложенных в брошюре Дизеля в 1893 г.: вместо угольной пыли – керосин, вместо насоса – компрессор, сжатие вместо 35 атм – 90 атм, вместо полного отсутствия охлаждения – интенсивное водяное охлаждение. Испытание опытного образца 1896 г. было проведено в начале 1897 г. М. Шредером и показало, что КПД двигателя не достиг расчетной величины: индикаторный КПД оказался равным 33,4 %, что при сравнительно низком механическом КПД (75,0 %) давало экономический КПД 25,0 %.

В то время КПД лучших газовых двигателей достигали 24,0 %, но они были связаны с источником газа (газогенератор, домна) и не могли работать на транспортных установках. КПД калоризаторных двигателей низкого сжатия не превышал 16,0 %.

После демонстрации на Парижской выставке 1900 г. двигателя Дизеля, усовершенствованного Аугсбургским заводом и получившего впоследствии название «дизель», ряд заводов приступили к «дизелестроению». Вначале дизели получили распространение в силовых установках небольших заводов и фабрик, но тенденция капиталистической концентрации стала предъявлять требования к повышению их мощности. Завод Зульцера, сконструировав двухтактный двигатель в первом десятилетии XX в., довел его мощность до 2400 л. с. Кроме Германии, дизели стали строить в Англии, Дании, АвстроВенгрии.

Сам Дизель вынужден был до конца своей жизни (1913 г.) защищать свои патентные права в ряде стран, так как горение при постоянном давлении (правда, без высокого сжатия), к которому он постепенно пришел, было запатентовано рядом авторов в разных странах.

У дизеля есть существенные преимущества по сравнению с карбюраторным двигателем: он не нуждается в электрическом зажигании, может работать на более тяжелом и дешевом топливе. Расход топлива в дизеле в 1,5 раза меньше, чем у карбюраторного двигателя. Экономия достигается за счет более высокой степени сжатия.

Недостатками дизеля является применение дорогого насоса и форсунок. Высокое давление топлива требовало повышения прочности, а следовательно, и массы конструкции. Тяжелые детали ограничивали частоту вращения вала дизеля. В холодную погоду завести дизель было сложно. Дизели оказались более шумными, чем карбюраторные двигатели.

Все это ограничивало применение дизельных двигателей на легковых автомобилях. Но в конце 20х – начале 30х годов они устанавливались на автобусах и большегрузных автомобилях. Позже, во второй половине 30х годов, в СССР был разработан быстроходный двигатель В2, для средних танков Т34 и тяжелых КВ и ИС.

Конструкции карбюраторного и дизельного двигателей сложились еще в начале прошлого века и за это время не претерпели существенных изменений. Появившиеся в середине XX в. двигатели Ванкеля так и не смогли вытеснить их. Поэтому и в XXI век человечество въехало на автомобилях, приводимых в движение двигателями внутреннего сгорания.

Дирижабль

Дирижабль – управляемый аэростат (воздушный шар), летательный аппарат легче воздуха, поддерживаемый подъемной силой газа.

Первые попытки создания управляемых аэростатов появились вместе с самим аэростатом в XVIII веке. Они были основаны на аналогии плавания аэростата и воздушного судна. Для управления горизонтальным движением аэростата предлагалось использовать паруса, руль и весла. Все эти попытки постигла неудача.

Впоследствии удалось достичь некоторых результатов в управлении аэростатами с помощью паруса. Для этого применялись специальные устройства, имитировавшие тормозящее влияние воды на надводные суда. Одно из таких устройств, гайдроп, представляло собой тяжелый канат длиной до двухсот метров. При спущенном гайдропе возникает дополнительное сопротивление вследствие трения каната о землю. Это снижало скорость аэростата относительно скорости ветра, и установленный на аэростате парус начинал раздуваться. Меняя положение паруса, можно было добиться некоторого изменения направления полета. Применять гайдроп можно было только при полете над ровной местностью, например над водой. При полете над лесом или населенными пунктами он мог зацепиться за препятствие и сыграть, что нежелательно, роль якоря.

Вскоре после полета первого монгольфьера была предпринята попытка управления аэростатом при помощи реактивной струи сжатого воздуха, выходящего через отверстие в оболочке. Но изобретателей постигла неудача – аппарат сгорел во время наполнения газом. В 1801 году венский инженер Кайзерер предлагал использовать для передвижения аэростата дрессированных орлов.

Огромное влияние на развитие управляемых аэростатов оказал проект французского военного инженера Менье. Он представил его на рассмотрение Французской академии наук в 1784 году. Менье предложил использовать вместо сферической формы оболочки форму удлиненного эллипсоида вращения. Это позволяло уменьшить сопротивление при движении. Для поддержания неизменяемости формы аэростата его оболочка делалась двойной. Во внутренней полости находился водород, а пространство между внутренней и внешней оболочками заполнялось воздухом. Эта воздушная полость получила название баллонета. Количество воздуха в баллонете зависит от изменения плотности водорода. При возрастании плотности в баллонет нагнетают дополнительный воздух, при уменьшении – излишек воздуха выпускают. Таким образом, форма остается неизменной. Гондола крепилась к специальному поясу, пришитому вокруг поверхности оболочки.

В качестве движителя Менье предложил использовать винты, вращать которые должны были восемьдесят человек. Длина аэростата составляла восемьдесят метров, диаметр – сорок два. Постройка этого воздушного корабля так и не состоялась.

Теоретические исследования и практический опыт, накопленный первопроходцами управляемого воздухоплавания, привели их к выводу: управляемость аэростата можно обеспечить, поместив источник энергии внутри аэростата.

Паровой двигатель был изобретен практически одновременно с аэростатом. Но долгое время его удельная масса составляла около ста килограммов на одну лошадиную силу. Это делало невозможным применение на аэростате двигателя, обеспечивавшего аппарату скорость, превышавшую скорость ветра.

В 1851 году французу А. Жиффару удалось построить паровой двигатель весом 45 килограммов и мощностью 3 лошадиные силы. Он предназначался для аэростата, созданного годом позже.

Первый полет состоялся 23 сентября 1852 года. Жиффар поднялся на высоту 1800 метров и затем благополучно приземлился. Во время полета аэростат двигался перпендикулярно направлению ветра со скоростью 12 км/ч. Дату этого полета принято считать началом эры управляемого воздухоплавания, а сам аппарат – первым дирижаблем.

Первые дирижабли были весьма беспомощными в полете. Даже слабый ветер становился для них серьезным препятствием. Отсутствие мощного двигателя, позволявшего развивать скорость, превышающую скорость встречного ветра, тормозило развитие дирижаблестроения.

Главной особенностью дирижабля, сконструированного немецким инженером П. Генлейном, было использование газового двигателя системы Ленуара. Топливом был газ, наполнявший оболочку аэростата. Мощность двигателя – 6 л. с. При помощи винта дирижабль развивал скорость до 18,7 км/ч.

В 1883 году французы, братья Тиссандье, построили аэростат, на котором установили электродвигатель мощностью 1,5 л. с. Максимальная скорость дирижабля составляла более 14 км/ч.

В 1884 году французы Ренар и Кребс построили управляемый аэростат, который даже при наличии ветра мог совершать полет по замкнутому маршруту. Передняя часть его оболочки была утолщенной для уменьшения аэродинамического сопротивления. На нем был установлен электродвигатель мощностью 9 л. с. и весом 96 кг. Вес батарей – 400 кг. В передней части гондолы помещался двухлопастный винт диаметром 7 метров, а в задней – вертикальный руль поворота и горизонтальный руль высоты. При их помощи можно было изменять курс корабля. Его назвали «Франция». В первом полете – 9 августа 1884 года – дирижабль за 23 минуты пролетел 8 км. Это был первый понастоящему управляемый воздушный корабль. Но его максимальная скорость – 21,6 км/ч была недостаточной для практического использования.

В 1896 году на дирижабле «Германия» конструкции Вельферта впервые был установлен бензиновый двигатель. Во время первого же полета корабль взорвался. Несмотря на первую неудачу, в воздухоплавании все же стали применяться бензиновые двигатели.

В 1897 году австриец Шварц построил в Германии первый цельнометаллический дирижабль. Его оболочка состояла из алюминиевых листов толщиной 0,2 мм, прикрепленных к жесткому каркасу из алюминиевых же профилей. Гондола тоже была из алюминия и жестко соединялась с оболочкой. В ней поместили бензиновый двигатель мощностью 12 л. с., вращавший четыре винта. Два из них находились по бокам гондолы и служили одновременно для поворотов и перемещения вперед, один размещался позади гондолы и должен был толкать аппарат вперед. Четвертый – подъемный с вертикальной осью – разместили под гондолой. Первый полет состоялся 3 ноября 1897 года. На высоте 250 м отказал двигатель. Пилоты выпустили избыточное количество газа, дирижабль начал быстро снижаться и при ударе о землю взорвался. Аэронавту удалось спастись. Дирижабль Шварца стал первым управляемым жестким аэростатом и прообразом будущих дирижаблей с жесткой системой.

1900 год ознаменовался появлением первого аппарата конструкции Ф. Цеппелина. С его именем связано целое направление в развитии управляемого воздухоплавания. На Боденском озере в Германии Цеппелин построил гигантский эллинг. Он поддерживался на воде при помощи 80 понтонов. Именно там в 1900 году был построен первый «цеппелин». У него был алюминиевый каркас, разделенный шпангоутами на 17 отсеков. В каждом из них размещался баллон, наполненный водородом. Общий объем баллонов был около 11 300 м3. Длина оболочки составляла 128 м, диаметр – 11,6 м. Под ней размещалась балка длиной 56 м. В каждой находился бензиновый двигатель мощностью 16 л. с. Четыре винта попарно устанавливались по обеим сторонам оболочки. Управлялся дирижабль при помощи вертикальных рулей в носовой и кормовой частях корабля и горизонтального руля в кормовой части. Было сделано три полета с максимальной скоростью 29 км/ч.

Этот дирижабль был самым крупным аэростатом к тому времени, что достигалось благодаря жесткому и упругому каркасу. Размещение подъемного газа в изолированных баллонах повышало надежность корабля А внешняя оболочка препятствовала утечке газа. Удачно были размещены винты, надежная конструкция клапанов и горизонтального руля. В дальнейшем эта конструкция была признана наиболее рациональной и перспективной.

На рубеже XIX–XX веков дирижаблестроение вплотную подошло к практическому использованию управляемых аэростатов. Изза отсутствия других видов воздушного транспорта дальнейшее их использование рассматривалась как одна из важнейших транспортных и оборонных задач. В начале XX века дирижаблестроение переживало период расцвета. Этому в значительной мере способствовали успехи в разработке бензиновых двигателей.

В 1902 году под руководством инженера Жюлио был построен дирижабль «Лебоди». Мягкая оболочка снизу была укреплена жесткой платформой из стальных труб. В задней части платформы находился киль с рулем направления и горизонтальные поверхности для управления кораблем в вертикальной плоскости. В гондоле установлен бензиновый двигатель мощностью 40 л. с. С обеих сторон на ней крепились два двухлопастных винта, а в нижней части – пирамидальная конструкция из стальных труб для защиты винтов от удара о землю при спуске. Этот дирижабль преодолевал расстояние более 100 км при скорости до 40 км/ч. Он был первым воздушным кораблем, который можно было использовать в практических целях.

Совершенствовались и аппараты мягкой системы. Во Франции был сконструирован «Клеман Баяр», установивший в 1909 году рекорд высоты для управляемых аэростатов – 1500 метров. Наиболее удачную конструкцию разработал немец Парсеваль. В оболочке размещались два баллонета, в которые при помощи вентилятора и шланга подавался воздух. Стабилизаторами служили две горизонтальные и одна вертикальная поверхности в хвостовой части корабля. Воздушный винт состоял из четырех прямоугольных прорезиненных кусков материи, во внешние части которых были вшиты грузы. В нерабочем состоянии мягкие лопасти свободно свисали, а при вращении распрямлялись под воздействием центробежной силы и принимали форму воздушного винта. Такой винт был легче обычного, удобнее при транспортировке и не представлял опасности для оболочки. В 1907 году этот дирижабль развил скорость 55,8 км/ч, совершив беспосадочный полет продолжительностью более 11 часов.

В то же время к созданию нового корабля приступил и Цеппелин. При первом же полете дирижабль сильно повредился и был разобран. Неудача не остановила конструктора. Его следующая модель поражала своими размерами: длина – 128 метров, диаметр – 11,7 метров. Два двигателя мощностью 85 л. с. каждый приводили в движение четыре винта. Две подвешенные на рессорах гондолы соединялись коридором. Этот корабль побил мировой рекорд скорости и грузоподъемности. В 1910 году совершил первый полет новый дирижабль – «Германия», длиной 148 метров и диаметром 14 метров. Он был первым специально предназначенным для пассажирского сообщения.

Лишь в 1907 году начались работы над дирижаблем для российской армии. Первым дирижаблем, построенным в России, стал «Учебный». Летом 1909 года был построен «Кречет», который уже мог конкурировать с лучшими зарубежными образцами. До войны были также построены «Голубь», «Альбатрос», «Сокол» и другие. В 1911 году в Киеве совершил первый полет дирижабль «Киев». К началу Первой мировой войны парк российских дирижаблей насчитывал 15 аппаратов – 7 отечественных и 8 зарубежных. Но к тому времени они уже успели устареть. В 1915 году начались испытания корабля «Гигант». В стране были в то время квалифицированные кадры конструкторов и воздухоплавателей.

С началом Первой мировой войны выпуск дирижаблей в Германии и в других странах Европы возрос. Дирижабли военных лет представляли собой мощное средство воздушного сообщения, разведки и нападения. Только немецкие дирижабли совершили во время войны около 1000 боевых вылетов.

Резко возросли и летные характеристики дирижаблей. Скорость выросла до 122 км/ч, высота подъема достигла 7650 метров. Максимальная продолжительность полета составляла 96 часов, полезная нагрузка – 51 000 кг. Лучшим самолетам того времени они уступали только в скорости. Значительно возросли надежность и безопасность полета дирижаблей.

Во время войны всего было построено 416 дирижаблей. Опыт, накопленный за годы войны, позволил перейти к мирному использованию дирижаблей. В Германии были построены дирижабли «Бодензее» и «Норденштерн». Они предназначались для регулярных пассажирских перевозок. Это были комфортабельные корабли, развивавшие скорость до 130 км/ч.

В 1927 году совершил первый полет дирижабль «Граф Цеппелин». По комфортабельности он не уступал океанским лайнерам. Пассажиры помещались в двухместных каютах, к их услугам были буфет, кухня, умывальные комнаты, даже почта. Дирижабль летал на трансатлантической трассе. За время своей работы «Граф Цеппелин» совершил 143 перелета и перевез 13 110 пассажиров, преодолев при этом расстояние около 1 700 000 км. Самой яркой страницей его истории стал кругосветный перелет по маршруту Фридрихсгафен – Токио – ЛосАнджелес – Лейкхерст (близ НьюЙорка) – Фридрихсгафен. Он длился 20 суток (из них летное время – 12,5 суток). За это время корабль пролетел почти 35 000 км. Перелет показал, что жесткие дирижабли могут использоваться на линиях регулярного сообщения любого направления и протяженности.

20е годы прошлого века ознаменовались попытками достичь на дирижабле Северного полюса. В 1925 году известный норвежский полярный исследователь Руал Амундсен купил у итальянского правительства дирижабль, названный «Норвегия». 11 мая 1926 года «Норвегия», на которой кроме Амундсена был конструктор дирижабля Нобиле и еще 13 человек взлетел со Шпицбергена и 12 мая достиг Северного полюса. Два дня спустя он приземлился на Аляске.

В 30е годы в Великобритании и США создавались гигантские дирижабли для трансокеанских перелетов. На некоторых из них, например на «Акроне» и «Меконе», в качестве несущего газа использовался гелий. Гелий в четыре раза тяжелее водорода, но, в отличие от последнего, не воспламеняется. В марте 1936 года поднялся в воздух крупнейший в истории дирижабль «Гинденбург». Его длина была 250 м, а объем – 200 000 м3. Он совершил 21 перелет через Северную и 16 перелетов через Южную Атлантику. 6 мая 1937 года перед швартовкой в Лейкхерсте «Гинденбург» взорвался. При катастрофе погибло 35 из 97 человек, находившихся на борту. Значительно позже было установлено, что катастрофа была вызвана взрывом мины, установленной одним из членов экипажа. Эта и другие аварии дирижаблей привели к тому, что постепенно от использования дирижаблей отказались.

Научнотехнический уровень того времени не позволил дирижаблям раскрыть все свои достоинства. Кроме того, на первый план уже вышли самолеты. Дирижабли состязаться с самолетами не могли.

В последние десятилетия наблюдается возрождение интереса к дирижаблям. Это вызвано, в частности, тем, что для современных самолетов требуются огромные дорогостоящие аэродромы, что они расходуют огромное количество топлива. Грузоподъемность самолетов ограничена. Отказ двигателей самолета приводит к катастрофе, в то время как на дирижаблях это не является неизбежным.

Появление новых материалов позволяет значительно облегчить дирижабли. Производство безопасного, в пожарном отношении, гелия стало значительно дешевле. А применение современных двигателей и компьютеров существенно облегчит управление кораблем. Все это позволяет надеяться, что в ближайшем будущем полеты на новых дирижаблях станут удобными и безопасными.

Доменная печь. Чугун

Доменная печь предназначена для выплавки железа из железной руды. На заключительной стадии процесса плавки железо соединяется с углеродом и превращается в чугун – сплав железа и углерода, содержащий от 2,14 до 6,67 % углерода.

Примерно во втором тысячелетии до н. э. человек овладел искусством получения железа из руды. Сначала для этого использовались костры, позже – специальные плавильные ямы – сыродувные горны. В них помещались руда и древесный уголь. Необходимый для горения воздух первоначально подавался естественной тягой, а затем при помощи мехов. В результате получалось железо в виде тестообразной массы с включениями шлака и несгоревших остатков древесного угля. Изза низкого содержания углерода сыродувное железо было мягким, изделия из него легко тупились, гнулись, оно не закаливалось.

Постепенно процесс выплавки железа совершенствовался: улучшалась форма горнов, повышалась их мощность. Горны превратились в небольшие печи – домницы (от древнерусского дъметь – дуть). Развитие домниц привело к появлению небольших доменных печей. Часто вместо железа в доменных печах получали высокоуглеродистый сплав, не поддававшийся ковке изза повышенной хрупкости. Его считали браком. В разных языках сохранились названия, свидетельствующие об отношении к чугуну. В Англии его называли «pigiron» – свиное железо, русское название произошло от «чушка» – свинья.

Отношение к чугуну изменилось после открытия кричного передела. Он осуществлялся в кричном горне. На слой горящего древесного угля помещали чушки чугуна. Плавясь, чугун стекал вниз и, проходя через окислительную среду, скапливался на поду горна. Там он под окислительным воздействием железистого шлака дополнительно обезуглероживался. В результате образовывалась крица – твердая губчатая масса железа с низким содержанием углерода, кремния, фосфора и серы. После извлечения крицы из горна ее проковывали с целью уплотнения и избавления от шлака.

Позже высокие литейные свойства чугуна стали использоваться для производства артиллерийских орудий, ядер, колонн.

До II половины XVIII в. чугун выплавляли непосредственно из руды в доменных печах. Позже его стали производить из литейного чугуна и лома в небольших доменных печах. Такие печи стали прототипами появившихся во второй половине XVIII в. вагранок.

Изза постепенного истощения запасов леса для производства древесного угля требовалось новое топливо для выплавки металла.

В 1621 г. англичанин Дод Додлей оформил патент на производство чугуна с применением каменного угля. В патенте указывалось, что «Додлей открыл… секрет, способ и средства выплавки железной руды и производства из нее чугунного литья или брусков путем применения каменного угля в печах с раздувательными мехами, причем результаты получились такого же хорошего качества, как и те, что до сих пор производились при помощи древесного угля…»

В ходе дальнейшей ожесточенной борьбы с предпринимателями, производившими чугун на древесном угле, Додлей разорился и был вынужден прекратить работу по усовершенствованию выплавки чугуна.

К использованию в доменном производстве каменного угля вернулись лишь в XVIII в. Эту проблему решали металлурги, владельцы железоделательного завода – отец и сын Дерби. Первые попытки непосредственно использовать каменный уголь в домне не дали результатов, так как уголь содержал большое количество золы и других примесей, особенно серы. Поэтому для выплавки чугуна Абрахам Дербимладший стал использовать кокс – твердое топливо повышенной прочности. Кокс получали путем нагрева каменного угля до температуры 950–1050 °C без доступа воздуха. Несколько месяцев Дербимладший добивался нужного сочетания всех условий, необходимых для выплавки чугуна на минеральном топливе. Он испытывал разные марки углей, менял температурные режимы коксования, подбирал флюсы для отшлаковывания примесей.

Наконец в 1735 г. была произведена первая удачная доменная плавка на коксе. Сначала кокс выжигался в кучах, как и древесный уголь. В конце XVIII в. было освоено коксование в полузакрытых камерах, а в 1830 г. – в закрытых.

Использование кокса требовало увеличения количества воздуха, подаваемого в доменную печь. Дерби произвел на своем заводе полное переустройство воздуходувных устройств, применив для привода воздуходувок паровую машину Ньюкомена. Она приводила в действие насосы, которые дважды подавали отработанную воду на водяные колеса, являющиеся двигателем воздуходувных мехов. Это позволило увеличить объем воздуха, подаваемый в домну.

В дальнейшем техника подачи воздуха в домну продолжала совершенствоваться. Росла мощность двигателей, приводивших в движение воздуходувные устройства. Вместо клинчатых мехов стали применяться цилиндрические. Первым их внедрил И. И. Ползунов. Он же впервые использовал в качестве двигателя для воздуходувной машины пароатмосферную машину.

В Англии воздуходувные машины были применены в доменном производстве в 1782 г. С тех пор шло непрерывное совершенствование воздуходувных устройств. В середине XIX в. начали внедряться центробежные воздуходувки, обеспечившие доменное производство необходимым количеством воздуха.

Эффективность новых способов подачи воздуха во многом зависела от применения в качестве двигателя для воздуходувок паровых машин. В 1775 г. впервые успешно внедрил паровую машину в доменное производство английский инженер Вилькинсон. Для этого он купил одну из первых машин Уатта.

Применение новых систем подачи воздуха позволило значительно увеличить размеры доменных печей и ускорить процесс плавки в доменных печах, это привело к резкому повышению выплавки чугуна.

В дальнейшем производительность доменных печей росла за счет подогрева воздуха, подаваемого в домну. Доменный воздухонагреватель впервые применил Дж. Нильсон на заводе Клайд (Шотландия). При первых же опытах нагрев воздуха до 150–300 °C позволил снизить примерно на 40 % расход топлива и резко повысить производительность домен. В 1857 г. англичанин Э. Каупер предложил воздухонагревательное устройство, работавшее на основе использования тепла отходящих газов доменной печи.

Современная домна – это огромное сооружение высотой с 30этажный дом. Она оборудована сложнейшими машинами и приборами. В ней плавят, как правило, не железную руду, а окатыши или агломерат. Они загружаются в печь слоями, перемежаясь коксом. Так же послойно в домну загружают флюсы – известь и другие вещества. Они заставляют пустую породу и другие ненужные вещества, образующие шлак, всплывать на поверхность жидкого металла, откуда шлак сливают в специальный ковш. Кокс, агломерат (или окатыши) и флюс называются одним словом – шихта.

Домна по форме похожа на большую башню, круглую в плане. Она состоит из 3х частей: верхняя – колошник, средняя – шахта и нижняя – горн. Внешняя оболочка домны – это прочный стальной кожух, выложенный изнутри огнеупорным кирпичом. Кожух непрерывно охлаждается водой.

Шихта загружается в домну через колошник порциями по несколько тонн. Она поступает туда из бункера – склада, куда доставляются агломерат или окатыши, кокс и флюсы. В бункере при помощи автоматизированных вагоноввесов смешивается шихта. Шихта из бункера в колошник подается либо транспортерами, либо (в старых домнах) вагонамискипами.

Под действием собственного веса шихта опускается и проходит через всю домну. В шахте она омывается газами, образующимися при сгорании кокса. Нагревая шихту, газы вытекают из домны через колошник.

Основная часть доменного процесса происходит в горне. В кожухе домны имеются отверстия, в которые вставлены фурмы – специальные приборы, назначение которых – подавать в печь сжатый горячий воздух. В фурмах имеются специальные окошки, через которые доменщики могут следить за процессом плавки. Внутри фурм сделаны специальные каналы, по которым течет вода для охлаждения. Горячий воздух дополнительно нагревает шихту. Это позволяет снизить расход кокса и повысить производительность домны. Кроме кокса в качестве источника тепла применяют мазут или природный газ. Воздух перед подачей в фурмы нагревается в воздухонагревателях – кауперах.

В горне температура достигает 2000 °C. При такой температуре руда полностью расплавляется. При горении кокса образуется углекислый газ, при высокой температуре превращающийся в оксид углерода СО. СО, отнимая у железной руды кислород, восстанавливает железо из оксида. Помимо железа в домне происходит восстановление кремния и марганца. Сера, попадающая в доменную печь в основном вместе с коксом, частично соединяется с кислородом и водородом и переходит в газ. Но большая часть серы остается в шихте в виде FeS и CaS. При этом FeS растворяется в чугуне. Для его удаления из чугуна добавляют шлаки, содержащие повышенное количество СаО.

Стекая вниз через слой раскаленного кокса, железо насыщается углеродом и превращается в чугун. Жидкий чугун скапливается на дне горна, а более легкий шлак собирается на поверхности.

После того как в горне скопится достаточное количество чугуна, его выпускают через летки – специальные отверстия в нижней части горна. В первую очередь через верхнюю летку выпускают шлак, затем через нижнюю – чугун. Из леток чугун сливают в канавы, откуда его потом сливают в установленные на железнодорожных платформах чугуновозные ковши.

Чугун, предназначенный для производства отливок (литейный чугун), направляется в разливочную машину. Там он застывает в виде брусков – чушек. Чугун, который впоследствии будет переработан в сталь (передельный чугун), перевозится в сталеплавильный цех, где переплавляется в сталь.

Когдато считавшийся вредным продуктом при выплавке железа чугун стал одним из основных конструкционных материалов современности. Он широко применяется как литейный сплав, заменяя иногда более дорогостоящие сплавы из цветных металлов. По прочности некоторые чугуны не уступают углеродистой стали. Во второй половине XX в. стал изготавливаться легированный чугун с добавками других металлов: алюминия, никеля, вольфрама, хрома и др. Добавки придают чугуну особые свойства: износостойкость, жаропрочность, коррозиостойкость.

Основные виды чугуна различаются по форме включений графита.

Наиболее применяемой разновидностью чугуна является серый чугун. В нем есть включения графита пластинчатой формы. Серый чугун применяется для деталей, испытывающих высокие нагрузки.

В белом чугуне избыточный углерод, не находящийся в твердом растворе железа, присутствует в виде карбида железа – FeC. Он применяется для деталей простой формы, работающих на износ. Для повышения износостойкости белый чугун легируют хромом, вольфрамом и молибденом.

В половинчатом чугуне часть углерода содержится в виде графита, часть – в виде карбидов. Он применяется для деталей, работающих в условиях сильного трения (например тормозные колодки), или для деталей, требующих повышенной износостойкости.

Ковкий чугун изготавливают из белого чугуна, подвергая его отжигу, в результате чего цементит распадается, а образующийся графит приобретает форму хлопьев. Его используют в основном, в автомобиле– и тракторостроении.

Высокопрочный чугун обладает хорошими литейными свойствами, применяется для замены стальных деталей (коленчатые валы двигателей). В высокопрочном чугуне графит имеет шаровидную или вермикулярную форму. Высокопрочный чугун с вермикулярным графитом применяется в дизелестроении.

Железо

Современную цивилизацию невозможно представить без железа, ведь 95 % металлопродукции, производимой в мире, приходятся на различные сплавы железа. На протяжении веков железо играло и продолжает играть роль важнейшего конструкционного металла материальной культуры человечества.

Первое железо, которое стал использовать человек, было в самородном состоянии. Но в отличие от меди, золота или серебра, которые встречаются на Земле довольно часто в виде слитков, железо быстро окисляется кислородом, и в чистом виде встречается очень редко. А самородное железо буквально падало на головы наших предков с неба. Ежегодно на поверхность Земли выпадают тысячи тонн метеоритного вещества, содержащего до 90 % железа. Как правило, такие метеориты весят несколько килограммов. Самый крупный железный метеорит, найденный на Земле, весил около 60 тонн. Не случайно египтяне называли железо «бенипет» – «небесный металл», а греки – «сидерос», то есть «звездный». Да вот беда – метеориты трудно обнаружить.

Одно из самых древних изделий из железа найдено в Египте: это ожерелье из прокованных полосок метеоритного железа. Оно датировано IV тысячелетием до н. э. Примерно к тому же периоду относится и кинжал из метеоритного железа, найденный на юге Месопотамии (современный Ирак).

Но метеоритное железо встречается довольно редко, поэтому перед людьми встала задача научиться получать его из руд. Для восстановления железа из его окислов окисью углерода требуется температура около 700 °C. Однако железо, получаемое таким путем, представляет собой запеченную массу из металла, его карбидов, окислов и силикатов. При ковке она рассыпается.

Первые опыты с окислами железа скорее всего проводили древние гончары, стремившиеся использовать их как красящее вещество. Они применяли флюс вместе с костной смесью (СаО, Р2O5). При этом также получались железные крицы, удобные для ковки. При температурах 1075 °C и выше для получения крицы флюсы не требовались. Таких температур достигали, складывая руду и древесный уголь слоями в яму или каменный горн. Уголь поджигали и через эти слои продували «сырой» (неподогретый воздух). Вначале мастера осуществляли продувку при помощи своих легких, вдувая воздух через отверстия внизу горна. Позже стали применять мехи, сшитые из шкур животных.

Сгорая в потоке воздуха, уголь нагревал руду и частично восстанавливал ее до состояния железа. Оставшаяся часть окислов железа вместе с окислами других примесей плавилась и образовывала жидкий шлак. На дне горна получали крицу – комок пористого, тестообразного, пропитанного жидким шлаком металла. Многократной проковкой крицы в горячем состоянии шлак «выжимали» и получали железную поковку, представлявшую собой сварочное ковкое железо, или мягкую сталь. Содержание углерода в такой стали – 0,12–0,26 %; серы, фосфора и других примесей очень мало.

Следует отметить, что железо всегда содержит примеси. Фосфор и сера относятся к вредным примесям, так как повышают хрупкость металла. Техническим железом называют сплав железа и углерода, содержащий 99,8–99,9 % железа, 0,1–0,2 % примесей и 0,02 % углерода. Но такой материал мягкий, поэтому практически не находит применения. Уникальность железа заключается в том, что в соединении с углеродом резко повышается его прочность и твердость. Таким образом, процесс получения железа из руды одновременно повышает механические свойства железа. Все соединения железа с углеродом можно разделить на две группы: стали и чугуны. Стали содержат до 2 % углерода, чугуны – свыше 2 %. Вначале люди использовали только сталь. Чугун, который образовывался при сильном науглероживании железа, не применялся, поскольку был хрупким и не поддавался ковке.

Долгое время для производства стали использовался сыродувный процесс. Но еще в древности металлурги применяли тигльный способ выплавки железа, меди, бронзы. Добытый металл переплавлялся в небольших огнеупорных сосудах – тиглях. Таким образом металл очищался от нежелательных примесей, его структура улучшалась. Тигльная сталь применялась для изготовления холодного оружия – мечей, сабель, кинжалов, отличавшихся необычайной остротой и упругостью. Именно из тигльной стали делали знаменитые дамасские клинки.

На процесс изготовления железа влияет режим термообработки. Уже первые кузнецы заметили, что если нагретый докрасна слиток металла опустить в холодную воду или иную охлажденную жидкость, его твердость резко возрастет. Этот процесс назвали закалкой. В некоторых старых металлургических трудах упоминается «закалка скотинным рогом с солью». По сути, это азотирование – насыщение поверхностного слоя азотом.

Потребность в стали постоянно росла. Увеличивались размеры горнов, совершенствовалась их форма, повышалась мощность дутья. Высота печей достигала нескольких метров, воздуходувные трубы приводились в движение специальными водяными трубами и огромными водяными колесами. Температура в печах повысилась до 1250–1350 °C, что привело к увеличению количества чугуна, получаемого при плавке. В то время свойства чугуна не позволяли применять его для промышленных нужд. Но в XIII–XIV веках был открыт «кричный передел». Его суть заключалась в том, что чугун загружали в печь вместе с рудой. В результате происходило окисление примесей, в первую очередь углерода. Переплав чугуна позволял получать сталь хорошего качества и в больших количествах. Двухстадийный способ получения стали из руды сохранился и по сей день, являясь основой современных схем производства стали (за исключением бездоменной металлургии).

Технический переворот в металлургии произошел в конце XVIII – начале XIX века с изобретением паровой машины. И как следствие – рост промышленного производства и увеличение числа машин. Это вызвало повышенную потребность в металле и послужило толчком к развитию металлургии. Развитию же препятствовало отсутствие заменителя древесного угля. Он был дорог, запасы древесины для его производства – ограничены. Еще в 1558 г. английская королева Елизавета запретила производить уголь из древесины. Поэтому в качестве топлива стали использовать каменный уголь. Первые попытки использования угля были неудачными: проблемой стала высокая температура его воспламенения. Кроме того, чугун, выплавленный на каменном угле, содержал много серы и фосфора, поэтому для передела в сталь не годился. В 1619 г. англичанин Додлей получил патент на производство чугунного литья или брусков путем применения каменного угля в печах с раздувательными мехами. Но внедрить в практику это изобретение ему не удалось, и свой секрет он унес в могилу.

В 1713 г. Абрахам Дербистарший нашел способ очистки каменного угля от примесей путем его обжига. Такой способ назвали коксованием. Но Дербистарший применял кокс в доменной плавке лишь частично (изза отсутствия техники для мощного воздушного дутья). В 1735 г. его сын Абрахам использовал для доменного дутья паровую машину. Качество выплавленного чугуна было высоким, а производительность изза значительного увеличения температуры резко возросла. Дербисын заменил деревянные рельсы, по которым подавали вагонетки с рудой, на чугунные. Так появилась первая железная дорога. В 1779 г. Абрахам Дербивнук построил первый в мире мост из литых чугунных деталей.

Применение каменного угля сдерживалось высоким содержанием серы в нем. Это придавало чугуну повышенную хрупкость. Проблему помогли решить пудлинговые печи. В них металл не соприкасался с коксом, а нагревался теплом, отраженным от свода. Для более равномерного выгорания углерода металл постоянно перемешивали, что и дало название процессу («puddle» поанглийски – перемешивать).

Следующим шагом в развитии доменного процесса стал нагрев воздуха, подаваемого в печь. Эта идея, предложенная шотландцем Нильсоном, первоначально была встречена в штыки. Тогда полагали, что чем холоднее воздух, тем лучше идет плавка. Внедрение этого изобретения позволило сократить расход кокса на треть, а выплавку чугуна увеличить в полтора раза. Идею Нильсона развил английский инженер Каупер. В 1857 г. он предложил оригинальную конструкцию доменного воздухонагревателя (каупера), позволявшего нагревать воздух до 600–700 °C. Современные кауперы позволяют нагреть воздух перед подачей в печь до 1200 °C.

К середине XIX века существовавшие тогда пудлинговый процесс и кричный передел не удовлетворяли требования металлургов изза продолжительности, трудоемкости и низкого качества металла, а тигльный способ, позволявший получать хорошую сталь, был дорогим и применялся мало.

В то время даже лучшие мастера руководствовались в своей работе исключительно опытом предшественников и своим собственным. О процессах, происходящих в металле при плавке и обработке, они практически ничего не знали, поэтому сознательно управлять ими не могли. Это не позволяло совершенствовать железоделательное производство.

Великий русский ученыйметаллург Павел Петрович Аносов задался целью превратить металлургию железа из ремесла в науку. После окончания в 1817 г. Горного корпуса в Петербурге он получил назначение на заводы Златоустовского горного округа на Урале. Экспериментируя с различными процессами получения стали, Аносов сумел получить сталь высокого качества, сократив продолжительность выплавки в несколько раз. Ему удалось получать сталь непосредственно из чугуна. Заветной мечтой русского металлурга была разгадка тайны булата. На пути к ее раскрытию Павел Петрович провел тысячи опытов с различными добавками: кремнием, марганцем, алюминием, титаном, даже с золотом и платиной. В конце концов молодой инженер пришел к выводу, что булат – это только железо и углерод. А опыты с добавками других металлов в железо положили начало металлургии легированных сталей.

Для исследования структуры металла Аносов впервые в мировой практике применил микроскоп, заложив основы металлографического анализа. В 1833 г. был выкован первый булатный клинок, перерубавший и гвозди, и тончайший газовый платок. Итог своим многолетним трудам Аносов подвел в своей монографии «О булатах».

Переворот в производстве литой стали призошел во второй половине XIX века. В 1856 г. Генри Бессемер взял патент на изобретение – конвертер, в котором осуществлялась продувка воздухом расплавленного чугуна, что позволяло превращать чугун в сталь без дополнительного нагрева.

В 1864 г. француз Пьер Мартен разработал новый способ выплавки стали, названный затем в его честь. Несмотря на то, что мартеновский процесс был более продолжительным, чем бессемеровский, он обеспечивал более высокое качество стали. Причем сырьем для него могли служить металлолом и отходы конвертерного производства. Плавка в мартене легко контролировалась, и ею можно было управлять. К началу XX в. мартеновский способ по объемам производства превзошел бессемеровский.

Большой вклад в исследование процессов, происходящих в стали, внес русский ученый Д. К. Чернов. Он исследовал нагрев и охлаждение стали, пытаясь найти оптимальный режим термообработки для различных ее сортов. Опыты Чернова помогли разработать способ получения требуемой структуры стали и положили начало новой науке – металловедению.

В начале XIX в. русский ученый Петров выдвинул идею выплавки железа в электропечи. В 1853 г. во Франции был получен первый патент на электропечь. В 1879 г. Вильгельм Сименс построил первую электропечь. Но получаемый в ней металл содержал большое количество примесей. В 1891 г. Н. Г. Славянов осуществил первую плавку стали в тигльной печи, снабженной электродами. В 1892 г. Анри Муассан создал лабораторную электропечь, температура в которой достигала 4000 °C. Благодаря производству дешевой электроэнергии на гидроэлектростанциях были построены электропечи в Швейцарии, Швеции, Германии, США. Высокая температура (до 5000 °C), а также восстановительная атмосфера позволяли получить полностью очищенную от примесей сталь. Именно появление электропечей дало возможность производить сталь с добавками других элементов – хрома, ванадия, вольфрама, титана и др. – легированную сталь.

В XX веке идет работа над заменой доменного процесса. Это связано с удорожанием производства кокса и повышением требований к охране окружающей среды. Еще Д. К. Чернов предложил конструкцию печи, выплавлявшей не чугун, а железо и сталь. В 60е годы XX века появились комбинаты, сырьем для которых служат окатыши – небольшие «орешки» из железорудного концентрата. В установках прямого восстановления, работающих на природном газе, из окатышей извлекают кислород. На второй стадии в мощных дуговых печах выплавляется высококачественная электросталь, очищенная от примесей. Эта технология позволяет обходиться без кокса, не загрязнять окружающую среду отходами производства.

Передовой технологией является и непрерывная разливка стали. На смену сложной многоступенчатой схеме получения стальных слитков и превращения их в прокатную заготовку пришла единственная операция. Она позволяет превратить расплавленный металл в полуфабрикат для проката. Непрерывная разливка стали намного упростила технологию, что позволило снизить производственные затраты. При этом сократились потери металла, повысилось качество стали. Кроме того, улучшились условия труда и повысилась возможность автоматизации процесса разливки.

В киевском Институте электросварки им. Патона в 1952 г. был разработан способ электрошлакового переплава металлов. Он позволяет получить слитки больших размеров и сложной конфигурации.

Еще одним эффективным методом получения металлических изделий является порошковая металлургия. Она позволяет получать изделия путем прессования и спекания металлических порошков.

Постоянное развитие технологий производства сплавов на основе железа позволяет получать материалы, соответствующие современным требованиям промышленности. Поэтому можно с уверенностью сказать, что железный век человечества продолжается.

Интегральная микросхема

Около полувека в радиотехнике царили электронные лампы. Они были хрупкими, большими, ненадежными, потребляли много энергии и выделяли массу тепла. Появившиеся в 1948 г. транзисторы были надежнее, долговечнее, потребляли меньше энергии, выделяли меньше тепла. Они дали возможность разрабатывать и создавать сложные электронные схемы из тысяч составляющих: транзисторов, диодов, конденсаторов, резисторов. Но это усложнение породило проблему, заключавшуюся в дороговизне ручной пайки многочисленных соединений. Это занимало много времени и снижало общую надежность устройств. Требовался более надежный и рентабельный способ соединения электронных компонентов схем.

Кроме того, работу большинства полупроводниковых приборов обеспечивает тонкий поверхностный слой толщиной в несколько микрометров. Остальная часть кристалла играет роль основания (подложки), необходимого для прочности транзистора или диода.

При изготовлении транзисторов в них размещали три тонких слоя с р– и nпроводимостью, создав в нужных местах пленочные металлизированные контакты для соединения с внешними элементами схемы и диэлектрические пленки, изолирующие каждый контакт. Технология нанесения полупроводниковых металлизированных и диэлектрических пленок послужила основой создания пленочных интегральных микросхем.

Одним из решений проблемы уменьшения количества соединений в электронных схемах стало создание микромодульной технологии. Она поддерживалась Министерством обороны США. Идея состояла в том, что все компоненты должны иметь одинаковые размеры и форму и содержать выводные контакты для межэлементных соединений. При создании схем модули объединялись в сложные объемные структуры с меньшим количеством проводных соединений.

Среди компаний, занимавшихся созданием микромодульных схем, была «Texas Instruments». Один из ее сотрудников, Дж. Килби, считал, что микромодуль не сможет решить проблему уменьшения числа соединений в сложных схемах. Он начал искать другое решение и пришел к выводу, что основу схемы должен составлять полупроводниковый материал. Пассивные элементы схемы (резисторы и конденсаторы) могли быть сделаны из того же материала, что и активные (транзисторы). Если все компоненты сделаны из одного материала, их можно соединить между собой, формируя законченную схему.

В июле 1958 г. Килби начал работать над созданием микросхемы, а 12 сентября того же года он продемонстрировал руководству компании рабочую интегральную схему, сформированную в кусочке германия, наклеенного на стеклянную пластинку.

Промышленники скептически восприняли появление микросхемы. Только военное ведомство США, и в частности воздушные силы, проявили определенный интерес к новому изобретению.

В феврале 1960 г. фирма «Fairchild» выпустила семейство монолитных транзисторных логических элементов с несколькими биполярными транзисторами на одном кристалле кремния. Оно получило название «микрологика». Фундамент развития интегральных микросхем был заложен планарной технологией Хорни и монолитной технологией Нойса в 1960 году. Сначала микросхемы основывались на биполярных транзисторах, а затем на полевых транзисторах и комбинациях обоих видов.

Интегральная схема сначала отвоевала место на рынке военных изделий, благодаря программе создания первого компьютера на полупроводниковых кристаллах для Министерства Воздушных сил в 1961 году и производству ракет «Минитмен» в 1962м.

Интегральные схемы, содержавшие до 100 элементов, называются микросхемами с малой степенью интеграции, до 1000 – микросхемами со средней степенью интеграции, до 10 000 – большими интегральными схемами.

В 1967 г. был выпущен первый электронный карманный калькулятор. Его размеры были следующими: 108×156×27 мм. Он был создан на основе большой интегральной микросхемы БИС, выполнявшей основные математические действия (сложение, вычитание, умножение и деление). Ее создателями были Дж. Килби, Дж. Мерриман и Джеймс Ван Тассел.

Рассмотрим процесс изготовления интегральной микросхемы, основой которой служит пластина чистого кремния, обладающая рпроводимостью. Ее тщательно обрабатывают: шлифуют, полируют. После этого проводится окисление пластины в атмосфере сухого кислорода. В результате на ее поверхности возникает слой двуокиси кремния SiO2. Он обладает большой прочностью и высокой химической стойкостью.

Затем проводится фотолитография: на пластину наносится светочувствительный слой (фоторезист). На следующем этапе на фоторезист накладывается фотошаблон. На нем фотографическим способом изготовлен рисунок всех элементов, которые необходимо закрепить на подложке. Фоторезист облучается ультрафиолетовым светом, проявляется, полимеризуется и сохраняется в тех местах, где фотошаблон имеет прозрачные окна. Там, где ультрафиолетовый свет не проник через шаблон, фоторезист удаляется химической обработкой. Оставшийся фоторезист служит контактной маской, защищающей те области пленки металла, которые должны быть сохранены от химического воздействия.

Поверхность схемы подвергается химическому травлению, удаляющему пленку металла с поверхности, кроме мест, защищенных фоторезистом.

Применяемый в описанной схеме фоторезист называется негативным. Применяется также позитивный фоторезист, который не закрепляется, а разрушается ультрафиолетовым светом. При его использовании окна на фотошаблоне соответствуют пустым промежуткам на будущей микросхеме.

На участки поверхности подложки, свободные от фоторезиста, вносятся примеси путем легирования – диффузии необходимых примесей внутрь подложки. Такими примесями могут быть сурьма или мышьяк, которые обладают nпроводимостью. Другим способом получения участков с nпроводимостью является планарная технология. Она заключается в том, что перед легированием проводится эпитаксия – постепенное наращивание слоя, по структуре повторяющего кристаллическую структуру подложки, но имеющего отличные от нее физические свойства. Так, методом эпитаксии на подложку с pпроводимостью наносится слой с nпроводимостью. Используя соответствующие маски, в нужные области эпитаксиального слоя вводятся примеси, обеспечивающие pпроводимость.

Все зоны и их контакты создаются в одной плоскости, отсюда и термин «планарная технология».

Для нанесения пленок, легирования подложек применяются вакуумные камеры, в которых могут располагаться электронные пушки, магнетроны, источники рентгеновских или ионных лучей.

После эпитаксии или легирования поверхность вновь покрывают слоем оксида, проводят фотолитографию, травление, открытие новых «окон» кремния, после чего проходит легирование бором, обладающим pпроводимостью. Так создаются базовые области транзисторов, pn переходы и области резисторов.

При следующей диффузии – диффузии фосфора – формируются эмиттерные области транзисторов. Затем вскрываются «окна» под контакты с областями коллектора, эмиттера и базы транзисторов, p– и nобластями диодов и с резисторами.

Затем создаются внутрисхемные соединения путем напыления пленки алюминия, которая после этого селективно травится путем фотолитографии. Сохраненные участки алюминия образуют электроды элементов, соединительные дорожки и контактные площадки для подсоединения структуры интегральной схемы к выводам корпуса.

Всю поверхность полупроводникового кристалла покрывают защитным слоем, который после этого удаляют с контактных площадок.

Готовые микросхемы подвергают тщательному контролю для выявления дефектных изделий.

Применение микросхем позволило значительно уменьшить размеры радиотехнических приборов, электронновычислительных машин, увеличить их быстродействие.

Интернет

С увеличением количества компьютеров возникла проблема обмена информацией. Для постоянного обмена необходимо соединить компьютеры в сеть. Две машины, соединенных проводами, представляют собой простейшую сеть.

Запуск Советским Союзом в 1957 г. искусственного спутника Земли, полет Юрия Гагарина в 1961 г. побудил американцев начать широкомасштабные исследования в области передовых технологий.

В 1968 году Министерство обороны США встало перед необходимостью решения задачи: как связать между собой несколько компьютеров. Тому было две причины:

– проведение научных исследований в военнопромышленной сфере;

– создание сети, устойчивой, в отличие от телефонной, к массовым повреждениям в результате ядерного удара или бомбардировки.

Эта работа была возложена на Advanced Research Projects Agency (ARPA) – Управление передовых исследований Министерства обороны США. Через пять лет появилась ARPAnet. К этой сети предъявлялись следующие требования:

– устойчивость – любая часть сети может быть разрушена без ущерба для функционирования сети в целом;

– равноправность конечных систем – любой компьютер может связаться с другим компьютером как с равным.

Передача данных основана на межсетевом протоколе – Internet Protocol (IP). Протокол IP представляет собой свод правил и описание принципов работы сети. Он включает в себя правила налаживания и поддержания связи в сети, правила общения с данными – указания о том, как и куда их передавать по сети. IP работает в паре с TCP или UDP. UDP обеспечивает транспортировку отдельных сообщений без проверки, тогда как TCP более надежен и предполагает проверку установления соединения.

Сеть проектировалась таким образом, чтобы от пользователя не требовалось никаких знаний о ее структуре, которая может измениться в любой момент. Ею может пользоваться человек, не имеющий технического образования и очень далекий от техники. Для того чтобы послать сообщение по сети, ему достаточно поместить его в некоторый конверт (IP), указать на нем конечный адрес и передать полученные в результате этих процедур пакеты в сеть.

В первые десять лет сети развивались незаметно – они были предназначены для специалистов в области военной техники и для сотрудников вычислительных учреждений. Через десять лет после появления ARPAnet, в конце 1970х, стали появляться локальные вычислительные сети (ЛВС), например Ethernet. В это же время появились первые суперкомпьютеры и операционная система UNIX. Эти суперкомпьютеры обладали вычислительными мощностями, превышающими возможности больших ЭВМ. Суперкомпьютеры были очень дороги, но при совместном использовании доступными по цене. В Америке было поставлено 5 таких суперкомпьютеров: предполагалось, что на них будут производиться математические расчеты на основе данных, посылаемых по сети из различных научных центров. Затем результаты должны были высылаться обратно. Однако, когда эти компьютеры связали в сеть, оказалось, что их обслуживание слишком дорого. Но сеть для доступа к ним уже была создана.

В то же время стали создаваться другие сети, например сеть NASA. Они использовали протоколы, напоминающие IP. Постепенно эти сети стали объединяться в сеть сетей, и пришлось создавать единое адресное пространство. Единая сеть стала называться Интернет, сеть сетей. В 1972 году было произведено первое международное подключение к Интернет – подключились Англия и Норвегия. Интернет стала сетью международной. В конце 1980х годов к Интернет стали подключаться страны Восточной Европы.

Одним из достоинств сети была возможность подключения к ней компьютеров различных производителей, которые могли работать совместно с любыми другими компьютерами.

В 1982 году был создан единый протокол TCP/IP, объединяющий ранее действовавшие протоколы. ARPA начала использовать его в ARPAnet – это событие можно считать рождением Internet. В этом же году EUnet начала предоставлять услуги email – электронной почты и Usenet сервис.

В 1983 г. был разработан Name server. Теперь пользователям не надо было знать точный путь к другой системе.

Количество серверов с 1984 по 1992 г. возросло с 1000 до 1 000 000.

В 1990 г. прекратил свое существование прародитель Интернет – ARPAnet.

Интернет – это не одна сеть, а тысячи взаимосвязанных отдельных сетей, каждая из которых имеет свои собственные правила. Попасть в Интернет можно через любую из них. Для подключения к Интернет необходим провайдер – поставщик сетевых услуг.

Для соединения компьютеров используются кабели в сочетании со специальной электроникой – сетевой платой. Они обеспечивают передачу информации на сотни метров. Сетевые платы позволяют нескольким компьютерам использовать для связи один кабель.

Для соединения компьютеров, расположенных на большом расстоянии, например в разных городах, используется телефонная связь. Но применять телефонные провода напрямую нельзя, поскольку телефонная сеть предназначена для передачи звуковой информации, компьютерные же сигналы имеют иную природу.

Для соединения компьютеров по телефонным линиям применяется модем. Он модулирует и демодулирует сигнал, отсюда и название – модем (модулятор – демодулятор). Модем переводит информацию в особые импульсы, которые затем расшифровывает модем, находящийся на другом конце провода.

Модемы бывают разных форм и размеров, внутренние и внешние. Они также отличаются скоростью передачи данных, полученных от компьютера, в телефонную линию.

Модемы принимают специальные меры, позволяющие им работать при помехах на телефонной линии: если принимающий модем не уверен на 100 % в том, что он правильно понял то, что ему было передано, он переспрашивает заново. В результате вся информация будет передана без искажений, но чем больше помехи, тем меньше скорость передачи. Кроме того, помимо информации модем передает объем этой информации («контрольную цифру»), и принимающий модем сравнивает полученный им объем с «контрольной цифрой».

В 1992 г. был разработан WWW (World Wide Web – дословно: «всемирная паутина»). Он представляет собой глобальную гипертекстовую систему отображения информации. Гипертекст – это текст со вставленными в него перекрестными ссылками.

Для чтения гипертекстов используются специальные программы просмотра – броузеры (наиболее популярные броузеры Netscape Navigator и Internet Explorer). Текст содержит специальные ссылки на тексты, звуковые файлы, фотографии, рисунки, видео, и браузер обрабатывает их. Такой текст похож на энциклопедию со ссылками на список литературы и с приложениями в конце.

В последнее время все чаще используется гипермедиа – синтез гипертекста и мультимедиа. Гипермедиа документ может включать в себя не только текст, но и графику, звук и видеоинформацию.

Долгое время гипертекстовые системы использовались как удобный инструмент при работе с большими объемами научной информации. Постепенно стало ясно, что WWW – великое изобретение, способное вывести сетевые технологии на качественно новый уровень. В конце концов гипертекстовая система стала глобальной. Интернет стала похожа на книгу. Поэтому отдельные блоки информации называются Webстраницами (Webpage), а совокупности Webстраниц (например об одной организации) называется Webсайтом (Website).

Часть глобальной или локальной сети, которая дает возможность пользователям сети получать доступ к гипертекстовым документам, расположенным на данном сервере, называется Webсервером.

Работа с WWW происходит по следующей схеме:

Пользователь посылает запрос на интересующую его тему на броузер, тот, в свою очередь, переадресует его в Сеть. Ответ идет в обратном порядке. В большом количестве информации трудно найти сведения на интересующую тему. Для облегчения поиска созданы специальные поисковые системы. Среди наиболее известных поисковых систем в русскоязычном Интернете – ALTAVISTA, YAHOO, GOOGLE.

Весьма популярной услугой в Интернете является электронная почта (electronic mail, или email сокращенно). Она позволяет быстро и недорого посылать сообщения в любой конец света и получать ответы. Использование электронной почты имеет свои преимущества:

– она дешевле, чем обычная почта или телефонный звонок;

– быстрее, чем обычная почта, – время доставки сообщения в любой конец мира обычно составляет несколько секунд или минут;

– не надо беспокоиться, на месте ли получатель письма;

– создав список рассылки и написав одно письмо разослать его группе людей;

– можно использовать логические имена, не запоминая сложные адреса;

– можно подписаться на группу новостей по интересующей тематике.

Еще одна возможность сети Интернет – это общение online – в режиме реального времени. При наличии специальной программы можно заходить в каналы общения и переговариваться с другими людьми. Текст сообщения приходит к собеседнику через несколько секунд. Разговор происходит в каналах с определенными названиями, которые отражают общую направленность (тематику) разговора.

В данный момент существует несколько типов программ, используемых для общения, различающихся оформлением, наличием различных опций и способом подключения. Некоторые программы позволяют передавать не только текст, а звук и видео. Наиболее распространенными программами являются IRC и ICQ.

Некоторые специалисты считают появление сети Интернет новой информационной революцией, третьей по счету после появления письменности и книгопечатания. Насколько они правы, покажет время.

Искусственный спутник Земли

В соответствии с международной договоренностью космический аппарат называется спутником, если он совершил не менее одного оборота вокруг Земли.

Большую роль в подготовке запусков искусственных спутников Земли сыграли научные исследования, заложившие основы теории реактивных двигателей и космических полетов. Важнейшее место в этом занимают работы К. Э. Циолковского. Он обосновал возможность применения ракетных аппаратов для межпланетных сообщений. Чтобы достигнуть космических скоростей, Циолковский выдвинул идею применения многоступенчатых ракет, которые он назвал «ракетными поездами».

Предшественницами космических ракет, выводивших на орбиту искусственные спутники Земли и космические корабли, были баллистические ракеты. В начале развития ракетной техники первенство в этой области было у Германии: в 1933 г., сразу после прихода Гитлера к власти, В. фон Браун стал вести работу над секретным проектом А1 (Агрегат первый). А1 представлял собой жидкостную ракету, работающую на спирте и жидком кислороде. Ее длина составляла около 1,5 м, стартовый вес – 150 кг.

Конструкция А1 была неудачной: центр тяжести конструкции находился слишком далеко от двигателя, что приводило к кувырканию в полете. В 1934 г. появился новый вариант – А2. Пуск этой ракеты прошел удачно, она поднялась на высоту 220 м.

Благодаря этому успеху, руководство вооруженных сил Германии приняло решение о создании «Армейской экспериментальной станции» в Пенемюнде на Балтийском море. На создание ракетного оружия в 1937–1940 гг. было выделено 550 млн марок.

Испытания следующей ракеты, А3, шли неудачно: она либо тонула в море, либо взрывалась при падении на сушу. Фон Браун и его коллега К. Ридель считали ее промежуточным этапом перед своим главным детищем – ракетойснарядом А4.

А4 по своим параметрам превосходила все ранее созданное в ракетной технике. Ее длина составляла 14 м, наибольший диаметр – 1,65 м. В головной части ракеты имелось боевое отделение, где содержался боевой заряд –1 т взрывчатого вещества. В снаряде было два бака: один с горючим – спиртом и второй с окислителем – жидким кислородом. Горючего в ракете было 3 т, а окислителя – 5,5 т.

А4 имел специальный насос для подачи окислителя и горючего, камеру сгорания, а также отделение с приборами управления. Направляющие плоскости стабилизатора и газовые и воздушные рули были нужны для управления ракетой и ее устойчивости. Мощность жидкостнореактивного двигателя превышала 500 000 л. с, а двигатель развивал тягу в 25,4 т, значительно превышающую стартовый вес ракеты. Предельная, максимальная скорость ракеты составляла 5500–5700 км/ч, а дальность полета – 300–400 км.

В мае 1943 г. в Пенемюнде состоялись запуски крылатой ракеты, также разрабатывавшейся на этом полигоне, и А4. Крылатые ракеты взорвались сразу после старта, а запуски обоих А4 прошли успешно. Кроме того, крылатая ракета требовала для запуска громоздкую эстакаду, а А4 взлетала с небольшой бетонированной площадки. Поэтому, несмотря на то что крылатая ракета стоила 50 000 марок, а А4 – 300 000 и они несли одинаковое количество динамита, было решено продолжать работу в обоих направлениях.

После показа Гитлеру документального фильма о стартах ракет, А4 получила название Фау2 (от первой буквы немецкого слова «Vergeltungswaffe» – «Оружие возмездия»).

Фон Брауну удалось соединить в Фау2 мировые достижения в конструировании жидкостных ракет. Так, использовались компоненты топлива, найденные Г. Обертом для ракеты еще в 1917 г., учитывались идеи Циолковского о применении жидких компонентов для охлаждения двигателя и создании специальных насосов для их подачи в камеру сгорания. Схему расположения баков и конструкцию турбонасосов, аналогичную брауновской, создал американец Р. Годдард.

18 сентября 1944 г. на Лондон была выпущена первая Фау2. Затем в течение семи месяцев немцы вели систематический обстрел Англии ракетными снарядами. Таким образом немцы могли перебросить тонну взрывчатого вещества на расстояние 300–350 км и бомбардировать Лондон из Гааги. Но точность попадания снарядов была очень мала, они несли сравнительно немного взрывчатого вещества и в целом не были эффективны как военное оружие, хотя, конечно, причиняли большие разрушения.

Менее чем через минуту после взлета ракета достигала высоты 30 км, а вскоре развивала огромную скорость – более 5500 км/ч. Специальные установки управления автоматически поворачивали ракету, которая, достигнув высоты 90 км, продолжала полет, спускаясь к цели по параболической траектории.

Ракета падала на цель со скоростью, превышающей скорость звука более чем в два раза. При быстром движении ракеты ее обшивка накалялась, и, по рассказам очевидцев, ракеты «А4», падавшие на Лондон, светились слабым красным светом.

После разгрома нацистской Германии дальнейшие работы по совершенствованию А4 проводились в Америке. В 1945 г. в США оказались немецкие специалисты, в том числе В. фон Браун, один из создателей «А3» и «А4». Он возглавлял все космические разработки в США в 1952–1956 годах.

В течение 1946–1952 гг. на испытательном полигоне УайтСэндс (штат НьюМексико) американцы производили запуск нескольких десятков ракет типа А4.

Отдельные ракеты достигли высоты 160 км, а одноступенчатая ракета «Викинг», созданная в США (имевшая большую длину и меньший диаметр, чем А4), в 1951 г. поднялась на высоту более 210 км. Она развивала силу тяги более 8000 кг и имела скорость до 6400 км/ч. Одноступенчатая ракета «Викинг», запущенная в мае 1954 г., достигла высоты 253 км. Стартовый вес ее был равен 7,5 т, а максимальная скорость превышала 6880 км/ч. При запуске двухступенчатой ракеты «Бампер» была достигнута скорость 8 тыс. км/ч и высота 400 км.

Разработка ракет велась и в СССР. 18 октября 1947 г. в Советском Союзе был проведен запуск первой советской баллистической ракеты Р1, созданной под руководством С. П. Королева.

В мае 1949 г. в СССР был произведен вертикальный запуск одноступенчатой ракеты В1А, созданной на базе Р1 на высоту в 110 км. Вес научной аппаратуры, который она подняла, достигал 130 кг.

Такая ракета включала головную часть с полезным грузом исследовательской аппаратуры, среднюю часть с топливными баками и хвостовую с двигателями и наружными стабилизаторами. Корпус ракеты, созданный из алюминиевых сплавов, имел цилиндрическую, с заостренной головной частью форму. Для запуска ракеты применялись специальные стартовые площадки и устройства. Приборы и оборудование ракет включали радиотехнические устройства, позволявшие вести наблюдения за верхними слоями атмосферы и передавать показания приборов по радио на землю. Применялся также особый механизм для сброса аппаратуры при вхождении ракеты в плотные слои атмосферы при спуске.

Расчеты, проведенные сотрудниками КБ Королева, показали, что для запуска спутника Земли необходима многоступенчатая ракета, способная взлетать на большую высоту, чем одноступенчатая. До этого были известны две схемы размещения ступеней – последовательно одна за одной, вдоль по оси ракеты или параллельно – боком друг к другу. Различные схемы обсчитывались группой математиков под руководством Д. Е. Охоцимского.

В окончательном варианте были соединены оба известных до того типа расположения ступеней. На одноступенчатую ракету сбоку навешивались еще 4 блока. На старте включались двигатели основного, центрального блока и боковых. После выработки топлива боковые блоки отстреливались, а центральный блок продолжал подъем. Таким образом, боковые блоки были первой ступенью, а центральный одновременно первой и второй.

В начале 1956 г. советское правительство поддержало инициативу С. П. Королева и Академии наук СССР и приняло решение о создании в 1957–1958 гг. искусственного спутника Земли. Была создана специальная комиссия по ИСЗ, которую возглавил советский ученый в области математики и механики М. В. Келдыш. В нее вошли С. П. Королев и крупный специалист в области ракетостроения М. К. Тихонравов. 23 сентября Королев сделал доклад о разработке эскизного проекта спутника.

Сначала предполагалось создать орбитальную научную лабораторию. Но работа над ней продвигалась медленнее, чем создание ракеты, поэтому было принято решение запустить аппарат упрощенной конструкции, чтобы проверить возможность его выведения на орбиту, контроля за ходом полета, надежности систем энергоснабжения, связи, терморегулирования.

21 августа 1957 г. был проведен первый удачный пуск баллистической ракеты, ставшей прообразом космической ракеты «Восток». Для того чтобы вывести спутник на орбиту, была необходима первая космическая скорость в 8 км/с.

4 октября 1957 г. в 22 ч 58 мин по московскому времени состоялся отрыв ракетыносителя первого искусственного спутника Земли от стартового комплекса.

Первый спутник представлял собой сферический аппарат диаметром 58 см с 4 антеннами длиной 2,4 и 2,9 м. Внутри заполненного жидким азотом корпуса из алюминиевого сплава находились три аккумуляторные серебряноцинковые батареи для питания радиопередатчиков, работавших на волнах длиной 15 и 7,5 м и вентилятор. Масса спутника достигала 83,6 кг. Он назывался ПС – простейший спутник.

Эллиптическая орбита первого спутника имела наибольшее удаление от Земли, апогей, 947 км, наименьшее, перигей, 228 км, время обращения вокруг Земли – 96 минут.

Первый искусственный спутник Земли просуществовал как космическое тело 92 суток, за это время он совершил 1400 оборотов вокруг Земли и прошел около 60 млн км. И вот 4 января 1958 г. он вошел в плотные слои атмосферы и прекратил свое существование.

3 ноября 1957 г. на орбиту был выведен второй ИСЗ. Он представлял собой последнюю ступень ракетыносителя, в которой была размещена вся научная аппаратура. В передней части последней ступени ракеты были установлены приборы для исследования излучения Солнца и космических лучей, сферический контейнер с радиопередатчиками и другой аппаратурой, а также герметическая кабина с подопытным животным, собакой Лайкой. Системы регенерации и терморегулирования поддерживали в кабине условия, необходимые для существования собаки. Общий вес аппаратуры, животного и источников питания составлял 508,3 кг.

Приборы и контейнер ракеты были защищены во время полета в плотных слоях атмосферы от аэродинамических и тепловых воздействий специальным защитным кожухом. После выведения последней ступени ракеты на орбиту защитный кожух был сброшен.

Во время полета спутника автоматически велась передача разнообразных наблюдений. Эти передачи обеспечивались при помощи специальной радиоаппаратуры. Мощность установленных радиопередатчиков позволила принимать сигналы спутника любительскими приемниками на расстояние нескольких тысяч километров. Сигналы, излучаемые передатчиками, имели вид телеграфных посылок. Эти сигналы использовались для наблюдения за орбитой спутника, а также для передачи изменений параметров на спутнике. Это достигалось путем установления на спутнике чувствительных элементов, которые в зависимости от изменения тех или иных параметров автоматически меняли длительность посылок и пауз. Радиотелепередающая аппаратура, установленная в корпусе последней ступени ракеты, где находилась герметическая кабина с подопытным животным, значительно расширила имеющиеся сведения о состоянии подопытного животного.

Второй искусственный спутник весил 508,3 кг. Высота перигея была 225 км, апогея – 1671 км. Второй ИСЗ находился на орбите до 14 апреля 1958 г. Проведенные на нем исследования дали первые научные сведения о состоянии живого организма в условиях космического полета.

31 января 1958 г. с помощью ракеты «ЮпитерС» был запущен первый американский спутник «Эксплорер1» массой 14 кг.

15 мая 1958 г. состоялся запуск третьего советского искусственного спутника Земли. Его вес достигал 1327 кг, длина – 3,57 м, наибольший диаметр 1,73 м (без учета выступающих антенн). Параметры орбиты: перигей – 226 км, апогей – 1881 км.

Этот спутник представлял собой первую в мире автоматическую космическую станцию. На нем были установлены 12 научных приборов, многоканальная телеметрическая система с запоминающим устройством, система терморегулирования, программновременное оборудование. В результате полета был обнаружен радиационный пояс, существующий вокруг Земли, изучены распределение плотности и состав атмосферы, концентрация заряженных частиц магнитного и электростатического поля. Третий спутник прекратил свое существование на 10 037м обороте 6 апреля 1960 года.

Современные ИСЗ имеют различное назначение. Существуют исследовательские ИСЗ для научных исследований космоса и верхних слоев атмосферы. Спутники связи применяются для ретрансляции радиосигналов между наземными станциями. Метеорологические спутники помогают наблюдать за распределением облачного покрова и теплового излучения Земли с целью получения данных для прогноза погоды. Навигационные спутники служат для определения положения кораблей и самолетов относительно спутника в нескольких точках его орбиты. Военные ИСЗ ведут разведку из космоса, могут поражать другие спутники или наземные цели.

Без искусственных спутников Земли невозможно развитие многих отраслей науки и народного хозяйства.

Календарь

Календарь настолько вошел в нашу жизнь, что мы порой не отдаем себе отчета, насколько велико его значение для человечества.

Календарь – это определенная система отсчета продолжительных промежутков времени с подразделением их на отдельные, более короткие периоды (годы, месяцы, недели, дни). Само слово «календарь» произошло от латинских слов caleo – провозглашать и calendarium – долговая книга.

Понятие времени появилось из наблюдения изменений, которым подвержены все окружающие нас материальные тела. А измерять промежутки времени стало возможным, сопоставляя эти изменения с периодически повторяющимися явлениями. В окружающем нас мире таких явлений несколько. Это смена дня и ночи, изменение фаз Луны и вращение Земли вокруг Солнца. Проблема заключается в том, что сутки (период вращения Земли вокруг своей оси), месяц (вращение Луны вокруг Земли) и год (вращение Земли вокруг Солнца) несоизмеримы друг с другом. То есть, большее нельзя поделить на меньшее без остатка. Поэтому необходимо было придумать систему, которая согласовывала бы все эти несоизмеримости и была простой и понятной для большинства людей. История решения этой проблемы – история календаря.

Попытки согласовать между собой сутки, месяц и год привели к появлению трех видов календарей. Лунные календари, согласовывающие течение суток и лунного месяца; солнечные, в которых приблизительно согласовываются сутки и год, а также лунносолнечные, согласующие между собой все три единицы времени.

Сутки – единица времени, равная 24 часам. Но не все знают, что различаются звездные сутки, равные периоду вращения Земли относительно точки весеннего равноденствия, и солнечные сутки – период вращения Земли относительно Солнца. Продолжительность солнечных суток меняется от 24 часов 3 минут 36 секунд в середине сентября до 24 часов 4 минут 27 секунд в конце декабря. Поэтому приняты средние солнечные сутки, равные 24 часам 3 минутам 56,56 секунды звездного времени. Одна минута звездного времени равна 0,9972696 минуты среднего солнечного времени.

Месяц – промежуток времени, близкий к периоду обращения Луны вокруг Земли. Различают месяцы синодические, сидерические, тропические, аномалистические и драконические. Синодический – период смены лунных фаз. Сидерический – период, за который Луна совершает полный оборот вокруг Земли и занимает исходное положение относительно звезд. Тропический – это период возвращения Луны к одной и той же долготе. Аномалистический – промежуток времени между последовательными прохождениями Луны через перигей. Драконический – промежуток между последовательными прохождениями Луны через один и тот же узел ее орбиты.

Год – промежуток времени, близкий по продолжительности к периоду обращения Земли вокруг Солнца. Определение его продолжительности еще в древности было одной из важнейших задач. Довольно точное значение этой величины было известно в Древнем Египте. Древнегреческий ученый Гиппарх определил год равным 365 1/4 дня без 1/300 дня, что лишь на 6,5 мин отличается от современных значений года. Различают год звездный, тропический, аномалистический, драконический. Кроме того, есть юлианский и григорианский год. В лунных календарях год равен 12 или 13 синодическим месяцам.

В основе лунного календаря – промежуток времени между двумя последовательными одинаковыми фазами Луны, то есть синодический месяц. В лунном месяце 29,5 суток. Для того чтобы в течение года начало каждого месяца совпадало с новолунием, нечетные (пустые) месяцы содержат 29, а четные (полные) – 30 суток. Лунный год содержит 354 суток, что на 11,25 суток короче солнечного года. Чтобы первый месяц каждого года приходился на новолуние, в определенные годы в последний месяц добавляют дополнительные сутки. Такие годы называются високосными.

Лунный год принят у народов, которые занимаются скотоводством, поскольку именно физиологические циклы у животных связаны с лунными фазами, происходящими в течение месяца. Люди видели Луну на небе примерно 28 суток, деля этот период на 4 фазы. Отсюда деление месяца на 4 недели. Хотя, например, в Византии вели счет «восьмидневками» так называемой торговой недели, семь дней которой были рабочими, восьмой – базарным. У вавилонян семь дней недели были связаны с планетами: воскресенье связывали с Солнцем, далее с Луной, Марсом, Меркурием, Юпитером, Венерой и Сатурном. День, управляемый Сатурном, – суббота – считался несчастливым. Поэтому в этот день старались воздерживаться от любых работ. Он стал называться шаббат – покой. Именно отсюда происходит и иудейский обычай воздерживаться от работы в субботу.

Солнечный календарь использовался земледельцами, для которых важно было правильно определить время начала весеннего сева. Если бы они пользовались лунным календарем, то обнаружили бы, что день весеннего равноденствия, по которому начинали сев, приходится на разные дни лунного месяца. Солнечный календарь впервые появился в Древнем Египте. Год в нем состоял из 365 суток, что было короче действительного на 0,2422 суток. Его начало связывали с первым предутренним восходом звезды Сириус. У египтян было три годовых сезона: наводнение, посев, жатва. Каждый сезон состоял из четырех месяцев. Каждый месяц делился на три десятидневки (декады) или шесть пятидневок (пентад), всего 360 дней. Еще 5 дней добавлялись в честь богов Осириса, Гора, Сета, Исиды и Нефтиды.

Первоначально древнеримский календарь, состоявший из 295 дней, делился на 10 месяцев, названных по их порядковому номеру: первый – Примидилис, второй – Дуолилис и так далее до Десембера. Продолжительность года была связана с началом и завершением сельскохозяйственных работ.

В начале VII века до н. э. древнеримский царь Нума Помпилий провел реформу календаря, и к 10 месяцам были добавлены еще 2. Теперь продолжительность года составляла 354 дня. Для того чтобы он начинался в один и тот же сезон, вставлялись дополнительные дни. Первые четыре и вновь прибавленные 11й и 12й получили собственные названия. Мартиус был назван в честь бога войны Марса. Априлис – либо от слова aperire – раскрывать, либо от слова apricus – согретый Солнцем. Он посвящался Венере. Майус посвящался богине Земли Майе. Юниус – богине неба Юноне. Януарис, предпоследний месяц календаря, был посвящен богу Янусу – богу небес, или, по другой версии, богу входов и выходов. Считали, что он утром открывал врата Солнцу, а вечером закрывал. Последний месяц был посвящен богу подземного царства Фебрусу.

Еще в Древнем Египте вследствие несоответствия начала календарного года началу тропического начало календарного года отставало примерно на одни сутки за четыре года. Делались попытки внести исправления. Так, в 238 году до н. э. царь Евергет издал декрет, согласно которому раз в четыре года предписывалось после окончания дополнительных дней перед началом нового года отмечать праздник богов Евергета. Но эта реформа была осуществлена в Египте значительно позже. Она связана с именем Юлия Цезаря. Он пригласил в Рим александрийского астронома и математика Созигена. Последний разработал календарную реформу, которая была утверждена в 46 г. до н. э.

За начало года было принято 1 января. В новом календаре год насчитывал 365,25 дней. Каждый четвертый год должен был содержать 366 дней. Дополненный год назвали annus bissextus, откуда и произошло слово високосный. В юлианском календаре накапливается разница, равная примерно 1 суткам в 128 лет.

Наряду с календарем большое значение имеет точка отсчета летоисчисления. В разных странах была своя календарная эра. В Древней Греции отсчет велся от первой Олимпиады – 1 июля 776 г. до н. э.; в Древнем Риме от основания Рима – 21 апреля 753 г. до н. э.; начальной датой византийской эры было сотворение мира 1 сентября 5508 г. до н. э. и др.

В IV веке н. э. государственной религией Римской империи стало христианство. В 325 г. Никейский собор принял юлианский календарь и установил единые для всей империи христианские праздничные дни, в первую очередь праздник Пасхи. Был принят так называемый «пасхальный предел», который начинается в первый день, следующий за днем весеннего равноденствия и заканчивался 25 апреля. В связи с тем, что христианство стало господствующей религией в Западной Европе, было решено установить новую эру, начало которой связали с датой рождения Иисуса Христа. Монах Дионисий Малый вычислил эту дату. Но летоисчисление от Рождества Христова распространялось по миру очень медленно. Так, в России оно было введено указом Петра Первого только в 1700 г. взамен летоисчисления от сотворения мира. Новый год переместился с 1 сентября на 1 января.

В Средние века определение равноденствия 21 марта стало заметно не соответствовать реальному весеннему равноденствию. В XVI веке разница составила почти 10 суток. В 1581 г. указом Папы Римского Григория XIII была создана комиссия. Она приняла на рассмотрение календарь, разработанный в 1576 г. профессором Перуджийского университета Луиджи Лилио. 24 февраля Григорий XIII издал буллу о введении нового календаря. Счет дней передвигался на 10 суток вперед. Во избежание повторения ошибок, те года, чей номер заканчивается на 00, а число столетий не делится на 4 без остатка, не считаются високосными. Так високосными были 1600 и 2000 года, а 1700, 1800 и 1900й содержали 365 дней.

В 1582 году григорианский календарь был узаконен в Италии, Испании, Португалии, Бельгии, Франции, а также в католической Дании. В Советской России григорианский календарь был введен декретом Совнаркома только в 1918 году.

В странах, государственной религией которых является ислам, распространены, в основном, лунные календари. В каждом 30летнем периоде этого календаря 19 лет насчитывают по 354 суток и 11 лет високосных по 355 суток. Летоисчисление ведется от 16 июля 622 года – даты переселения основателя ислама пророка Мухаммеда из Мекки в Медину. Эта дата называется хиджра (поарабски – «переселение»). Праздничным днем у мусульман считается пятница.

Создатели лунносолнечных календарей видели свою задачу в том, чтобы согласовать лунный и солнечный отсчеты времени. Они приняты, в частности, в Израиле и Иране. Современный израильский календарь пришел на смену лунному древнееврейскому календарю, число дней в котором равнялось 354. В новом календаре был введен дополнительный 13й месяц, продолжительностью 30 дней. Он вставляется семь раз каждые 19 лет. Год с 13 месяцами считается високосным и называется «иббур». Летоисчисление еврейского календаря ведется от даты сотворение мира – 7 октября 3761 г. до н. э. До конца III в. до н. э. новый год начинался с весеннего месяца нисан. Затем начало года было передвинуто на осенний месяц тишри. Праздничным днем у евреев считается суббота.

В Иране кроме календаря лунной хиджры, принятого в других мусульманских государствах, и григорианского календаря распространен также календарь солнечной хиджры, также ведущий отсчет от 16 июля 622 года. Год начинается с момента нахождения Солнца в знаке Овна, что соответствует 20, 21 или 22 марта. Он содержит 365 или 366 дней. Високосные года располагают по следующей схеме: в каждом 33летнем цикле 8 високосных лет, 7 из которых повторяются через каждые 4 года, а восьмой – через 5 лет. Неделя начинается с субботы. Официальный нерабочий день – пятница.

В странах Восточной и ЮгоВосточной Азии, в частности Китае, Японии, Корее, Вьетнаме, Таиланде, принят 60летний календарный цикл. Он представляет собой хронологическую систему, основанную на астрономических циклах Солнца, Земли, Луны, Юпитера и Сатурна. Наблюдая за движениями больших планет – Юпитера и Сатурна, астрономы Древнего Востока установили, что Юпитер совершает свой кругооборот примерно за 12 лет, Сатурн – примерно за 30 лет. За основу цикла было принято время двух оборотов Сатурна и пяти оборотов Юпитера.

Это соответствовало мировоззрению китайской натурфилософии: число пять являлось символом пяти элементов природы – дерева, огня, металла, воды, земли, которым соответствовали цвета синий или зеленый, красный, желтый, белый, черный. Поскольку в Китае и других странах Восточной Азии принят 12летний животный цикл, каждому из годов соответствует животное: мышь (крыса), корова (бык), тигр, заяц (кот), дракон, змея, лошадь, овца, обезьяна, петух, собака, кабан. Таким образом, в 60летнем цикле пять раз повторяются одни и те же животные. Для уточнения года внутри цикла используется цветовая символика.

Год в этом календаре начинается в новолуние, когда Солнце находится в знаке Водолея, то есть в период от 21 января до 20 февраля. Продолжительность года может составлять 353, 354, 355 или 383, 384, 385 суток.

Керамика

Слово «керамика» произошло от греческого χεραμιχη – гончарство.

Раньше керамикой называли все изделия из глины. В настоящее время керамикой называют изделия и материалы, полученные из глин и их смесей с различными добавками путем обжига при высоких температурах – от 700 °C и выше.

Достижение таких температур стало возможным благодаря появлению гончарного горна.

На Ближнем Востоке – в Вавилоне и Древнем Египте – для возведения построек стали применять обожженный кирпич. Там же стали изготавливать глазурованные глиняные изделия. Первые глазури представляли собой глину, тщательно растертую с поваренной солью. Позже в состав глазурей стали включать соду и окрашивающие добавки металлов.

В Месопотамии дома украшались орнаментированными плитками. В процессе их изготовления на слегка обожженный кирпич расплавленной черной стеклянной нитью наносился контур рисунка. Окаймленные нитью места заполнялись сухой глазурью, после чего кирпич подвергался вторичному обжигу. При этом глазурная масса остекловывалась и прочно связывалась с поверхностью кирпича.

В Древнем Египте появились глазурованные плитки с рельефным рисунком. Ими облицованы подземные камеры пирамиды Саккара. Позже такие плитки стали обычным строительным материалом – египтяне украшали ими стены своих жилищ.

Большое распространение получили изделия из керамики в Древней Греции. Наиболее известна керамическая посуда, разнообразная по форме, покрытая росписью на бытовые и мифологические темы. Кроме того, изготавливались статуэтки из терракоты – неглазурованной керамики с цветным пористым черепком.

В Древней Греции и Древнем Риме терракоту также применяли для изготовления черепицы и водопроводных труб.

В Древнем Риме широко использовался кирпич, из которого сооружались своды перекрытий, пролеты мостов и акведуки.

Римская парадная посуда оттискивалась в формах с рельефным орнаментом и покрывалась красным лаком. Рецепты приготовления прочных и устойчивых к кислотам красного и черного лаков – основных цветов в античной вазописи – были утрачены, поскольку в Византии лак был вытеснен ангобом, эмалью и глазурью.

Во всем мире издавна разрабатывались керамические материалы, отличающиеся составом керамической массы, приемами формовки и обжига, обработки и украшения поверхности.

Наиболее известным керамическим материалом для изготовления посуды является фарфор. Чтобы его получить, понадобились века кропотливой работы и многочисленных поисков.

Появлению фарфора в Китае во многом способствовали богатые залежи каолина – высококачественной белой глины. Особенно много таких залежей было в провинции Цзянси.

Во II–I тыс. до н. э. из каолина изготвавливалась посуда. Позже каолин стал сырьем для производства фарфоровидных изделий.

Для изготовления фарфора каолин необходимо перетереть с минералом, состоящим из полевого шпата и кварца. Позже этот минерал получил название «фарфоровый камень». Образованную смесь закапывали в землю на несколько десятилетий. Вылежавшаяся масса заворачивалась в полотно и долго отбивалась о каменные плиты. Благодаря такой обработке материал становился пластичным и пригодным для изготовления фарфора.

В VI–VII вв. китайским мастерам удалось получить «голубой, как небо после дождя, блестящий, как зеркало, тонкий, как бумага, звонкий, как гонг, гладкий и сияющий, как озеро в солнечный день» фарфор.

Сначала все фарфоровые изделия были чисто белыми. А в XIV веке их начали расписывать синей краской (солями кобальта) и ко второй половине XV века появился многоцветный фарфор.

Фарфор обжигали в специальных огнеупорных коробках в течение трех дней. После охлаждения получали твердые тонкие блестящие изделия. Центром производства фарфора стал город Цзинцжень. Здесь талантливые мастера создавали из фарфора вазы и чашки, фигурки фантастических драконов и невиданных птиц, разнообразных животных и рыб. В городе Нанкине была построена девятиярусная фарфоровая башня высотой в тридцать метров. На углах каждого этажа этой башни висело по восемьдесят колокольчиков, также сделанных из фарфора. При порывах ветра они издавали серебряный звон. В Китае фарфор называли «тсени» – в подражание звуку, издаваемому фарфоровым изделием при постукивании по нему твердым предметом.

Благодаря Марко Поло, привезшему из Китая много фарфоровых изделий, фарфор проник в Европу и стал очень популярным. Здесь он высоко ценился – наравне с золотом. Поскольку фарфоровые изделия поступали в основном из Индии и Персии, то персидское название материала «фегфур» постепенно трансформировалось в слово «фарфор».

Тайна изготовления фарфора была государственной тайной Китая и строго охранялась. За ее разглашение отрубали голову.

Но в конце XVI века француз д’Антрекол сумел все же узнать некоторые секреты производства фарфора. Ему удалось проникнуть в город Цзинцжень, куда иностранцам был запрещен въезд. Там француз увидел, что фарфор получают из белой глины – каолина, в который добавляют порошок циши (фарфорового камня). Он даже смог рассмотреть печи, в которых проводился обжиг фарфоровых изделий. Однако разгадать технологию производства д’Антреколу не удалось. Вернувшись в Европу, он написал книгу обо всем, что узнал и увидел. Но не зная состава каолина и циши, француз не смог полностью постичь тайну производства фарфора: это продолжало оставаться китайским секретом.

Последний шаг к ее разгадке сделал Иоган Бетгер из Тюрингии. Работая при дворе саксонского курфюрста Августа Сильного, он, по совету физика Э. Чирнхауза, занялся изучением состава фарфора. На разгадку тайны ушло шесть лет.

В 1709 г. Бетгер вынул из печи две чашечки, которые были такие же тонкие, прозрачные и звонкие при ударе, как и привезенные из Китая, но красного цвета. В 1710 г. по приказу курфюрста Августа в Мейсене был построен первый в Европе фарфоровый завод. Первые изделия этого завода легко узнать по характерной красной окраске.

Бетгер продолжал работать над тем, как сделать свой фарфор белым. На помощь ему пришел случай. Однажды на его одежду попала пудра с парика. Счищая ее, Бетгер скатал небольшой шарик. Пудра очень напоминала глину. Оказалось, что это каолин. Добавив в него полевой шпат и кварц (именно его называли в Китае фарфоровым камнем), Бетгер получил фарфор, полностью сходный с тем, что привозили из Китая. Стремясь сохранить тайну, Август приказал бросить Бетгера в тюрьму, где тот и умер.

На мейсенском заводе продолжали изготавливать посуду, подсвечники, люстры и тончайшие статуэтки. В 20е годы XIX века живописная мастерская мейсенского завода, руководимая И. Г. Герольдом, изготовила замечательные краски для росписи по фарфору.

Несмотря на смерть Бетгера, скрыть секрет производства фарфора не удалось. Сначала в Вене, Берлине, а затем во многих других европейских городах открывались фарфоровые заводы, развивалось фарфоровое производство.

В России фарфор стал известен со IIй половины XV века, после путешествия Афанасия Никитина «за три моря». Фарфоровые изделия были предметом роскоши и не выходили за пределы царского дворца.

Петр I положил начало длительным поискам секрета производства фарфора. Делались попытки выведать секрет производства фарфора в Китае и Саксонии. Однако закончились они безуспешно.

Разгадкой тайны производства фарфора занялись купцы Гребенщиковы: Афанасий Кириллович с тремя сыновьями. В 1724 году они открыли первую в России фаянсовую фабрику, работавшую на основе гжельских глин. Создать производство российского фарфора, не уступавшего китайскому и саксонскому, удалось Д. И. Виноградову.

До появления фарфора в Европе большой популярностью пользовались изделия из фаянса – мелкопористой керамики белого цвета, как правило, покрытой глазурью. Свое название она получила от итальянского города Фаэнца. Производить керамическую посуду в Фаэнце начали в 1142 году. Здесь делали кувшины и пиалы, сосуды для хранения вина и оливкового масла. Производство разрасталось, искусство мастеров росло.

XVI век стал «золотым» веком фаянсовой керамики. По примеру Фаэнцы было открыто производство фаянса во Франции и Нидерландах. Но посуда из Фаэнцы была непревзойденной. Тарелки и кувшины, вазы и чашки делались с ажурными краями, придающими изделиям элегантную утонченность.

Со временем фаянсу стало трудно конкурировать с фарфором, изделия из которого все в больших и больших количествах поступали на европейские рынки с Востока. В XVIII веке производство фаянса почти прекратилось.

Но в XIX веке английские керамисты усовершенствовали производство фаянса, и он вновь распространился по всей Европе. Теперь это был английский фаянс. Вслед за Англией фаянс высокого качества стали производить Франция и Германия. И если раньше с целью сбыта фаянсовые изделия обрабатывали под фарфор, то теперь уже фарфоровые изделия стали обрабатывать под фаянс.

С развитием науки и техники применение керамики вышло за сугубо бытовые рамки.

В 1837 году, изучая взаимодействие веществ с электрическим полем, английский физик Фарадей предложил новый термин – «диэлектрик». Под этим словом он подразумевал такие вещества, которые имеют большое электрическое сопротивление (больше чем 1·108 ом на см).

После этого керамика получила широчайшее применение и прочно заняла свое место среди диэлектриков.

Керамика, использующаяся как диэлектрик, получила название «сегнетоэлектрическая керамика», или «сегнетокерамика». Сейчас из нее делают конденсаторы высокой емкости, терморезисторы и термисторы.

Схожей по составу с сегнетокерамикой является пирокерамика. Она используется для производства инфракрасных детекторов и устройств тепловидения.

Изделия из пьезокерамики служат для преобразования механической энергии в электрическую. Это зажигалки для газовых плит, звуковые генераторы, гидролокаторы, ультразвуковые сверла и многое другое.

Сейчас слово «керамика» охватывает широкий спектр материалов, которые изготавливаются не только спеканием, но и горячим прессованием, формованием методом взрыва, литьем в парафиновые формы. Современная керамика – это посуда и произведения искусства, трубы и радиодетали, автомобильные двигатели и детали космических кораблей, краски и многое другое.

Кинематограф

Для того, чтобы получить на экране изображение движущегося предмета, необходимо сфотографировать его последовательные положения, а затем показать эти снимки с помощью проектора. Если показывать эти снимки со скоростью 12–14 кадров в секунду и более, человеческий глаз перестает замечать смену картинок на экране, и движение на экране будет казаться ему непрерывным. Именно эта «инерция» глаза лежит в основе кинематографа, мультипликации и телевидения.

Одним из первых устройств для получения изображений на экране был магический фонарь. В нем изображение, нанесенное на прозрачную пластинку, освещалось источником света и при помощи системы линз проецировалось на белую поверхность (экран).

Впервые передача движения на экран была осуществлена благодаря стробоскопу – прибору, который был изобретен в 1833 г. австрийцем С. Штампфером.

Стробоскоп представлял собой два диска, вращавшихся на одной оси. На одном диске изображались последовательные фазы одного процесса, на другом были радиальные щели, через которые можно было наблюдать рисунки, нанесенные на первый диск. При быстром вращении зритель, смотревший в специальное окошко, за небольшой промежуток времени последовательно видел картинки и воспринимал их как слитное изображение в непрерывном движении.

В 1853 г. австриец Ф. фон Ухатиус создал проекционный стробоскоп, совмещавший в себе магический фонарь и стробоскоп Штампфера. Этот прибор давал до 100 изображений. За секунду менялось 3–4 изображения, каждое из которых имело свой объектив. Источник света был установлен таким образом, что расположенные по краю колеса пластинки с картинками поочередно проходили перед ним. Позже проекционный стробоскоп стал известен под названием «живых картин».

Проекционные стробоскопы были очень громоздки, а время демонстрации составляло меньше минуты. Их сменили проекторы, в которых использовалась прозрачная целлулоидная пленка, намотанная на барабан. В «Оптическом театре» Э. Рейно можно было видеть персонажей, которые непрерывно двигались. Они были нарисованы на пленке. При вращении барабана изображение на пленке освещалось фонарем и проецировалось на наклонное зеркало, которое отражало его на просвечивающий экран в зале. Одновременно при помощи другого аппарата на экран проецировалась рисованная декорация, служившая фоном для двигавшихся персонажей.

Самая длинная пленка «Оптического театра» содержала около 500 изображений и демонстрировалась около 15 минут. «Оптический театр» стал прообразом современного анимационного кино.

В 1859 г. дю Мон получил патент на многообъективную камеру для съемки отдельных фаз движения. В ней 12 светочувствительных пластин, прикрепленных к бесконечной ленте, последовательно проходили позади объектива, останавливаясь перед ним на короткое время. В момент остановки открывался затвор, пропуская свет на фотопластинку. Механизм ленты был связан с затвором таким образом, что остановка пленки и открытие затвора точно совпадали.

Дю Мон предвидел принцип работы кинематографа. Но его аппарат не позволял снимать движение. Для осуществления этого не хватало нескольких составляющих.

Светочувствительность фотопластинок была недостаточной: для получения качественного изображения их надо было подвергать воздействию света в течение нескольких секунд, а при съемке движения выдержка должна была составлять несколько десятых, а то и сотых долей секунды.

Для съемки был необходим автоматический затвор, работавший со скоростью 12–14 кадров в секунду.

Была необходима фотопленка, которую можно было перематывать с нужной скоростью, и механизм перемотки этой пленки. Пленка должна была не просто перематываться, но и делать в определенные моменты короткие остановки.

Изобретение в 1871 г. сухого фотографического процесса позволило сократить выдержку при фотографировании до 1/200 секунды.

В 1872 г. американский фотограф Э. Мюйбридж сфотографировал отдельные фазы движения лошади при беге, установив вдоль беговой дорожки несколько фотокамер, затворы которых были соединены с протянутыми вдоль дорожки нитками. Пробегая мимо камер, лошадь рвала нитки, и производился снимок.

Таким образом, Мюйбриджу удалось получить несколько фотографий, на которых были изображены отдельные фазы движения лошади. Позже он снимал и другие движущиеся объекты. Мюйбридж наклеивал их в нужном порядке на стробоскоп, вращая который можно было наблюдать процессы в движении.

В 1882 г. французский физиолог Э. Марей создал специальное фотографическое ружье, которое могло снимать отдельные последовательные фазы непрерывного движения. В нем при нажимании курка срабатывал передвигающийся механизм, вращавший пластинку. Он делал 12 снимков за секунду. При помощи этого ружья Марей снимал полет птиц.

В 1877 г. польский фотограф Л. Варнерке изобрел первый роликовый фотоаппарат с коллоидной бумажной лентой.

В 1886 г. француз О. Пренс сделал хронофотографический аппарат с 16 объективами. Он предназначался для съемки последовательных фаз движения. В нем светочувствительная бумажная лента перематывалась с барабана на барабан, проходя при этом позади объектива. Объективы, каждый из которых имел свой затвор, располагались в 4 ряда. Пренс смог проецировать снятое изображение на экран. Лента для аппаратов была негативной, сначала ее проявляли, затем печатали на другую ленту позитив. Проекционный аппарат также имел 16 объективов. Для удобства перематывания ленты по ее краю были прорезаны специальные отверстия – перфорации, в которые помещались зубцы лентопротяжного механизма.

Но бумага была неподходящим материалом для фотографии – она была непрозрачной и непрочной. В 1887 г. Г. Гудвин изобрел гибкую целлулоидную фотопленку на основе нитроцеллюлозы.

Для качественного воспроизведения движения еще был необходим скачковый механизм. Первое подобное устройство сконструировал англичанин У. ФризеГрин. Но он был несовершенен и сложен.

В 1893 г. Эдисон создал кинетоскоп. Это был ящик с окуляром, в который смотрел зритель. В окуляр было видно матовое стекло, на которое снизу проецировалось снятое на пленку изображение.

В 1893 г. Марей создал хронофотографический аппарат, в котором целлулоидная пленка двигалась прерывисто с мгновенными остановками. Частота движения составляла 20 кадров в секунду. Механизм прерывания состоял из электромагнита и прижимных роликов. В момент срабатывания затвора валик притягивался и останавливал пленку.

В 1894 г. Ж. Демени создал киноаппарат, в котором скачковый аппарат представлял собой диск с пальцем, вращавшимся по часовой стрелке.

В 1895 г. свою конструкцию кинопроектора и киноаппарата запатентовал Луи Люмьер, который вместе с братом Огюстом разработал киноаппарат для съемки. Л. Люмьер назвал свое изобретение кинематографом.

В киносъемочном аппарате братьев Люмьер пленка сматывается с подающего ролика при помощи зубчатого барабана и подается в фильмовой канал, в котором спереди прорезано окно. Пленку продергивает лапка – грейфер. Зуб грейфера входит в перфорацию, затем идет вниз и тянет пленку за собой. Протянув ее на один кадр, он оттягивается назад и выходит из перфорации. После этого грейфер поднимается и вновь входит в зацепление с перфорацией.

Грейфер приводится в движение механизмом камеры. Этот же механизм передвигает обтюратор – диск с вырезанным сектором. Он работает синхронно с грейфером. Пока зуб грейфера сцеплен с пленкой, продергивая ее, обтюратор закрывает кадровое окно, и свет не попадает на пленку. Когда же зуб грейфера выходит из перфорации, поднимаясь в исходное положение, пленка стоит неподвижно. В это время перед кадровым окном проходит вырез обтюратора.

Отснятая пленка выходит из фильмового канала и подается зубчатым барабаном к приподнимающему ролику. Вращаясь, он наматывает пленку на себя. Сверху и снизу фильмового канала пленка образует петли. Верхняя петля нужна для того, чтобы грейфер не оборвал пленку, нижняя – чтобы зубчатый барабан не тянул ее через фильмовый канал в то время, когда делается снимок.

Опытная демонстрация фильма, снятого на кинопленке с помощью аппарата братьев Люмьер, состоялась в марте 1895 г., а в декабре этого же года в Париже на бульваре Капуцинов начал свою работу первый кинотеатр.

В 1896 г. был изобретен более совершенный, чем аппарат Люмьера, скачковый аппарат в виде мальтийского механизма. Его создали В. Контенсуза и Бюнцли. Он состоит из ведущего диска (кривошипа) с одним пальцемэксцентриком и ведомого диска в форме мальтийского креста с 4 прорезями. При движении кривошипа его палец входит в прорезь креста и, скользя в ней, поворачивает крест на 90°. При этом поворачивается и зубчатый барабан, соединенный с крестом. За один оборот ведомый диск делает 4 остановки, продолжительность каждой из которых в 4 раза больше, чем время движения. При остановке кадра ведущий диск поворачивается на 270°, после чего палец снова входит в прорезь креста, поворачивая его на 90°.

В 1897 г. Ш. Пате и Л. Гомон организовали промышленный выпуск усовершенствованных киносъемочных и кинопроекционных аппаратов. Они же организовали выпуск первых кинокопировальных аппаратов.

Кинопленку для съемки и печатания копий выпускали фирмы «Люмьер» и «Истмен Кодак».

Несмотря на несовершенство первых киноаппаратов, кинематограф в начале XX в. приобрел большую популярность. Показ первых фильмов сопровождался аккомпанементом пианино или оркестра.

Одновременно с появлением кинематографа начались попытки соединить изображение со звуком: привлекались актеры, синхронно воспроизводившие речь персонажей фильма. Для воспроизведения звука были созданы кинетофон Эдисона и хронефон Гомона. Использовались также специальные грампластинки.

Русские ученые А. Ф. Виксцемский в 1889 г. и И. Л. Поляков в 1900 г. предложили метод фотографической записи звука посредством фотоэлемента и использования позитива фонограммы. В 1906 г. американец Ю. Лоост разработал систему фотографической записи звуковых колебаний на кинопленку.

Системы звукового кино были созданы практически одновременно в СССР, США и Германии. В СССР звуковое кино разрабатывалось в Москве под руководством П. Г. Тагера (система «Тагефон») и в Ленинграде под руководством А. Ф. Шорина.

В системе Шорина фонограмма имела переменную ширину дорожки записи, в системе «Тагефон» – переменную оптическую плотность. В 1931 г. был снят первый советский звуковой фильм «Путевка в жизнь».

При съемке звукового кино звуковые колебания воспринимаются микрофоном и после обработки поступают на аппарат записи, фиксирующий звук на отдельной магнитной ленте. Различные звуки (речь, музыка, шумы), записанные при производстве фильма, располагаются на отдельных лентах. После окончания монтажа фильма осуществляется перезапись звука: все сигналы с фонограмм сводятся на одну.

Затем производится тиражирование совмещенных позитивных копий фильма. В кинопроекционном аппарате фотографическая фонограмма переменной ширины или переменной плотности, полученная перезаписью с магнитной фонограммы, пересекает световой поток лампы просвечивания в месте равномерного движения киноленты и изменяет его в соответствии с записанными звуковыми колебаниями. Фотоэлемент превращает световой поток, падающий на него, в электрические колебания, которые после усиления поступают на громкоговоритель, установленный у экрана в зрительном зале. В том случае, если звуковая дорожка магнитная, воспроизведение звука вместо фотоэлемента осуществляется магнитной головкой.

В 1950е годы получила распространение стереофоническая звукозапись.

В 1935 г. С. П. Иванов изобрел безочковое стереофоническое кино, основанное на использовании растрового кинопроекционного экрана. Первый кинотеатр, оборудованный таким экраном, открылся в Москве в 1941 году.

С 1939 г. применяются системы стереофонического кино с использованием поляроидных очков.

В 1940–1950е годы создаются системы цветного кино. В их основе лежит метод трехцветного изображения на цветной пленке. В 1941 г. немецкая фирма «Агфа» разработала пленку «АгфаКолор», а в 1951 г. американская фирма «Кодак» – пленку «ИстменКолор».

В США и Великобритании применяется система цветного кино «Техниколор», основанная на гидротипном методе печати цветных изображений.

В 50е годы появились новые виды кинематографа, использующие широкие экраны: панорамное кино с использованием 35миллиметровых кинопленок, широкоэкранное кино, широкоформатное кино с использованием пленки шириной 65–70 мм.

Книгопечатание

Когда в середине XV в. правитель Флоренции Лоренцо Медичи решил украсить свой великолепный дворец библиотекой, он нанял сорок пять писцов.

Два года те работали день и ночь, переписывая рукописи и украшая их рисунками. Теперь Лоренцо Медичи мог похвастаться перед гостями огромной библиотекой: двести книг в прекрасных переплетах стояли на дубовых полках.

То был период, когда закладывались основы мировой торговли, когда ремесленничество уступало место мануфактурам и такой способ тиражирования книг, существовавший много веков, уже не мог удовлетворить растущих потребностей.

Изменил сложившуюся ситуацию немец Иоанн Гутенберг. Книги печатали и до Гутенберга. Самым первым способом, возникшим более двух тысяч лет назад, было печатание штемпелями, т. е. на кусочке глины, камня или металла наносились отдельные буквы, слова или изображения, покрывались краской и штамповались на бумаге.

Затем в Китае в VII в. была изобретена ксилография– печатание с досок. На доске вырезался текст или рисунок, рельефное изображение покрывалось краской, и на прижатом листе бумаги получали оттискгравюру.

В 1045 г. китаецкузнец Пи Шэн перешел на печатание подвижными литерами (буквами). Он изготовлял их из обожженной глины, затем в железной рамке производил набор страницы. Китайцы продолжали совершенствовать технику наборной печати, в XIII в. у них появились оловянные и деревянные литеры, а у корейцев, перенявших этот способ, – более прочные медные литеры (1390 г.). В 1409 г. этим способом впервые была напечатана книга (а не отдельные страницы, как ранее).

Но, поскольку каждую литеру приходилось изготавливать вручную, а для создания книги их требовалось несколько сотен, книгопечатание не могло конкурировать с переписыванием книг от руки.

В XV в. в Европе производство книг осуществлялось при помощи ксилографии – оттиска с деревянной пластины, на которой вырезались рисунок или текст. После этого пластину намазывали краской и на эту поверхность накладывали листок, увлажненный для лучшего отпечатывания краски. После того, как на листе отпечатывался рисунок, его снимали и сушили. Потом доску снова мазали краской, и процесс повторялся. Сначала текст печатали лишь с одной стороны листа, позже стали использовать обе стороны.

Недостатками ксилографического метода были трудоемкость изготовления доски и невозможность ее использования для печатания другого текста.

Книгопечатание было изобретено в г. Майнце, на Рейне, где в 1397 г. в знатной семье родился Иоганн Гутенберг. Через двадцать лет изза соперничества и распрей сословий семейство Гутенбергов было изгнано из города и поселилось в Страсбурге.

Иоганн много путешествовал, побывал в Швейцарии, Германии и, наконец, в Голландии. В голландском городе Гарлеме у него впервые зародилась мысль о новом способе книгопечатания – отлитыми из металла литерами.

Возвратясь в Страсбург, Гутенберг, начиная с 1430 г., работает над воплощением своей идеи книгопечатания. В поисках самого удобного способа отливки букв он проделал много экспериментов. Однако опыты требовали значительных расходов.

Чтобы заработать деньги, Гутенберг занимался различными ремеслами. Он гранил драгоценные камни, полировал венецианские стекла для окон и зеркал. Свои опыты он скрывал, опасаясь, что идею могут украсть.

Гутенберг сумел заинтересовать своими экспериментами двух зажиточных горожан – Андреаса Дритцена и Ганса Риффа, и те вложили деньги в его исследования.

Чтобы избежать любопытства и пересудов толпы, обвинявшей его в колдовстве, Гутенберг разместил свою мастерскую в развалинах старого заброшенного монастыря. После упорного десятилетнего труда Гутенберг сконструировал в 1440 г. примитивный печатный станок, представлявший собой ручной пресс, и нашел самый удобный способ отливки букв из сплава свинца и сурьмы.

За образец Гутенберг, скорее всего, взял производство металлических монет. Но для отливки шрифта следовало в первую очередь создать специальное, достаточно удобное приспособление.

Это приспособление – прямоугольная металлическая словолитная форма. Первоначально из твердого металла изготовляли штамп – пуансон, сделанный из стали. На нем рельефно в зеркальном изображении гравировался буквенный знак. Затем пуансон вдавливался в матрицу – пластинку, сделанную из мягкого металла, обычно из меди. Получалось вогнутое прямое изображение знака. Матрица вставлялась в словолитную форму и заливалась расплавленным металлом. Получалась литера с зеркальным рельефным выпуклым глазком буквы, с которой можно было печатать. Из одной матрицы можно было изготовить столько литер, столько было нужно для печатания.

Металл для отливки литер должен был обладать редкими качествами: легко плавиться при сравнительно невысоких температурах, не быть вязким в расплавленном виде и мгновенно затвердевать при остывании. В результате опытов Гутенберг выбрал сплав, состоящий из 70 частей свинца, 25 частей олова и 5 частей сурьмы. Решение оказалось настолько удачным, что в дальнейшем потребовались лишь весьма незначительные коррективы.

Техническая трудность заключалась в том, что буквы алфавита отличаются одна от другой по ширине. Например, латинское M в три раза шире, чем I. Поэтому словолитная форма должна была быть приспособлена к ширине каждой матрицы. Это было достигнуто остроумным способом: словотворная форма состояла из двух частей в виде латинского L. Передвижением частей можно было изменять ширину формы.

Два других непременных предмета оборудования типографии – печатный станок и наборная касса. Ни то ни другое не было новинкой. Прототипом печатного станка могли служить прессы, использовавшиеся как в бумажном и монетном производстве, так и в виноделии. На идею наборной кассы могло натолкнуть посещение любой конторы или банка, где такие кассы употреблялись для сортировки монет.

Наборная касса – это поставленный наклонно, открытый сверху плоский ящик с ячейками разного размера – в зависимости от частоты употребляемости буквы. Для удобства наборная касса была разделена на две части – верхнюю с ячейками для прописных букв и знаков препинания и нижнюю для строчных букв. В верхней кассе литеры располагались в алфавитном порядке, в нижней – с таким расчетом, чтобы наиболее часто встречающиеся буквы были под рукой. Наборщик, читая укрепленный напротив лист с набираемым текстом, держал в одной руке верстатку – специальную линейку с бортиками, в которую набирались готовые литеры. Когда набиралась строка нужной длины, наборщик выравнивал строку при помощи заключки, уменьшал или увеличивал пробелы между словами при помощи шпаций – тонких кусочков металла определенной ширины. После заполнения верстатка устанавливалась на наборную доску. Наборная доска после окончания набора бралась в рамку, чтобы не рассыпались литеры.

Для смазывания металлических литер не годились обыкновенные чернила, употреблявшиеся для ксилографического печатания. Гутенберг изготовлял типографскую краску из сажи и льняного масла (олифы).

Перед началом печатания необходимо было подготовить бумагу. Сухая бумага плохо впитывала краску, поэтому ее предварительно увлажняли.

Когда печатная форма была подготовлена, переходили к печатному прессу – деревянному с металлическими деталями. Обычно этот станок был громоздким и тяжелым, к тому же надежно прикреплен к полу и к потолку. Печатание, особенно в две краски, требовало большой точности, и абсолютная неподвижность станка была обязательным условием.

Главной частью печатного станка был деревянный винт с нажимным рычагом – кукой. Снизу винт завершался четырехугольной прижимной плитой (тиглем, пианом). Поворотом рычага винт вместе с тиглем можно было поднять или опустить. Работа у станка была тяжелой и требовала незаурядной физической силы в сочетании с точностью и координированностью движений.

Другой составной частью печатного станка была прикрепленная к нему направляющая станина: подвижной стол с кареткой – талером, приводимым в движение с помощью шнура, который наматывали на вал, снабженный рукояткой. На талере располагали печатную форму с набором – одной, двумя или больше страницами набранного текста. Набор обматывали суровой ниткой, чтобы он не рассыпался и вообще не разъезжался. Затем его смазывали тонким слоем краски: эту работу выполнял специальный работник. Краску он наносил при помощи мацы, которую очищали и вымачивали в воде 7–8 часов, чтобы размягчить и сделать эластичной. Мацы приходилось часто менять, поскольку качество печати в большой мере зависело от гладкости нанесения краски. Все это отнимало немало времени, поэтому, пока прессовщик отпечатывал один лист, его помощник готовил к печатанию другую форму. Увлажненный лист бумаги укладывали не прямо на форму, а на тимпан (декель) – обтянутую тканью или мягкой кожей раму, прикрепленную шарнирами к талеру. Чтобы при этом бумага не рассыпалась и не сдвигалась при печатании, ее накалывали на две иглы посреди тимпана и, кроме того, накладывали сверху фрашкет – деревянную или железную раму с натянутой на нее бумагой или картоном, в котором было вырезано место, куда должен попасть печатаемый текст, и оставлены поля. Фрашкет был прикреплен к тимпану шарнирами: они предохраняли поля бумаги, чтобы те не запачкались. Подготовив должным образом печатную форму и тимпан, его накладывали на форму, а талер задвигали под тигль пресса. Прессовщик поворачивал рычаг и с силой прижимал бумагу к печатной форме. На ней появлялся оттиск. Тогда винт с тиглем поднимали, поворачивая рычаг в противоположную сторону, вынимали изпод пресса талер, поднимали фрашкет, снимали с тимпана отпечатанный лист и вывешивали его на просушку. Вся эта последовательность операций повторялась раз за разом до конца рабочего дня. С одного набора получали сотни оттисков. Высушенные листы снова шли под пресс, чтобы получить оттиск на оборотной стороне. Затем их укладывали на доску, сверху накрывали другой доской и придавливали грузом в 40–50 фунтов, чтобы разгладить. Через 5–6 часов их вынимали, складывали в кипы, сортировали и отдавали в переплет.

Двуцветный текст получали так. Сначала печатали черный текст, накрывая фрашкетом те места, которые предстояло еще отпечатать красным. После просушки лист возвращали под пресс, накрывали фрашкетом уже готовый оттиск и печатали красной краской. Трудность состояла в том, чтобы строки, выполненные разными красками, не накладывались одна на другую.

Гутенберг решил опробовать свое изобретение, печатая священные книги, но недостаток средств вынудил его открыть компаньонам секрет своего изобретения, чтобы получить от них денежную помощь. Компаньоны согласились ссудить его, но с условием – разделить с ним не только прибыль, но и славу изобретения. Желая обеспечить успех своего предприятия, Гутенберг согласился и на это.

Позднее наследники одного из его компаньонов начали против Гутенберга процесс, оспаривая у него первенство открытия и право пользования им. Положение Гутенберга перед судом было крайне затруднительным: он боялся раскрыть секрет своего изобретения, а между тем судьи засыпали его вопросами. Гутенберг предпочел осуждение отречению от своего изобретения. Порицаемый и разоренный, он отправился на родину, в Майнц, чтобы здесь попытаться восстановить свою репутацию.

Денег у Гутенберга не было. Поэтому ему пришлось вступить в компанию с богатым купцом Иоганном Фустом. Они построили типографию и начали печатать книги.

Первой книгой, которая вышла в 1455 г., стала двухтомная 42строчная Библия (по количеству строк на полосе). Она содержала 1300 страниц и имела весьма внушительный тираж для того времени – 200 экземпляров.

Компаньоны заключили договор о следующем: Гутенберг вкладывает свое изобретение и свой труд, а Фуст – деньги, прибыль же они делят пополам. Но Фуст схитрил: ему мало было половины прибыли, он захотел забрать всю типографию.

Поэтому он поставил такое условие: деньги, которые идут на обустройство типографии, считаются долгом Гутенберга; если Гутенберг не отдаст их в срок, вся типография поступает в собственность ему, Фусту.

И день этот настал. Всю прибыль от типографии Гутенберг тратил на ее расширение, отливая новые шрифты, делая новые станки. Фуст прекрасно знал об этом, и когда Гутенберг истратил все деньги, потребовал вернуть долг. Гуттенберг не мог вернуть долг, прежде чем не выпустит новые книги и продаст их. Фуст подал в суд, потребовав, чтобы у Гутенберга отобрали типографию и передали ему. Типографию присудили Фусту.

Но у Гутенберга остался один комплект шрифтов, который принадлежал лично ему, прежде чем он вступил в компанию с Фустом. Не имея денег, живя впроголодь, он начал снова печатать книги. Снова нашел компаньона. И снова его одолевали кредиторы. Но Гутенберг не сдавался.

Дело, вероятно, кончилось бы так же, как и с Фустом, если бы не одно неожиданное обстоятельство. Печатное слово впервые сыграло роль в политической борьбе.

В Майнце, где находилась типография Гутенберга, боролись друг с другом два высших духовных лица – два архиепископа, которым принадлежала не только духовная, но и светская власть.

Они боролись друг с другом и словом, и оружием – у каждого была своя армия.

Гутенберг стал печатать листы, в которых хвалил одного из архиепископов, Адольфа фон Нассау, и старался расположить к нему население города. Фуст, владевший старой типографией Гутенберга, выступил в защиту второго.

Победил фон Нассау. Типографию Фуста разгромили, а Гутенберг получил награду: разрешение получать обед с архиепископского стола. И еще одну награду: каждый год новое платье, двести мер зерна и два воза сена.

Это, конечно, не так уж много, но все же больше, чем получили многие гении за свои изобретения.

Гутенбергу повезло – не тратя денег на еду и одежду, он смог в старости расплатиться с долгами.

Умер Иоганн Гутенберг в своем родном Майнце 3 февраля 1468 г.

Еще при жизни Гутенберга в его изобретение вносились усовершенствования. В 1457 г. П. Шеффер сделал типографское воспроизведение орнаментики на страницах Майнцской Псалтыри. В 1461 г. А. Пфистер в Бамберге выпустил книги с иллюстрациями, гравированными на дереве.

В XV в. вместе с гравюрой на дереве, ксилографией, стала развиваться гравюра на металле. Впервые такие гравюры в книгопечатании применил англичанин У. Кэкстон в Брюгге. Иллюстрации, гравированные на металле, и текст с наборной формы на одном листе напечатал Н. ди Лоренцо во Флоренции в 1477 году.

К 1501 г. в Европе уже работало более 1500 типографий и было издано свыше 40 тыс. инкунабул – так назывались книги, выпущенные до 1501 года.

В Москве первая типография появилась примерно в 1553 г. В 1564 г. Иван Федоров и Петр Мстиславец выпустили в Москве первую точно датированную книгу «Апостол».

В XVI–XVIII вв. совершенствовались способы изготовления иллюстраций. В самом процессе печатания ничего не менялось, лишь некоторые процессы механизировались да деревянные части заменялись металлическими.

В конце XVIII – начале XIX в. появились новые способы книгопечатания, например литография. Литография была изобретена А. Зенефельдером в 1796–1798 гг. в Германии. При литографическом способе оттиски получаются в результате переноса краски под давлением с плоской (нерельефной) печатной формы непосредственно на бумагу. Этот способ широко применялся в первой половине XIX в. для воспроизведения картин, выполнения книжных и журнальных иллюстраций и т. п.

Развитие книгопечатания и особенно рост газетных тиражей требовали увеличения скорости печатания. Станок старой конструкции не мог обеспечить требуемых скоростей.

В 1815 г. немец Ф. Кениг, переехавший в Лондон, изобрел ротационную машину. В ней плоская плита для прижимания бумаги к форме была заменена металлическим цилиндром. Кроме того, Кениг механизировал и нанесение краски на форму. Эта машина позволила значительно поднять производительность печатного процесса. Если на ручном печатном станке можно было получить 100 оттисков в час, то печатная машина Кенига давала свыше 800 оттисков.

В середине XIX в. появились тигльные печатные машины. В 1863 г. американец У. Буллон построил первую ротационную машину, печатавшую на «бесконечном» бумажном полотне, свернутом в рулон.

В первой половине XIX в. были изобретены наборные машины различных конструкций, значительно повысившие производительность труда наборщика. Даже несовершенные наборные машины подняли производительность в 3–4 раза. Первые наборные машины были созданы в Англии Б. Фостером в 1815 г. и У. Чергем в 1822 г. В этих машинах были механизированы операции извлечения литер из специального хранилища и установки их в ряд – строку.

Выдающуюся роль в развитии наборных машин сыграло изобретение русского механика П. П. Клягинского. В 1866–1867 гг. он создал оригинальный автоматнаборщик, состоящий из двух аппаратов. В одном из них изготавлялась «депеша» – бумажная лента, на которой набираемый текст фиксировался в виде комбинаций отверстий. Каждой букве или знаку соответствовала определенная комбинация отверстий. Второй аппарат представлял собственно наборную машину. Ее основой являлся «электроосязатель», автоматически расшифровывавший «депешу» и регулировавший поступление в набор нужных литер.

Важным этапом в развитии механизированного набора было создание матрицевыбивальной машины, рельефные штампы которой при нажатии специальных устройств (клавишей) выдалбливали на специальном картоне углубленные изображения букв и знаков, после чего по матрицам отливали необходимые формы. В 70х годах XIX в. большую роль в создании матрицевыбивальных машин сыграли работы русских изобретателей И. Н. Ливчака и Д. А. Тимирязева.

Идеи, положенные в основу матрицевыбивальных машин, были использованы при создании более совершенных наборноотливных машин. Их применение определило развитие полиграфии конца XIX в. Были сделаны первые попытки создания наборнопечатной машины, сочетавшей в себе наборную и пишущую машины. Первые образцы ее были построены в 1870 г. русским изобретателем М. И. Алисовым. «Скоропечатник» Алисова работал со скоростью 80–120 знаков в минуту.

Для развития наборнопечатных машин имело большое значение создание работоспособной пишущей машинки, предназначенной для побуквенного печатания текста при помощи рельефных букв, приводимых в движение системой рычагов. Первая модель ее была изготовлена в 1867 г. в США К. Шолсом.

Технический прогресс в полиграфии позволил поднять производительность типографских процессов и улучшить качество издаваемых журналов и газет, а также увеличить их тиражи.

В 1884 г. немецкий изобретатель О. Мергенталлер изобрел линотип – наборную строкоотливную машину для набора текста и его отливки. Линотип состоит из трех аппаратов: наборного, отливного и разборочного. Наборщик, нажимая на клавиши наборного аппарата, перепечатывает текст рукописи. При этом из магазинов выпадают металлические матрицы, соответствующие отдельным буквам. В промежутках между словами устанавливаются раздвижные клинья – шпации. Так формируется строка текста, направляющаяся затем к отливному аппарату. Типографский сплав заполняет все углубления в матрицах, образуя после застывания монолитную строку с рельефной печатной поверхностью. Остывшая строка выталкивается из формы, обрезается и выставляется на приемный столик. После отливки строки матрицы передаются в разборочный аппарат, а клинья – в шпационную коробку. Разборочный аппарат осуществляет распределение матриц по соответствующим каналам магазинов.

В 1894 г. изобретатель Е. Порцельт выдвинул идею фотографического набора. В 1895 г. В. А. Гассиев построил первую фотонаборную машину. Фотонаборная машина не отливает строки из металла, а фотографирует текст на пленку. После этого пленку заправляют в печатные машины.

В 1905 г. в США была создана первая офсетная печатная машина. При офсетной печати участки печатной формы, на которых расположен текст, смазывается краской, а пробельные участки – водным раствором. Печатную форму попеременно смачивают водным раствором и покрывают краской. Затем она накладывается под давлением на резиновую пластину, а та, в свою очередь, на бумагу. Так получают отпечаток. Отсутствие непосредственного контакта между печатной формой и бумагой снижает давление при печатании и уменьшает износ формы. Увеличивается скорость печатания и улучшается качество воспроизведения.

В начале XX в. полиграфические машины перешли на электропривод. В 50–60е годы XX в. в полиграфии стала применяться электроника. Электронновычислительные машины произвели революцию в книгопечатании. Фотоэлектроника упростила процессы изготовления иллюстраций.

Компьютерный набор и верстка текста максимально сократили промежуток между написанием книги и ее выходом в свет.

Значение изобретения Гутенберга для прогресса человечества трудно переоценить. В 2000 г. мировая общественность объявила его самым выдающимся событием тысячелетия.

Колесо

Колесо – это одно из самых выдающихся изобретений человечества. Однажды люди обратили внимание на то, что катить груз намного легче, чем тянуть его. На языке современной механики это значит, что «коэффициент трения качения ниже, чем коэффициент трения скольжения».

Простейшее колесо представляло собой круг, отпиленный от ствола дерева. Подкладывая такие катки под груз, люди облегчали его передвижение.

Потом два таких круга соединили осью. Прикрепив их к повозке, избавились от необходимости постоянно перекладывать их под передвигаемый груз.

Скорость повозки возросла после того, как в повозки стали впрягать животных: ослов, быков, лошадей.

Позже колесо стали изготавливать сборным. Оно уже состояло из обода, спиц и ступицы, стянутых металлической шиной. Подобные колеса и сейчас применяются в гужевом транспорте.

Многие высокоразвитые цивилизации так и не пришли к изобретению колеса. Так, инки применяли своеобразные «санки», скользившие по камням.

В современных транспортных средствах обод заменен пневматической шиной, устраняющей тряску и шум при передвижении.

Для снижения трения появилось своеобразное «колесо в колесе» – шарикоподшипник.

Для вездеходов были созданы колеса, потерявшие круглую форму: они стали овальными, шестигранными, спиральными.

Вращение применялось не только в транспорте. Вращательное колесо явилось наиболее удобным способом передачи энергии в различных механизмах и машинах, поскольку вращательное движение может осуществляться равномерно и непрерывно без потери энергии на преодоление инерции движущихся деталей.

Одним из первых применений колеса для передачи движения стал гончарный круг, затем прялка. Позже появилось водяное колесо, применявшееся в мельницах, на мануфактурных фабриках, рудниках, в устройствах для орошения и осушения.

В XIX в. вместо водяного колеса появилась турбина, основным элементом которой является колесо.

В машинах колесо служит для передачи усилия, изменения частоты и направления вращения. Известны зубчатые, ременные, фрикционные передачи.

Появление колеса ускорило развитие человеческой цивилизации и способствовало прогрессу технических средств, применявшихся людьми.

Комбайн

На протяжении многих тысячелетий люди убирали и обрабатывали урожай сельскохозяйственных культур вручную. С этой целью они использовали серпы, косы, а также цепы для обмолота, ручные веялки. Для того, чтобы сжать вручную за один день гектар пшеницы или ржи, требовалось 30 жнецов, а чтобы обмолотить это зерно и отделить его от соломы – еще день труда 40 человек.

До тех пор, пока существовало натуральное хозяйство, крестьяне могли обеспечить себя пищей и излишки продать в городе. Но с началом промышленной революции многие крестьяне были вынуждены уйти в город, и для того чтобы прокормить растущее население, требовалось повышение производительности труда в сельском хозяйстве.

Для облегчения тяжелых и трудоемких работ были созданы первые машины: жатки для скашивания хлеба, молотилки, обмолачивавшие зерно, сноповязалки, сортировки, отделявшие качественное зерно от негодных семян и семян сорняков, а также очищавшие зерно от механических примесей.

В 1868 г. русский изобретатель и агроном А. Р. Власенко создал первую в России конструкцию зерноуборочной машины «Конная зерноуборка на корню», совмещавшую жатку и молотилку. Собственно комбайностроение возникло в конце XIX в. и получило распространение в США. Первый зерноуборочный комбайн был в 1879 г. испытан в Калифорнии. Такие комбайны, построенные практически полностью из дерева, были громоздкими и тяжелыми. Для их перевозки требовалась упряжка из 20–30 лошадей.

В первой четверти XX в. зерноуборочные комбайны значительно усовершенствовались: дерево, в основном, заменили металлом, конную тягу – сначала паровым локомобилем, затем трактором, привод рабочих органов осуществлялся от двигателя внутреннего сгорания.

Увеличение производства комбайнов произошло после Первой мировой войны благодаря развитию тракторостроения и расширяющемуся применению тракторов. Выпуск зерноуборочных комбайнов возрастал: в 1914 г. было выпущено всего 30 комбайнов, а в 1929 г. – 37 000.

Постепенно прицепные комбайны были вытеснены самоходными. Такие комбайны состоят из жатки, молотилки, бункера для зерна, двигателя, кабины с органами управления и ходовой части.

Принцип работы зерноуборочного комбайна следующий. Вращающееся мотовило наклоняет стебли с колосьями к режущему аппарату жатки. Срезанные колосья перемещаются винтовым конвейеромшнеком от краев к центру жатки к пальчиковому механизму. Затем стебли попадают на наклонный транспортер, переносящий их к приемной камере молотилки. Приемный битер равномерно подает стебли в молотильный аппарат. Здесь в узком пространстве между вращающимся барабаном и неподвижным подбарабаньем происходит обмолот колосьев. Выделившееся зерно проваливается через решетку подбарабанья и поступает на решетки очистки. Солома с оставшимся зерном выбрасывается на решета очистки. Проходя через соломотряс, оставшееся зерно отделяется от соломы и половы и тоже поступает на решета очистки. Там оно продувается воздухом от вентилятора и очищается от примесей, после чего по транспортеру поднимается в бункер. Необмолоченные колосья по другому транспортеру снова попадают в молотильный аппарат. Солома и полова подаются в копнитель, который по мере наполнения выбрасывает их на поле в виде копен.

Управление комбайном и регулировка его рабочих органов осуществляется при помощи гидравлической системы, которая поднимает и опускает жатку, перемещает мотовило и изменяет скорость его вращения. Кроме того, она регулирует скорость комбайна. Дизельный двигатель комбайна соединен клиноременной передачей с приемным шкивом моста ведущих колес и контрприводным валом молотилки.

На базе зерноуборочного комбайна могут быть смонтированы устройства для уборки семенников трав, кукурузы на зерно, гречихи, проса, бобовых и других культур.

В картофелеуборочном комбайне пассивный лемех подрезает пласт почвы, а прутковый элеватор рыхлит этот пласт и отсевает почву. В другом варианте лемех колеблется вместе с первым решетом грохота. На элеваторе или решетах грохота отсеивается большая часть почвы. Затем масса поступает в пневматический комкодавитель. Измельченная почва просеивается на решетах грохота. Оставшаяся масса поступает на прутковый транспортер ботвоудаляющего устройства. Клубни и мелкие частицы земли просыпаются между прутками, а ботва с оставшимися клубнями и растительные примеси остаются на прутках. При проходе через прижимной транспортер отбойные клубни отрывают оставшиеся клубни, а ботва выбрасывается на поле позади комбайна. Клубни с примесями подаются барабанным транспортером на горку, а с нее на транспортерпереборщик, где очистка клубней ведется вручную. Загрузочный элеватор подает чистые клубни в бункеркопильник с подвижным дном. После заполнения бункер разгружают в кузов автомобиля.

Свеклоуборочный комбайн цепляется к трактору. Некоторые модели таких комбайнов могут обрезать ботву на корню, сбрасывая ее на тележку. После этого они выкапывают корнеплоды и грузят их в кузов автомобиля или прицепа.

Другие свеклоуборочные комбайны выкапывают свеклу целиком, затем обрезают ботву и очищает ворох корнеплодов от почвы и растительных остатков, после чего сбрасывает корнеплоды в кузов.

Льнокомбайн предназначен для уборки льнадолгунца. Он имеет теребильный аппарат для теребления стеблей льна, транспортер, подающий их к зажимному транспортеру. Последний вводит стебли в камеру очеса, где специальный барабан отрывает семенные коробочки, а воздушный поток перекидывает их на транспортер, сбрасывающий их в прицепленную к комбайну тележку. Очесанная солома поступает из зажимного транспортера на расстилочный лист и падает на поле в виде ленты. Некоторые льнокомбайны имеют аппарат для вязки соломы в снопы.

Применение комбайнов в сельском хозяйстве позволило расширить посевные площади, уменьшить количество потерь и, в конечном итоге, значительно увеличить собранный урожай.

Компас

Слово «компас» происходит от итальянского compassare – измерять шагами. Компас предназначен для ориентирования на местности.

Считается, что первый компас был создан более двух тысяч лет тому назад в Китае. В китайских летописях повествуется и о магнитных путеуказательных повозках, в которых фигурка воина или жреца указывала рукой на юг. Это изобретение приписывается императору Чжеу Кунгу, жившему за 1100 лет до н. э. Ему же приписывают и изобретение компаса.

По другим данным, путеводную повозку смастерил в царствование императора Хуан Ди его подданный для поимки отряда железнолобых разбойников. На повозке был установлен маленький железный человечек, укрепленный с помощью иглы на колесике. Он показывал своей рукой не на север или юг, а в сторону этого отряда. Это, несомненно, легенда, поскольку даже современные миноискатели не могут обнаружить железо на расстоянии более 10 метров.

Реконструкция китайских компасов по их описаниям вызывает сомнения в их достоверности. Так, философу Фэйцзы, жившему в III в. до н. э., приписывается изобретение компаса в виде разливательной ложки из магнетита с тонким черенком и шарообразной, хорошо отполированной выпуклой частью. Этой выпуклой частью ложка устанавливалась на отполированную медную или деревянную пластинку таким образом, чтобы черенок не касался пластинки, а свободно висел над ней. При этом ложка легко вращалась вокруг оси основания. Подтолкнув черенок ложки, ее начинали вращать. После остановки черенок указывал точно на юг.

Такой компас не мог дать нужной точности изза силы трения, которая пропорциональна весу магнитоуказателя. Это касается и других конструкций китайских компасов, описанных в летописях.

Первые сведения о применении компаса в Европе относятся к XII веку. Первоначально европейские компасы представляли собой швейную иголку, намагниченную при помощи магнитного камня. Ее клали на соломинку или пробочку, последнюю – на воду в круглой чаше. Иголка всей своей длиной становилась в плоскость меридиана. Поскольку железо быстро теряло свой магнетизм, иголку постоянно подмагничивали.

Позже был описан компас, в котором намагниченная иголка пропускалась через ось, оканчивавшуюся вверху и внизу остриями. Этими остриями она свободно поддерживалась в подпятниках, сделанных в дне и прозрачной крышке котелка. Через ту же ось перпендикулярно к первой стрелке пропускалась вторая, медная, стрелка – указатель востока и запада. Этот компас тоже требовал постоянного подмагничивания, которое, судя по описанию, проводилось без вынимания стрелки из котелка поднесением магнитного камня.

Петрус Перигринус в 1269 г. снабдил магнитную стрелку круглой градуированной шкалой и при ее помощи определял направление.

Создание компаса с бумажным кругом, снабженным для удобства ориентирования делениями – картушкой, стальной стрелкой и стойкой, которой картушка накладывается на шпильку, укрепленную в центре котелка, принадлежит, по мнению большинства ученых, итальянцу Флавио Джойя из Амильфи. Он сконструировал его в 1302 г. Компас Джойя представлял собой соединение магнитной иглы с розой ветров. Для обозначения главных точек компаса применялись различные названия ветров и Полярная звезда. Сначала круг делился на 16, а затем на 32 румба.

После появления компаса Джойи на морских картах в важнейших пунктах помещали центры розы ветров, соединяя их между собой лучами. Для прокладки курса от точки нахождения корабля строили направление до ближайшего луча, идущего из нужного центра.

Арабы использовали для обозначения компаса итальянские, а не китайские термины, что также является доводом в пользу европейского происхождения компаса. Склонение стрелки компаса было открыто Колумбом во время его первого плавания через Атлантический океан. Он также обратил внимание на изменение склонения в соответствии с местом. Склонение компаса связано с тем, что географический северный полюс не совпадает с магнитным. Последний находится югозападнее и постоянно перемещается к югу. Координаты магнитного полюса вычислил в XVI в. фламандский ученый Герард Меркатор.

В 1544 г. пастор из Нюрнберга Гартман, исследуя свойства магнита, обнаружил, что тот не только стремится ориентироваться с севера на юг, но и северный конец его уклоняется книзу.

Один компас без остальных навигационных инструментов – лага, сектанта, точных часов не мог определить положение корабля в океане. В XVI в. для уменьшения воздействия на компас механических колебаний, например качки, его стали укреплять на кардановом подвесе. В XVII в. морской компас был снабжен пеленгатором – вращающейся диаметральной линейкой с визирами на концах. Это позволило точнее отсчитывать направления на объекты – пеленги. Внесенные в конструкцию компаса усовершенствования сделали компас основным навигационным прибором в судовождении. Точность показаний современных магнитных компасов в средних широтах при отсутствии качки составляет 0,3–0,5 градуса.

Авиационный магнитный компас схож по конструкции с судовым, но сделан с учетом условий работы: сильных вибраций и больших ускорений.

Среди недостатков магнитного компаса – необходимость внесения поправок с учетом магнитного склонения данной местности и девиации – отклонения стрелки от направления на магнитный полюс под влиянием намагниченных тел, например стального корпуса судна, а также электромагнитных полей электрических и радиоустановок. Точность магнитного компаса резко снижается вблизи магнитных полюсов и крупных магнитных аномалий, например крупных залежей железной руды.

В XIX в. возросли требования, предъявляемые к компасам. Появление кораблей с металлическими корпусами повлияло на их точность. Кроме того, стали осваиваться высокие широты, где магнитный компас, практически, бесполезен.

Поэтому, в добавление к магнитному, был создан гирокомпас. Его действие основано на использовании свойств гироскопа и суточного вращения Земли.

Принцип работы гироскопа такой же, как у детского волчка: быстро вращающееся твердое тело, ось вращения которого может менять направление в пространстве. Свойства гироскопа проявляются при выполнении двух условий: его ось вращения должна иметь возможность изменять свое направление в пространстве, а угловая скорость вращения гироскопа должна быть намного выше, чем угловая скорость, с которой сама ось меняет свое направление. Основное свойство уравновешенного гироскопа с тремя степенями свободы, позволяющее применять его для определения направления, – стремление его оси сохранять приданное ей первоначальное направление, независимо от перемещения основания и толчков.

Идея гироскопа была предложена французским ученым Фуко. Его гирокомпас представлял собой прибор с двумя степенями свободы, ось которого перемещается в плоскости горизонта благодаря возникающему изза вращения Земли гироскопическому моменту стремиться к совмещению с плоскостью географического меридиана. Гироскоп Фуко не нашел применения на подвижных объектах изза подверженности колебаниям. На подвижных объектах применяются гирокомпасы, в которых используются гироскопы с тремя степенями свободы.

Преимущества гирокомпаса по сравнению с магнитным состоят в том, что он показывает направление географического, а не магнитного меридиана, на его работу меньше влияют большие массы металла. Его точность в условиях колебаний намного выше.

Существуют также астрономические компасы, в которых применяются пеленгаторы, постоянно следящие за положением какоголибо небесного светила, например Солнца. Помимо пеленгатора астрономический компас состоит из вычислителя азимута светила и указателя курса. Его принцип – алгебраическое сложение курсового угла и вычисленного азимута светила. Такой компас позволяет определять курс в любом месте Земли, независимо от скорости и высоты.

Радиокомпасы автоматически фиксируют направление на радиомаяк.

Ни один из существующих типов компасов не может обеспечить точного измерения курса в любом месте Земли, независимо от погоды и других факторов. Поэтому компасы разных типов объединяют в единые курсовые системы.

Конвейер

Конвейер (англ. conveyer , от convey – перевозить) – транспортер, машина непрерывного действия для перемещения сыпучих, пакетированных, комплексных или штучных грузов.

Конвейеры – это механические непрерывные транспортные средства для перемещения различных грузов на небольшие расстояния. Конвейеры разных типов применяются во всех отраслях промышленности для погрузкивыгрузки и транспортировки материалов в процессе производства.

Принято считать, что конвейер – изобретение XX века, вызванное к жизни требованиями массового производства. Однако почти все основные принципы конвейерной механизации были известны уже в XV в. Грузоподъемное оборудование существовало в древности: подъемные устройства использовались в Египте в XVI в. до н. э.

За несколько тысячелетий до н. э. в Древнем Китае и Индии для непрерывной подачи воды из водоемов в оросительные системы использовали цепные насосы, которые можно считать прототипами скребковых конвейеров. В Месопотамии и Древнем Египте применяли многоковшовые и винтовые водоподъемники – предшественники современных ковшовых элеваторов и винтовых конвейеров. Первые попытки применения скребковых и винтовых конвейеров для перемещения насыпных материалов (например, в мукомольном производстве) относятся к XVI–XVII векам. В конце XVIII в. конвейеры стали систематически использовать для транспортирования легких сыпучих материалов на небольшие расстояния.

В 30е годы XIX в. с той же целью впервые были применены конвейеры с лентами из прочной ткани. Во второй половине XIX в. началось промышленное использование конвейеров для доставки тяжелых массовых и штучных грузов. Расширение областей применения конвейеров обусловило появление и эксплуатационное освоение новых типов конвейеров: ленточных с тканевыми прорезиненными лентами (1868 г., Великобритания), стационарных и передвижных пластинчатых (1870 г., Россия), винтовых со спиральными винтами для крупнокусковых материалов (1887 г., США), ковшовых с шарнирно закрепленными ковшами для доставки грузов по сложным трассам (1896 г., США), ленточных со стальными лентами (1905 г., Швеция), инерционных (1906 г., Великобритания, Германия) и т. д. В 1882 г. конвейер был использован для связи технологических агрегатов в поточномассовом производстве (США).

Несколько позднее стали применяться напольные литейные (1890 г., США), подвесные (1894 г., Великобритания) и специальные сборочные конвейеры (1912–1914 гг., США).

С 80х годов XIX в. изготовление конвейеров в промышленно развитых странах постепенно выделялось в отдельную область машиностроения. В современных типах конвейеров сохранились основные конструктивные элементы, которые совершенствовались в соответствии с достижениями науки и техники (замена ременного привода электрическим, использование вибрационной техники и т. д.).

Идея конвейера в массовом производстве в полной мере была воплощена автомобильным промышленником Генри Фордом в начале XX в. Стремясь сделать дешевый массовый автомобиль, доступный небогатому покупателю, он внедрил на своих сборочных предприятиях поточное производство. Сам Форд отнюдь не претендовал на авторство в отношении идеи конвейера. В биографической книге «Моя жизнь» он заметил: «Приблизительно 1 апреля 1913 года мы произвели наш первый опыт со сборочным путем. Это было при сборке магнето. Мне кажется, что это был первый подвижный сборочный путь, какой когдалибо был устроен. В принципе, он похож на передвижные пути, которыми пользуются чикагские мясники при разделке туш».

Конвейер действительно теснейшим образом связан с историей производства свежезамороженного мяса.

Впервые эта идея была применена на практике американцем Густавом Свифтом, создателем мощной мясной индустрии в США. Свифт в возрасте четырнадцати лет начал работать на своего брата, мясника на КейпКод.

Позже он завел собственное дело и стал торговать крупным рогатым скотом, постепенно продвигаясь со своим товаром на Запад – сперва в Олбани, потом в Буффало и наконец в 1875 году в Чикаго. Здесь он задумался над тем, как обеспечить круглогодичную торговлю мясом. И если транспортировать мясо в холодильниках, то каким образом забивать и разделывать скот перед перевозкой мяса? Свифт нашел железнодорожную компанию, согласившуюся перевозить вагоныхолодильники, вложил деньги в их строительство и усовершенствование и стал возить разделанное в Чикаго мясо на Восток, в растущие промышленные города. Дело Свифта быстро пошло в гору.

Свифт тщательнейшим образом продумал всю технологическую цепочку от покупки скота до доставки свежезамороженного мяса потребителю. Важнейшим звеном этой цепочки стала разделка туши, для чего была изобретена «демонтажная линия». Свифт выдвинул гениально простую идею: туша должна двигаться к тем, кто ее разделывает. В свифтовском мясоразделочном цехе забой свиньи и разделка туши были рассечены на многочисленные единичные операции.

Вот как описал разделочную линию Свифта Эптон Синклер в романе «Джунгли» (1906 г.): «Затем кран ее (тушу свиньи) подхватывал и подавал на подвесную тележку, которая катилась между двумя рядами рабочих, сидевших на высокой платформе. Каждый рабочий, когда туша скользила мимо него, проделывал над ней всего лишь одну операцию». В конце линии туша была уже полностью разделана.

Конвейер Форда был «демонтажной линией» Свифта наоборот: остов автомобиля по мере движения по конвейеру обрастал железным «мясом». В остальном же сходство было просто поразительное. Вот описание работы конвейера у Форда: «При сборке шасси производятся сорок пять различных движений и устроено соответствующее число остановок. Первая рабочая группа прикрепляет четыре предохранительных кожуха к остову шасси; двигатель появляется на десятой остановке и т. д. Некоторые рабочие делают только одно или два небольших движения рукой, другие – гораздо больше». Каждый из рабочих, сидевших вдоль конвейера, осуществлял одну операцию, состоящую из нескольких (а то и одного) трудовых движений, для выполнения которых не требовалось практически никакой квалификации. По свидетельству Форда, для 43 % рабочих требовалась однодневная подготовка, для 36 % – до недели, для 6 % – однадве недели, для 4 % – от месяца до года.

Внедрение конвейерной сборки, наряду с некоторыми другими техническими новшествами, вызвало резкий рост производительности труда и снижение себестоимости продукции, положило начало массовому производству. Но следствием этого стало увеличение интенсивности труда, автоматизм. Труд на конвейере требует от рабочих крайнего нервного и физического напряжения. Принудительный ритм труда, задаваемый конвейером, вызывал необходимость замены формы оплаты труда рабочих. Генри Форд отмечал: «…результатом следования этим основным правилам является сокращение требований, предъявляемых к мыслительной способности рабочего и сокращение его движений до минимального предела. По возможности ему приходиться выполнять одно и то же одним и тем же движением».

Весь XX в. был временем триумфального шествия конвейерного принципа организации производства, который трансформировался, обогащался, но сохранял свое твердое ядро. Конвейер – это основа массового производства товаров.

Пионером применения конвейера Фордом был рассчитан и создан полный цикл производства, включая изготовление стали и стекла.

Эффективность использования конвейера в технологическом процессе любого производства зависит от того, насколько тип и параметры выбранного конвейера соответствуют свойствам груза и условиям, в которых протекает технологический процесс. К таким условиям относятся: производительность, длина транспортирования, форма трассы и направление перемещения (горизонтальное, наклонное, вертикальное, комбинированное; условия загрузки и разгрузки конвейера; размеры груза, его форма, удельная плотность, кусковатость, влажность, температура и прочее). Также имеет значение ритм и интенсивность подачи и различные местные факторы.

Высокая производительность, простота конструкции и сравнительно невысокая стоимость, возможность выполнения на конвейере различных технологических операций, невысокая трудоемкость работ, обеспечение безопасности труда, улучшение его условий – все это способствовало широкому применению конвейера. Он использовался во всех областях хозяйства: в черной и цветной металлургии, машиностроении, горной, химической, пищевой и других отраслях промышленности. В промышленном производстве конвейеры являются неотъемлемой составной частью технологического процесса. Конвейеры позволяют устанавливать и регулировать темп производства, обеспечивают его ритмичность, являясь основным средством комплексной механизации транспортных и погрузочноразгрузочных процессов и поточных технологических операций. Применение конвейера освобождает рабочих от тяжелых и трудоемких транспортных и погрузочноразгрузочных работ, делает их труд более производительным. Широкая конвейеризация – одна из характерных черт развитого промышленного производства.

Вместе с тем в автомобильной промышленности, которая в свое время первой стала применять конвейерную сборку, в конце XX в. наметился возврат к старым методам производства. Некоторые фирмы стали поручать полный цикл сборки автомобиля одной бригаде сборщиков. Это связано с тем, что при высоком темпе движения конвейера неизбежен брак, который не всегда замечают и исправляют в конце цикла сборки. Такие огрехи заметны только при эксплуатации автомобиля владельцем. Их обнаружение влечет за собой как денежные потери, так и нанесение ущерба престижу фирмыпроизводителя.

Консервы

Еще в глубокой древности перед человечеством встал вопрос: что делать, чтобы пища не портилась как можно дольше? Сначала наши предки старались сохранить пищу для себя и для своего племени. Потом, по прошествии времени, стали делать запасы для снаряжения армий или экспедиций.

Самый древний способ сохранения продуктов – сушка. У североамериканских индейцев, например, существовало блюдо под названием «пеммикан». Его изготавливали из высушенного на солнце мяса, растертого между камнями, с добавлением различных приправ. Эту смесь прессовали и хранили в кожаных мешках.

Другой способ – охлаждение. На острове Крит найдены развалины древнего храма, построенного во втором тысячелетии до нашей эры. В глубоких и всегда холодных подземных галереях дворца были обнаружены большие глиняные кувшины, в которых хранили пищу.

Позднее люди заметили, что продукты лучше сохраняются, если хорошо просолены или прокопчены. Потом изобрели маринование и квашение. В тех местах, где позволял климат, пищу замораживали.

Сушение, копчение, квашение, маринование, соление продуктов применялось для предохранения от порчи и перевозок на большие расстояния. Но поиски способов сохранения продуктов продолжались. Это имело большое значение для путешественников, купцов, военных.

В начале XIX в. было сделано изобретение, в корне изменившее представление человечества о сроках хранения продуктов, значительно упростившее жизнь профессиональных поваров и обычных домохозяек всего мира. Речь идет об изобретении консервов.

Еще в конце XVIII в. в революционной Франции был объявлен конкурс на лучший способ хранения продуктов. Во время походов Наполеон Бонапарт столкнулся с проблемой обеспечения армии провиантом. Полностью решить этот вопрос за счет населения покоренных областей удавалось далеко не всегда, а везти припасы с собой не имело смысла: они бы испортились в пути.

Решил эту проблему поставщик двора Наполеона известный парижский кулинар Николя Франсуа Аппер. Однажды он представил на суд императора жареную баранью ногу, кашу с тушеной свининой и компот из персиков, запаянные в герметичные банки примерно три месяца назад.

Блюда не отличались отменным вкусом, но были вполне качественны и съедобны.

Аппер назвал свое изобретение консервами – от латинского conservo – сохранять. Говорят, что Аппера подвигнуло на изобретение интересное наблюдение: прокипяченные, плотно закрытые бутылки с соком долго не портятся. По другим данным, он воспользовался опытами некоего итальянца.

Бонапарт распорядился выделить Апперу солидные средства для продолжения опытов.

Изобретение консервов спасало наполеоновскую армию в многочисленных походах. Благодаря наполеоновским войнам, консервы Николя Аппера стали известны по всей Европе. Вскоре автор изобретения получил от французского правительства титул «Благодетель человечества» вместе с солидной денежной премией и красивой памятной медалью.

Позже предприимчивый француз открыл на одной из парижских улиц магазин «Разная снедь в бутылках и коробках», где продавались продукты в запаянных и герметично закрытых бутылках. При магазине действовала небольшая фабрика по производству консервированных продуктов.

Впоследствии Аппер продал свое дело в Париже и основал консервную империю «Аппер и сыновья». Дело его жизни ширилось и развивалось, народ все охотнее покупал мясные, рыбные и плодоовощные консервы, изготовляемые сетью его фабрик по всей Европе.

Помимо предпринимательской деятельности, Аппер написал книгу «Искусство консервирования растительных и животных субстанций на долголетний период».

На Лондонской выставке в 1857 году были опробованы консервы, изготовленные Аппером еще в 1812 году для Наполеона, и признаны вполне съедобными.

Консервирование, не получившее поначалу во Франции признания, было оценено в Англии. Английский механик Питер Дюран первым начал делать консервные банки из пищевой жести. Поначалу это были очень неуклюжие жестянки, сделанные вручную, с неудобной крышкой. Англичане взяли патент на производство консервов по методу Аппера и с 1826 года снабжали свою армию мясными консервами. Правда, для вскрытия таких банок солдатам были нужны молоток и долото.

Эстафету производства консервов подхватили американцы. Они усовершенствовали жестяные банки, и с 1819 года стали выпускать консервы из тунца, омаров и устриц. Позднее стали консервировать и фрукты. Дело у американских фабрикантов шло превосходно: покупатели приняли новинку с удовольствием. Появились заводы по производству консервных банок. Спустя почти 40 лет после начала производства консервов в США, в 1860 году, там была изобретена такая незаменимая в хозяйстве вещь, как консервный нож.

В России первый консервный завод появился в 1870 году. Основным заказчиком была армия. В Петербурге выпускали пять видов консервов: жареную говядину (или баранину), рагу, кашу, мясо с горохом и гороховую похлебку.

Помимо вышеперечисленных методов, в XIX в. консервирование стали осуществлять также при помощи сахара. Высокая концентрация сахара в растворе (не менее 60–65 %) изза высокого осмотического давления делает невозможным поглощение микробами питательных веществ и подвергает микробные клетки сильному обезвоживанию. Такой способ применяют для консервирования фруктов (изготовление повидла, варенья, джема, желе).

Научное обоснование процессы консервирования по методу Аппера получили в 1857 г. Малоизвестный в то время французский ученый Луи Пастер выступил на конференции Общества естествоиспытателей с докладом о том, что в природе существуют невидимые глазу существа – микробы, которые вызывают процесс гниения, что и приводит к порче продуктов.

Жизнедеятельность микроорганизмов проявляется лишь при наличии определенного температурного режима, достаточной влажности, при отсутствии антибиотических веществ в продукте, наличии или отсутствии кислорода. Если эти условия нарушены, микроорганизмы погибают. Это положение и является основным принципом, на котором базируются методы консервирования – пастеризация и стерилизация.

В настоящее время выпускают следующие виды консервов:

– мясные: натуральные (тушеная говядина, свинина, баранина, отварная птица); кулинарно обработанные птицепродукты и мясо; паштеты, гуляш, бефстроганов; консервированные колбасы, колбасные фарши, сосиски; субпродукты (почки, мозги, рубец);

– мясорастительные: мясо с горохом, фасолью, чечевицей, крупяными и макаронными изделиями;

– молочные консервы: сгущенные молочные продукты (молоко, сливки, снятое молоко), стерилизованное сгущенное молоко без сахара;

– рыбные консервы: натуральные (лососевые, осетровые, из морепродуктов – крабов, креветок, мидий, кальмаров в собственном соку), из рыбы, обжаренной в томатном соусе или масле, из копченой рыбы. Все виды рыбных консервов подвергают стерилизации. Помимо консервов из рыбы изготовляют пресервы – рыбные консервы, не подвергающиеся стерилизации из рыбы пряного посола в различных острых заливках;

– овощные консервы: натуральные (морковь, свекла, зеленый горошек, томаты, огурцы и др.), соки – морковный, томатный, свекольный, томатопродукты (паста, пюре, соусы), закусочные (фаршированные, нарезанные овощи, голубцы, овощная икра), готовые блюда (борщи, супы, солянки, рагу), маринованные и квашеные овощи, грибные консервы;

– фруктовые консервы: натуральные, компоты из свежих плодов с сахаром, стерилизованные пюре, соки, варенье, джемы, желе, сиропы.

Консервы расфасовывают и герметически упаковывают в металлическую (жестяную, алюминиевую), стеклянную и полимерную тару.

Благодаря различным видам консервирования стало возможным хранение продуктов в течение длительного времени, их перевозка на большие расстояния в места, где они востребованы.

Космический корабль

Космический корабль – это летательный аппарат, предназначенный для полета людей или перевозки грузов в космическом пространстве.

О кораблях для перевозки грузов по околоземной орбите было рассказано в статье «Искусственный спутник Земли». В данной статье пойдет речь об аппаратах, предназначенных для полета людей в космос, а также об аппаратах для полетов за пределы земной орбиты к другим планетам Солнечной системы.

2 января 1959 г. на Луну была запущена советская автоматическая межпланетная станция «Луна1». Впервые искусственному телу, созданному на Земле, была сообщена вторая космическая скорость, равная 11,2 км/с. Этой скорости достигла последняя ступень многоступенчатой ракеты, которая по заданной программе вышла на траекторию движения по направлению к Луне. Последняя ступень ракеты весила 1472 кг без топлива и была оборудована контейнером с научной аппаратурой общим весом 361,3 кг. На АМС размещалась радиоаппаратура, телеметрическая система, приборы для исследования межпланетного пространства. На последней ступени ракеты была установлена аппаратура для образования искусственной кометы.

Расчеты элементов траектории движения осуществлялись на электронновычислительных машинах по данным измерений, автоматически поступавшим в координационновычислительный центр. Ракета прошла на расстоянии 5 тыс. км от Луны и стала спутником Солнца – первой искусственной планетой солнечной системы. Ее максимальная удаленность от Солнца, афелий, составляла 197,2 млн км, минимальная, перигелий, 146,4 млн км.

Проведенные в ходе полета измерения дали новые сведения о радиационном поясе Земли и космическом пространстве. В мировой печати «Луна1» получила название «Мечта».

Спустя два месяца, 3 марта, США после ряда попыток с помощью ракетной системы «Юнона2» запустили космическую ракету «Пионер4», которая прошла на расстоянии почти 60 тыс. км от Луны.

11 марта 1960 г. в США с помощью 3ступенчатой ракеты типа «ТорЭйбл» был запущен другой спутник Солнца – «Пионер5» с полезным весом 42 кг.

12 сентября 1959 г. в СССР была запущена автоматическая межпланетная станция «Луна2», которая впервые достигла поверхности Луны. Ставилась задача – исследование космического пространства при полете к Луне. Последняя ступень ракеты, двигаясь к Луне, превысила вторую космическую скорость. Последняя ступень ракеты представляла собой управляемую ракету весом 1511 кг (без топлива), которая несла контейнер с научной аппаратурой. 14 сентября 1959 г. в 0 ч 2 мин 24 с по московскому времени «Луна2» вместе с последней ступенью ракеты – носителя достигли поверхности Луны восточнее моря Ясности вблизи кратеров Аристид, Архимед и Автолик.

Для такого полета потребовалось создание высокосовершенной многоступенчатой ракеты, мощных ракетных двигателей, работающих на высококалорийном топливе, высокоточной системы управления полетом ракеты, автоматического измерительного комплекса на Земле для прослеживания полета ракеты и т. п.

Производившиеся при полете исследования показали, например, что Луна не имеет скольконибудь заметного магнитного поля.

4 октября 1959 г. был произведен запуск советской космической ракеты, которая вывела на орбиту автоматическую межпланетную станцию «Луна3». Ее вес достигал 278,5 кг. На борту АМС находились радиотехнические и телеметрические системы, фототелевизионная система с автоматической обработкой пленки на борту, комплекс научной аппаратуры, системы ориентации относительно Солнца и Луны, солнечные батареи, система терморегулирования.

Последняя ступень ракетыносителя вывела АМС «Луна3» на окололунную орбиту. Огибая Луну, станция прошла на расстоянии 6200 км от ее поверхности. 7 октября 1959 г. с ее борта была проведена съемка обратной поверхности Луны. После обработки пленки на борту полученные изображения были переданы телевизионной системой на Землю.

После облета Луны «Луна3» перешла на орбиту искусственного спутника Земли и, совершив 11 оборотов вокруг Земли, прекратила свое существование, сгорев в плотных слоях атмосферы.

12 февраля 1961 г. усовершенствованной многоступенчатой ракетой был выведен на орбиту тяжелый искусственный спутник Земли, и в тот же день с него стартовала управляемая космическая ракета, которая вывела автоматическую межпланетную станцию «Венера1» на траекторию Венеры. Вес АМС составил 643,5 кг. На ее борту находилась научная аппаратура для проведения исследований космического излучения, магнитных полей, межпланетного вещества и регистрации соударений с микрометеоритами. Скорость полета АМС в начале выведения ее на траекторию к Венере превышала величину второй космической скорости.

19–20 мая 1961 г. «Венера1» прошла на расстоянии около 100 000 км от Венеры и вышла на орбиту спутника Солнца.

Параллельно с полетами автоматических межпланетных станций шла подготовка к полету в космос человека. Еще в 1951 г. высотный полет в герметическом контейнере, размещенном в головной части геофизической ракеты В1А, созданной в КБ Королева, поднялись собаки Дезик и Цыган. Они благополучно вернулись на Землю. После этого запускали мухдрозофил, мышей, крыс, морских свинок. Эти полеты давали возможность проводить анализ состояния живого организма в условиях ракетного полета.

В ходе этих экспериментов опробовались различные способы возвращения животных на землю: вместе с герметичным контейнером, а также в высотном скафандре с прозрачным гермошлемом на парашюте отдельно от контейнера.

На втором искусственном спутнике Земли на околоземную орбиту отправилась собака Лайка. Во время полета велось наблюдение за состоянием животного.

11 января 1960 г. было принято решение о создании отряда космонавтов. Позже он стал называться Центром подготовки космонавтов. В первом составе отряда были Юрий Гагарин, Герман Титов, Павел Попович и другие летчики, впоследствии ставшие космонавтами. Первое занятие космонавтов состоялось 14 марта 1960 г. в Москве.

В том же году в Казахстане начались испытания парашютной системы космического корабля «Восток».

В мае 1960 г. состоялся первый запуск корабля «Восток» с системой ориентации и тормозной двигательной установкой. В результате отказа инфракрасной установки корабль вместо торможения стал разгоняться и перешел на более высокую орбиту.

19 августа 1960 г. на орбиту вышел второй корабльспутник, на борту которого находились собаки Белка и Стрелка, а также крысы, мыши и дрозофилы. На следующий день корабль приземлился в заданном районе.

1 декабря 1960 г. был запущен третий корабль, на котором находились собаки Пчелка и Мушка. Спускаемый корабль, в котором они находились, сорвался на нерасчетную траекторию и погиб.

В это же время на мысе Канаверал во Флориде американцы проводили запуски капсул «Меркурий». Летом 1960 г. ракета взорвалась спустя 65 секунд после старта. В ноябре 1960 г. капсула не отделилась от ракеты и вместе с ней упала в океан. Спустя две недели произошел пожар ракеты на старте.

31 января 1961 г. была запущена капсула, в которой находился шимпанзе Хэм. Он был натренирован нажимать на кнопки и рычаги, реагируя на световые сигналы, в случае неудачи получая удары током. В ходе полета произошел аварийный разгон носителя, что привело к 18кратным перегрузкам. Автоматика вышла из строя, и Хэм постоянно получал удары током. Капсула приводнилась в 130 милях от заданной точки.

9 марта 1961 г. был запущен 4й корабльспутник. В его пилотском кресле сидел манекен – усредненное чучело человека. Его называли «Иван Иванович». Вместе с ним полетела собака Чернушка. После 88 минут полета корабль благополучно приземлился.

Последней репетицией полета стал запуск 25 марта 5го спутника с очередным «Иваном Ивановичем» и собакой Звездочкой.

После этого было принято решение о старте человека.

5 апреля на космодром Байконур в Казахстане прилетел начальник Центра подготовки космонавтов Н. П. Каманин и с ним 6 кандидатов. У трапа их встретил Королев и сообщил, что полет состоится 10–12 апреля.

На заседании Государственной комиссии рассматривались две кандидатуры – Гагарина и Титова. Был утвержден Гагарин. 11 апреля он приехал на старт для встречи с сотрудниками космического комплекса. Вместе с Титовым и Каманиным Гагарин попробовал космическую пищу в тюбиках. Затем он был вызван на инструктаж.

12 апреля 1961 г. Гагарин приехал на космодром и после доклада председателю Государственной комиссии занял место в кабине «Востока». В 9 ч 07 мин «Восток» с первым в мире космонавтом на борту поднялся в космос. Космический корабль вышел на орбиту с максимальным удалением от Земли 327 км. Период его обращения вокруг Земли составлял 89,1 мин, наибольшая скорость полета достигала 28 000 км/ч. Общая мощность двигателей ракетыносителя была 20 млн л. с. После облета земного шара в 10 ч 25 мин была включена тормозная двигательная установка, и корабль стал снижаться с орбиты для приземления. В 10 ч 55 мин корабль совершил посадку в Саратовской области.

Космический корабль «Восток» состоял из двух основных отсеков: сферического спускаемого аппарата и приборного отсека.

Спускаемый аппарат с кабиной космонавта был выполнен в форме шара диаметром 2,3 м и массой 2,4 т.

В корпусе кабины космонавта имелись 3 иллюминатора с жаропрочными стеклами. Система жизнеобеспечения поддерживала в кабине нормальное давление, химический состав атмосферы, температуру и влажность. Запас воды, пищи и регенерационных веществ был рассчитан на 10 суток. Для дополнительной страховки в полете использовался специальный скафандр.

Кресло космонавта обеспечивало безопасность человека в полете и при воздействии перегрузок. В его корпусе были смонтированы система вентиляции скафандра, катапультные и пиротехнические устройства, парашютные системы, аварийный запас, включающий пищу и воду, спасательные и сигнальные устройства, которые могли использоваться после посадки.

На корабле также были аппаратура для контроля работы систем и управления кораблем, радиоаппаратура для связи с Землей, автоматическая регистрация данных о работе приборов, радиотелеметрическая система, аппаратура контроля состояния космонавта, система ориентации, радиосистема для измерения параметров орбиты, система приземления, оптическое устройство «Взор» для ручной ориентации, телевизионная аппаратура, тормозная двигательная установка.

Для управления кораблем в кабине был пульт с приборной доской и ручка с блоком управления. Космонавт мог определять проекцию своего местоположения на поверхности Земли при помощи миниатюрного глобуса Земли, расположенного на приборной доске.

Для схода корабля с орбиты и посадки использовалась тормозная двигательная и парашютная системы. Первая использовалась для схода корабля с орбиты, вторая – для торможения на заключительном этапе спуска и посадки.

Это было началом эпохи пилотируемых космических полетов.

5 мая 1961 г. американский астронавт А. Шеппард совершил суборбитальный полет по баллистической траектории на высоте 195 км длительностью 15 мин. Он приземлился в 500 км от старта. 21 июля 1961 г. такой же полет совершил В. Гриссом.

6 августа 1961 г. в Советском Союзе был произведен запуск в космос космического корабля «Восток2», который пилотировался Г. С. Титовым. Этот полет продолжался 25 ч 18 мин. Космический корабль пролетел свыше 700 тыс. км, совершив более 17 оборотов вокруг Земли. Полет Г. С. Титова доказал возможность длительного пребывания человека в космическом пространстве.

20 февраля 1962 г. американец Дж. Гленн на корабле «Меркурий» совершил орбитальный полет.

11 и 12 августа 1962 г. на орбиту были выведены корабли «Восток3» (космонавт А. Г. Николаев) и «Восток4» (космонавт П. Р. Попович). Они совершили первый групповой полет, в ходе которого минимальное расстояние между кораблями составляло около 5 км. Между ними была проведена радиосвязь. Впервые осуществлялась прямая телетрансляция из космоса.

16 июня 1963 г. в космос поднялся корабль «Восток6», который пилотировала первая женщина – космонавт Валентина Терешкова. Она пробыла в космосе 3 суток и приземлилась 19 июня.

В этот же день, 19 июня, советская автоматическая межпланетная станция «Марс1», запущенная 1 ноября 1962 г., пролетела возле Марса.

12 октября 1964 г. корабль «Восход» доставил на орбиту сразу троих космонавтов – В. М. Комарова, К. П. Феоктистова и Б. Б. Егорова. Они находились в корабле без скафандров, в обычной одежде.

Многоместный корабль «Восход» весил 5,32 т и состоял из кабины, приборного отсека и мог оснащаться шлюзовой камерой. Тормозные установки и система приземления были сдублированы. Управление кораблем и посадка могли осуществляться автоматически и вручную.

18 марта 1965 г. во время полета «Восхода2» А. А. Леонов совершил первый выход в открытый космос, продолжавшийся 20 мин.

1967 год открыл счет погибшим космонавтам. 27 января во время пожара на стартовой площадке в корабле «Аполлон» сгорели В. Гриссом, Э. Уайт и Р. Чаффи. Всему виной стала ватка, пропитанная спиртом, попавшая на открытую спираль обогревателя. Быстрому распространению огня способствовала атмосфера из чистого кислорода, применявшаяся на американских кораблях.

24 апреля при испытании нового корабля «Союз1» во время посадки изза сбоев в работе парашютной системы погиб В. М. Комаров.

В конце 1960х годов начались пилотированные полеты к Луне. 24 декабря 1968 г. на окололунную орбиту вышел американский «Аполлон8». 20 июля 1969 г. первую посадку на Луну осуществил «Аполлон11» с Н. Армстронгом и Э. Олдриным.

17 ноября 1970 г. на Луну был доставлен «Луноход1», управлявшийся радиосигналом с Земли. За 11 лунных суток он прошел 10,5 км в районе Моря Дождей.

В 1971 г. на орбиту была выведена первая орбитальная станция «Салют». Через 4 дня после запуска станция состыковалась с кораблем «Союз10».

«Салют» состоял из 3 отсеков: переходного, рабочего и агрегатного.

Переходной отсек являлся одним из жилых отсеков станции. Он предназначался для проведения научных экспериментов. В его состав входил стыковочный узел для соединения с транспортным космическим кораблем, перехода космонавтов и переноса грузов. Внутри отсека находились система терморегулирования и жизнеобеспечения, научная аппаратура, пульты управления. Снаружи были установлены солнечные батареи, антенны, баллоны со сжатым воздухом, звездный телескоп и другие приборы.

Рабочий отсек был самым большим на станции. Он располагался в ее средней части и служил для работы и отдыха космонавтов. В нем находились основные приборы и агрегаты системы управления станцией, системы жизнеобеспечения, аппаратура радиосвязи, запасы воды и пищи, научная аппаратура.

В нем космонавты управляли станцией, проводили исследования, отдыхали. В передней части этого отсека располагался центральный пост управления станцией с пультами пилота, пультом управления бортовой ЭВМ и другими системами управления.

В рабочем отсеке находились другие посты для наблюдения поверхности Земли, для проведения медикобиологических экспериментов и работы с навигационной аппаратурой. Всего в рабочем отсеке было 15 иллюминаторов для ориентации, фотографирования и визуальных наблюдений.

В рабочем отсеке поддерживалось нормальное атмосферное давление, влажность и температура. На его наружной части располагалась часть научной аппаратуры, антенны и датчики системы ориентации, панели радиаторов системы терморегулирования, антенны связи и телерадиометрии.

Корпус рабочего отсека состоял из двух цилиндрических оболочек: верхней, примыкающей к переходному отсеку, и нижней. Они соединялись друг с другом конической обечайкой.

Агрегатный отсек состоял из отсека двигательных установок, корректирующей двигательной установки, отсека двигателей ориентации, защитных экранов двигательной установки и системы исполнительных органов.

12 апреля 1981 г. был запущен первый корабль многоразового использования «Колумбия» по программе «Спэйс Шаттл».

В рамках данной статьи можно лишь коротко рассказать об основных этапах исследования космоса при помощи космических аппаратов. Со времени запусков первых кораблей на Луну и полета Ю. Гагарина не прошло и полувека. И все же эта история насчитывает немало героических, драматических и трагических страниц.

Крекинг. Переработка нефти

Нефть использовалась людьми очень давно. Археологи относят начало ее применения к VI тыс. до н. э. В III тыс. до н. э. в Египте и Двуречье использовали как связующее и водонепроницаемое вещество асфальт вместе с песком и известью. Из их смеси делали мастику, применявшуюся для сооружения плотин, стен зданий, дорог.

Нефть использовали для освещения, применяли как лекарство. Смешивая ее с серой, селитрой и смолой, получали так называемый «греческий огонь» – легендарное оружие древности.

В Средние века нефть стала предметом торговли. В Европу ее привозили из французского Лангедока, турецкой Смирны и сирийского Алеппо. Марко Поло в своих сочинениях описывал добычу нефти в районе Баку. Ее применяли для освещения и лечения кожных болезней. Она применялась в живописи как растворитель при изготовлении красок, а также в военном деле.

Еще в начале нашей эры проводились опыты по перегонке нефти с целью уменьшения неприятного запаха при ее медицинском использовании. В XVIII в. в связи с изучением нефти ее перегонке уделялось большое внимание.

Во второй половине XIX – начале XX века зародилась и получила широкое развитие нефтеперерабатывающая промышленность. В 1870 г. мировая добыча нефти составляла 0,7 млн тонн, в 1913 г. она достигла 52,3 млн тонн. Вначале из нефти получали керосин, затем – керосин и масла, позже – керосин, масла и бензин.

Еще в 1823 г. русским крепостным мастерам братьям Дубининым удалось осуществить перегонку нефти на довольно крупной заводской установке. Она представляла собой железный куб емкостью 40 ведер, вмазанный и кирпичную печь. Куб накрывался медной крышкой. От крышки куба отходила медная труба через деревянный резервуар, наполненный водой. Этот резервуар играл роль холодильника, из которого по трубе выводился продукт перегонки в деревянное ведро.

Процесс перегонки осуществлялся следующим образом: куб, наполненный нефтью, нагревался от печи. Образовавшиеся при этом пары нефти устремлялись по медной трубе. При прохождении трубы через холодильник пары в ней конденсировались, в результате получался новый продукт – осветительное масло, нечто вроде современного керосина. В процессе перегонки использовалось свойство нефти разлагаться под влиянием нагревания на составляющие ее компоненты. При этом из 40 ведер нефти получалось 16 ведер керосина.

Способ Дубининых был крайне примитивен, однако в дальнейшем он развился в так называемый термофизический способ разделения нефти. Установка братьев Дубининых была первым нефтеперегонным «заводом», прототипом нефтеперегонных заводов, появившихся в России и в США в 60–70х годах XIX века.

В 1837–1839 годах в пригороде Баку Балаханы Н. И. Воскобойниковым был построен завод для перегонки бакинской нефти.

В начале второй половины XIX в. быстро совершенствуется техника добычи нефти, что послужило мощным толчком к развитию техники нефтепереработки. В конце 50х годов XIX в. в Европе и Америке уже работал ряд предприятий по производству керосина, предназначенного главным образом для освещения. В 1858 г. близ Баку был построен большой завод для получения керосина из нефти. Оборудование его мало чем отличалось от установки Дубининых. При строительстве новых перегонных заводов вводился ряд усовершенствований в перегонную систему, увеличивалась емкость перегонных кубов, однако в основе перегонки оставался тот же куб периодического действия с весьма низкой производительностью и с крайне неблагоприятным тепловым балансом.

В 1859 г. в Сураханах близ Баку промышленники В. А. Кокорев, H. Е. Торнау и П. И Губонин построили завод для получения фотогена (керосина) из кира – горной породы, представлявшей собой смесь загустевшей нефти или асфальта с песком или глиной. На заводе проводилась кислотнощелочная очистка фотогена.

Конец XIX в. характеризовался возрастающим спросом на нефтяные продукты. Необыкновенно быстрый рост парка машин и станков, а также бурное развитие железнодорожного транспорта привели к резкому увеличению спроса на смазочные минеральные масла. Перед нефтеперерабатывающей промышленностью встала проблема более глубокого разделения нефти с целью выделения технически ценных продуктов, в первую очередь масел.

Проблемой глубокого разделения нефти с конца 70х годов XIX в. занимались во многих странах Европы и в США. В этот период были созданы самые разные аппараты, улучшающие работу нефтеперерабатывающих заводов. Однако первенство здесь принадлежит русским инженерам. Один из первых нефтеперегонных аппаратов создал русский инженер А. Тавризов в 1874 г.

В 1882 г. Д. И. Менделеев сконструировал и установил на Кусковском нефтеперегонном заводе под Москвой первый куб непрерывного действия, который отличался несложной конструкцией и поэтому быстро нашел заводское применение. Это был, в сущности, куб, оборудованный устройством для непрерывной подачи. В 1883 г. на заводе Нобеля в Баку вводится в действие первая кубовая батарея, состоявшая из ряда кубов непрерывного действия, работавших по принципу куба Менделеева. Вскоре эта кубовая батарея была значительно усовершенствована инженерами Шуховым, Инчиком, Хохловым, Кушелевским, в результате чего производительность батареи резко возросла.

Кубовая батарея под названием Нобелевская получила широкое распространение не только в России, но и во всем мире. К 1900 г. кубы непрерывного действия заняли господствующее положение в нефтепереработке, вытеснив кубы периодического действия. Это был технический переворот, позволивший не только резко повысить производительность нефтеперегонных заводов, но и более глубоко производить разделение нефти, тем самым намного повысив степень ее использования.

Кубовая батарея давала не только керосин превосходного качества, в ней утилизировались и нефтяные остатки. Мазут в батарее подвергался дальнейшей перегонке с целью выделения смазочных масел различных сортов. Из отходов керосинового производства в результате перегонки мазут превратился в ценное сырье для получения нового продукта – смазочных масел, которые были значительно ценнее керосина и употреблялись исключительно для технических целей: смазывания трущихся частей машин.

В XX в. перед нефтеперерабатывающей промышленностью встала новая проблема – получение бензина. С изобретением и распространением двигателя внутреннего сгорания, работающего на жидком топливе, бензин, считавшийся до того времени отходом нефтепереработки, стал ценнейшим продуктом. С 1902го по 1912 г. мировое потребление бензина возросло с 3276 тонн до 376,8 тыс. тонн, т. е. в 115 раз.

В период 1900–1913 годов бензин в основном производился путем простой перегонки нефти. При получении бензина применялся физический способ разделения – последовательное испарение с последующей конденсацией и отбором более легких фракций нефти, что позволило выделять содержащиеся в нефти продукты только в известных температурных пределах (от 780 до 300 °C). Бензин при этом получался низкого качества и в небольших количествах. Поэтому по мере роста потребности в нефтяных продуктах возникла необходимость в новом химическом способе переработки нефти, который позволил бы значительно повысить выход бензина.

Над этой проблемой в течение последней четверти XIX в. и вплоть до Первой мировой войны работали ученые многих стран. Соединенными усилиями ученыххимиков и инженеров Европы и Америки к началу Первой мировой войны был разработан крекингпроцесс, то есть процесс глубокой переработки нефти.

Крекингпроцессом называется процесс получения бензина и легких моторных топлив из нефти путем разложения (расщепления) молекул тяжелых углеводородов под действием высоких температур и давления. При крекинге выделяется значительное количество газообразных продуктов, которые в настоящее время являются ценнейшим сырьем как для органического синтеза вообще, так и для синтеза компонентов высокооктанового топлива.

Изобретение крекингпроцесса связано с именами русских ученых и инженеров. Еще в 1876 г. высокотемпературный крекинг некоторых фракций кавказских нефтей осуществили русские инженеры А. А. Летний и А. А. Курбатов. В 1887 г. К. М. Лысенко и П. П. Алексеев построили в Баку заводскую установку для получения керосина путем термической переработки масляного гудрона.

Знаменитый русский инженер и изобретатель В. Г. Шухов совместно с Гавриловым в 1890–1891 гг. сконструировал оригинальную аппаратуру для крекингпроцесса и запатентовал его. В этом аппарате нагревание нефти проходило не в цилиндрических кубах, а в трубах при ее вынужденном движении.

Это изобретение легло в основу современной схемы так называемого термического крекинга. Лишь спустя 20 лет американец Вильям Бартон, использовав по существу открытие Шухова, сделал аналогичное изобретение (крекинг при высоком давлении и температуре). В промышленных масштабах крекингпроцесс был освоен лишь в 1916 г. в США.

Термический крекинг явился первым методом химической переработки нефти. Первые установки термического крекинга под давлением подвергались затем значительным усовершенствованиям. Помимо того в нефтепереработке большую роль играет каталитический крекинг с использованием специальных катализаторов.

Разработка каталитического крекингпроцесса стала важным этапом в развитии химической технологии вообще и в нефтепереработке в частности. Каталитический крекинг обеспечил более рациональные способы получения высококачественного авиационного бензина, что сыграло большую роль в годы Второй мировой войны. Первые промышленные установки каталитического крекинга появились к концу 30х годов XX в. в результате исследований французского инженера Э. Гудри, которые он проводил в США. Уже в 1937–1938 гг. по методу Гудри были получены первые 20 тыс. т авиационного бензина.

Внедрение промышленного крекинга заложило в 30х годах основы глубокой химизации нефтепромышленности. В переработке нефти было создано новое направление – нефтехимический синтез. Затем в химическую переработку начали вовлекаться и некоторые жидкие углеводороды, входящие в состав различных нефтяных фракций, среди которых особо ценными являются бензол, толуол и др.

На современной нефтеперерабатывающей установке получают большое число различных ценных продуктов, а также сырье для химической промышленности. По существу промышленность нефтехимического синтеза в настоящее время стала основой органического синтеза, обеспечивая исходным сырьем и полупродуктами производство многих важнейших материалов и, в частности, специальных добавок к моторному топливу.

Основными химическими элементами, из которых состоит нефть, являются углерод (82–87 %) и водород (11–14 %). Количество серы колеблется от 0,1 до 5 %. Содержание азота и кислорода не превышает десятых долей процента. Наиболее важными компонентами нефти являются углеводороды: насыщенные углеводороды метанового ряда, алициклические соединения – нафтены, ароматические углеводороды.

Сырая нефть перед переработкой проходит определенную подготовку. Ее обезвоживают, разрушают образовавшиеся в процессе добычи водонефтяные эмульсии, применяя для этого нагрев до 50–160 °C при давлении 5–10 атмосфер, а также используя поверхностноактивные вещества и деэмульгаторы – разрушители эмульсий.

При обезвоживании из нефти уходят не все хлористые соли, растворенные в воде и нефти. Если их не удалить до конца, при дальнейшей переработке будет необходимо применять коррозионноустойчивые материалы. Поэтому выгоднее полностью удалить хлориды на подготовительной стадии. Для этого нефть пропускают через обессоливающие установки. Легкие нефти после обезвоживания и обессоливания подвергают стабилизации, отгоняя легкую пропанобутановую и, частично, пентановую фракции, иначе при транспортировке будут большие потери ценных легких углеводородов. Кроме того, нестабилизированные легкие нефти более опасны при обращении, чем стабилизированные.

Легкими называют нефти с плотностью до 0,9 г/см3, тяжелыми – выше 0,9 г/см3.

Переработка нефти начинается с ее перегонки – процесса термического разделения нефти на основные фракции: бензин, лигроин, керосин, реактивное и дизельное топлива, топочный мазут. Мазут используется не только как горючее, но и как сырье для производства парафина, смазочных масел, гудрона и других нефтепродуктов. Перегонка нефти осуществляется в непрерывно действующих трубчатых установках. Остатком перегонки является мазут или гудрон. Мазут перегоняется в вакууме, в результате отбираются масляные фракции и остается гудрон.

После перегонки проводятся вторичные процессы переработки: крекинг, риформинг, гидроформинг и др. Результатом этих процессов является распад тяжелых углеродов на более легкие.

Крекинг может проходить как чисто термический процесс – термический крекинг, так и в присутствии катализаторов – каталитический крекинг.

Продукты термического крекинга, проводящегося при температуре 470–540 °C и под давлением 40–60 атмосфер, нестабильны при хранении, бензины из этих продуктов требуют последующего риформинга.

Риформинг – процесс дальнейшей переработки продуктов термического крекинга для получения высокооктановых бензинов и ароматических углеродов. До 30х годов XX в. он представлял собой разновидность термического крекинга и проводился при температуре 540 °C и давлении 50–70 атмосфер. Сейчас это разновидность каталитического крекинга. Он происходит при температуре 350–520 °C и давлении 15–40 атмосфер в присутствии катализаторов, содержащих металлы платиновой группы и другие металлы. Риформинг осуществляется под высоким давлением водорода во избежание деактивации катализатора коксом. Продуктами риформинга являются бензины с октановым числом 90–95, водород и углеводороды.

Термический крекинг низкого давления проводится при температуре 500–600 °C под давлением в несколько атмосфер. Он также называется коксованием и применяется для переработки тяжелых фракций нефти, например гудронов, в более легкие. Наряду с ними получают кокс.

Высокотемпературный крекинг происходит при температуре 650–750 °C и под давлением, близким к атмосферному.

При каталитическом крекинге присутствуют катализаторы – алюмосиликаты. Его осуществляют при температуре 450–520 °C под давлением 2–3 атмосферы в реакционных колоннах с неподвижным или циркулирующим катализатором. Распад при этом виде крекинга проходит гораздо быстрее, чем при термическом, а качество бензина выше.

Средние и тяжелые нефтяные дистилляты с большим содержанием сернистых и смолистых соединений перерабатывают каталитическим крекингом в присутствии водорода – так называемый гидрокрекинг. Он осуществляется при температурах 350–450 °C, давлении водорода 30–140 атмосфер. Катализаторами здесь служат соединения молибдена, никеля и кобальта. Получаемые моторные топлива отличаются высоким качеством.

Газы крекинга разделяются на отдельные фракции, одна из которых называется бутанбутилен. При этом из легкого газообразного углеводорода бутана химическим путем в присутствии некоторых катализаторов получается другой углеводород той же химической формулы, но другой химической структуры – изобутан (из которого можно получить технически чистый изобутилен). Эти основные компоненты являются важным сырьем для современного химического синтеза.

Для использования в тех же целях других фракций крекинг газов применяется химический процесс, в результате которого получается другой вид высокооктанового топлива – неогексан. Для получения его используется промышленный процесс алкилирования – взаимодействие углеводорода этилена с парафиновым углеводородом изобутаном. В этом процессе требуемая фракция крекинггаза подвергается прежде всего термическому разложению при температуре 750 °C. Полученный газ, богатый непредельным углеводородом – этиленом, сжимается в компрессоре до 60 атмосфер и подается в специальную стальную башню, орошаемую сжиженным изобутаном. В жидком изобутане этилен растворяется, насыщенный этиленом жидкий изобутан сжимается до 320 атмосфер и направляется в печь для проведения химической реакции.

В результате химической реакции при температуре 500 °C получается неогексан, загрязненный примесями, от которых очищается в специальных ректификационных колоннах.

В современной технике из нефти получают не только топливо, но и ряд важных веществ. На долю нефтехимии приходится около четверти всей химической продукции мира. Это спирты, синтетический каучук, пластмассы, ароматические соединения, биотехнологические производства.

Здесь нельзя не вспомнить слова Д. И. Менделеева: «Жечь нефть – все равно, что топить ассигнациями».

Лазер

В основе работы всех лазеров лежит один и тот же физический принцип: вынужденное испускание атомами вещества порций – квантов электромагнитного излучения. Этот принцип и определил название прибора. Слово «лазер» образовано из начальных букв английской фразы: Light Amplification by Stimulated of Radiation, т. e. «усиление света посредством вынужденного излучения». Другое его название – квантовый генератор оптического излучения.

Благодаря работам Максвелла и Герца в конце XIX в. в науке утвердилась волновая теория электромагнитного излучения, в частности светового. Но в рамках этой теории нельзя было объяснить некоторых явлений, например фотоэффекта и экспериментально полученного частотного распределения энергии излучений абсолютно черного тела.

В 1900 г. немецкий физик М. Планк предположил, что излучение испускается небольшими порциями, которые он назвал квантами. С помощью квантовой теории Н. Бор построил новую модель атома с устойчивыми орбитами. Пока электроны находятся на этих орбитах, излучаемая ими энергия равна нулю. Излучение происходит в том случае, если электрон перейдет на орбиту с более низким энергетическим уровнем. В 1905 г. А. Эйнштейн, исследую фотоэффект, распространил квантовую теорию Планка на световые лучи. Квант света получил название «фотон».

Ученые давно обращали внимание на явление самопроизвольного испускания света атомами, происходящее потому, что возбужденный какимлибо способом электрон вновь возвращается с верхних электронных оболочек атома на нижние. Такими переходами вызваны явления химической, биологической и световой люминесценции. Но люминесцентный свет слишком слаб и рассеян, поскольку каждый атом при люминесценции испускает свой свет в разное время, не согласованное с атомамисоседями. В результате возникает хаотичное вспышечное излучение.

В 1916 году А. Эйнштейн установил, что согласовать вспышки излучения отдельных атомов между собой позволило бы внешнее электромагнитное излучение, например свет. Оно может заставить электроны разных атомов одновременно взлететь на одинаково высокие возбужденные уровни. Это же излучение может произвести «световой выстрел»: направленное на кристалл, оно может вызвать одновременное возвращение на исходные орбиты сразу нескольких десятков тысяч возбужденных электронов. Это приведет к испусканию огромного количества квантов электромагнитной энергии. Направление и фаза колебаний квантов будет совпадать с направлением и фазой падающей волны. В результате энергия выходной волны будет многократно превосходить энергию волны, которая была на входе. Внешне это будет выглядеть как ослепительно яркая вспышка света практически одной длины волны или монохроматического света.

В 1917 г. Эйнштейн описал это в своей статье, но она прошла незамеченной, поскольку в то время больше внимания уделяли исследованиям по изучению строения атома. В 1939 году советский физик В. А. Фабрикант вернулся к введенному Эйнштейном понятию вынужденного излучения и обосновал возможность получения интенсивности излученного света, превышающей интенсивность падающих лучей. Его исследования заложили прочный фундамент для создания лазера. В 1951 г. В. А. Фабрикант, Ф. Бутаев и М. Вудынская получили авторское свидетельство на «Способ усиления электромагнитных излучений (ультрафиолетовых, видимых, инфракрасных и радиоволн)».

Особенностями лазерного излучения являются монохроматичность, параллельность и когерентность. Монохроматичность, или одноцветность, означает, что лазер испускает свет, имеющий одну длину волны. Это позволяет фокусировать его в одну точку сверхмалых размеров с большой удельной мощностью. Этого нельзя сделать, например, с солнечным светом, поскольку он состоит из лучей разного цвета, которые при попытке собрать их в точку аналогичных размеров будут фокусироваться на различном расстоянии от линзы. Лучше всего фокусируются параллельные лучи, имеющие малую расходимость светового потока. Как правило, такие лучи имеют малую энергию, но в лазере удалось преодолеть это противоречие. Высокая мощность лазерных лучей обусловлена еще и когерентностью. Это означает, что световые колебания в них находятся в строго одинаковой фазе.

Примером простейшего лазера может служить оптический резонатор, состоящий из двух параллельных полупрозрачных зеркал, расположенных на определенном расстоянии друг от друга. Между ними помещается активная среда, электроны которой находятся на одинаково высоких уровнях возбуждения. При дополнительном возбуждении фотоны, испускаемые активной средой, попадают на зеркало и при этом частично проходят через него, частично отражаются и летят в противоположном направлении. При этом волна, распространяющаяся вдоль оси интерферометра, попадает в наиболее благоприятные условия и усиливается.

В том случае, если усиление превышает потери волны при отражении, волна будет усиливаться до тех пор, пока не достигнет некоторого предельного значения. После этого между зеркалами устанавливается стоячая волна и сквозь полупрозрачные стекла наружу выходит поток когерентного излучения.

В 1940е годы советские ученые А. М. Прохоров и Н. Г. Басов изучали поглощение радиоволн газами. Выяснилось, что любой газ поглощает волны определенной длины. Это натолкнуло на мысль использовать газы в роли генератора, в котором источниками излучения служили бы молекулы возбужденного газа.

В качестве активной среды Прохоров и Басов выбрали аммиак NH3. Для того чтобы генератор начал работать, следовало отделить возбужденные молекулы от тех, которые пребывали в невозбужденном состоянии и поглощали фотоны. Для этого в сосуд, в котором был создан вакуум, впускался тонкий поток молекул. Они пролетали через конденсатор высокого напряжения, при этом молекулы, обладающие большой энергией, проходили через его поле, а молекулы с малой энергией уходили в сторону. Далее молекулы с высокой энергией попадали в оптический резонатор, в котором возникала генерация излучения со стабильной частотой, совпадающей с частотой излучения молекул аммиака.

В 1954 г. Басов и Прохоров создали в СССР первый квантовый генератор. Почти одновременно такой прибор, названный мазером, был создан в США Ч. Таунсом, Дж. Гордоном, Г. Зейгером. Эти приборы генерировали не световые, а радиоволны длиной 1,27 см.

В 1964 г. Басов, Прохоров и Таунс за фундаментальные исследования в области квантовой электроники, приведшие к созданию квантовых генераторов и усилителей, были удостоены Нобелевской премии по физике.

Для создания лазера, генерирующего излучение в видимом диапазоне спектра, было необходимо: найти активное вещество, способное переходить в возбужденное состояние; создать источник возбуждения, способный сообщать активному веществу дополнительную энергию и переводить его в возбужденное состояние; найти источник энергии для подпитки источника возбуждения.

Первым лазером, работавшим в оптическом диапазоне, стал аппарат, созданный в 1960 г. американцем Т. Мейманом. В качестве рабочего вещества в нем использовался монокристалл искусственного рубина. В качестве отражающих зеркал резонатора служили отполированные и посеребренные торцы этого кристалла. Источником накачки служили две газоразрядные лампывспышки. На их электроды поступал импульс высокого напряжения с основного и вспомогательного конденсаторов блока запуска. Это напряжение составляло примерно 40 000 вольт. Импульс вызывал кратковременную (примерно 103 с) и мощную вспышку ламп. Благодаря такой накачке кристалл рубина может дать в импульсе энергию до 1000 Дж и мощность до 106 Вт.

Позже были созданы твердотельные лазеры в которых в качестве активного вещества применяются стекло с примесью неодима, флюорит кальция CaF2 с примесью диспрозия и др. Рубиновые лазеры и лазеры на стеклянной основе дают рекордные энергии и мощности. Их недостатком является трудность выращивания больших монокристаллов и варка больших образцов однородного и прозрачного стекла.

Вскоре после рубинового лазера в 1960 г. американскими учеными А. Джаваном, У. Беннеттом, Д. Гарриотом был разработан первый газовый лазер. Он представлял собой газоразрядную трубку, заполненную смесью неона и гелия, заключенную в оптический резонатор. Он генерировал излучение в красной области спектра. Возбуждение достигалось за счет сильного электрического поля и газовых разрядов. Этот лазер имел низкий КПД (0,01 %). Его преимуществами были простота и надежность конструкции, высокая монохроматичность и направленность излучения.

В 1964 г. был создан лазер, работавший на углекислом газе. Он обладал высокой мощностью (до 9 кВт) и КПД (15–20 %).

В начале 1960х годов появились полупроводниковые лазеры. В них в качестве рабочего вещества применяется полупроводниковый кристалл. В этих лазерах используются излучательные квантовые переходы не между изолированными уровнями атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла. Если на полупроводники воздействовать электрическим или световым импульсом, часть электронов покинет свои орбиты и образуются дырки с положительными зарядами. При одновременном возвращении электронов на первоначальные орбиты произойдет излучение фотонов. Особенностью такого лазера являются малые размеры. КПД полупроводникового лазера достигает 30–50 %.

Практическое применение лазеров началось с их появлением. Благодаря им стали возможными исследования простейших бактерий. Возможность формировать импульсы света продолжительностью 10"11–10"12 с применяется в скоростной фотографии. На основе гелийнеонового лазера с высокой стабильностью частоты созданы стандарты длины и времени.

Благодаря высокой эффективной температуре излучения и возможности концентрировать энергию в очень малом объеме появились уникальные возможности испарения и нагрева вещества.

С помощью лазеров производится сварка, резка и сверление материалов. Она отличается высокой точностью и отсутствием механических напряжений. Большое значение приобрели лазерная хирургия и терапия.

Рубиновые лазеры применялись для локации Луны, что позволило измерить расстояние до спутника Земли с точностью до нескольких миллиметров.

Полупроводниковые лазеры применяются в оптической связи, оптоэлектронике, голографии.

Ледокол

Люди издавна стремились проникнуть в полярные моря и освоить их. Русские поморы и норвежские китобои плавали в Арктике летом, добираясь при благоприятных условиях до сравнительно высоких широт.

В 1733 г. в России была организована Великая северная экспедиция, перед которой стояла задача нанести на карту все побережье Северного Ледовитого океана и собрать разнообразные сведения о северных морях. Позже мореплаватели прилагали немало усилий, чтобы найти Северозападный и Северовосточный проходы в южные моря или достичь Северного полюса. Но все эти экспедиции терпели неудачу.

Одной из причин неудач было отсутствие кораблей, способных противостоять разрушающей силе льдов. При движении ледяных полей на судно наступает огромный ледяной вал, достигающий огромной высоты. Он может превратить корабль в груду смятого железа.

Активная борьба со льдом стала возможной, когда появились корабли со стальным корпусом и паровым двигателем.

В 1864 г. сообщение между Кронштадтом и Ораниенбаумом поддерживалось небольшими пароходами. Их владелец, промышленник Бритнев, изменил форму носа у одного из них, «Пайлота», как бы подрезав его. В результате пароход стал налезать на льдины и расталкивать их. Это позволило продлить на несколько недель сообщение, обычно прерывавшееся с началом ледостава.

Бритнев не преследовал цель создать специальное судно для плавания во льдах и продал чертежи своего изобретения немцам.

Немецкие инженеры построили суда с ложкообразной формой носа. Самое крупное из них имело водоизмещение около 900 тонн, самое маленькое – 90 тонн. Впоследствии все они получили название «гамбургских ледоколов». Они расчищали заторы на реке Эльба и восстанавливали сообщение с портом Гамбург. Они хорошо работали в ровном льду без торосистых нагромождений. Но для ледовых условий на морях и океанах такая форма носа оказалась малоподходящей: ложкообразные обводы носа способствовали скоплению снега и льда перед форштевнем, ледокол сильно рыскал на ходу, а иногда застревал во льдах.

В 1893 г. норвежский ученый Ф. Нансен построил специальное судно «Фрам». Корпус этого судна имел округлую яйцеобразную форму, поэтому льды не могли разрушить его, выжимая вверх. Нансен преследовал цель достичь Северного плюса, дрейфуя вместе со льдом. Это ему не удалось, но в течение всего путешествия, длившегося три года, «Фрам» оставался невредимым.

К концу XIX в. было построено немало ледоколов, но все они могли работать лишь в слабых ледяных полях и были бессильны против мощных льдов и торосистых нагромождений.

Русский адмирал и ученый С. О. Макаров решил создать новый мощный ледокол, способный плавать в арктических льдах. Для этого Макаров изучил опыт «Фрама», знакомился с работой ледяных паромов на американских озерах Гурон, Мичиган и Эри, изучал летние условия плавания в Карском море. Благодаря этому он понял, каким должен быть будущий ледокол.

Детище Макарова было построено в Ньюкасле на верфях фирмы «Армстронг и Витворт». Ледокол получил название «Ермак».

В марте 1899 г. «Ермак» подошел к Кронштадту. В это время льды в Финском заливе достигают наибольшей толщины. Несмотря на это, «Ермак» пробил канал во льдах, сковавших Большой Кронштадтский рейд, и вошел в гавань. До него ни одно судно в это время года не могло войти в Кронштадт.

Летом того же года «Ермак» совершил первое арктическое плавание. Во время плавания возникла течь, и ледокол вернулся на ремонт в Ньюкасл. Летом того же года «Ермак» вновь вернулся в Арктику, но испытания завершились пробоиной в носу.

В 1901 г. ледокол исследовал район севернее Шпицбергена. Спустя несколько дней после выхода из порта Тромсе он попал в сплошной лед и остановился у побережья Новой Земли. Около месяца «Ермак» был зажат льдами. В конце июля ледовая обстановка улучшилась, и «Ермак» весь август работал в Арктике. За время плавания он прошел свыше 200 миль в условиях, где любой другой корабль погиб бы. Расчеты адмирала Макарова оказались правильными.

Долгие годы «Ермак» плавал на Балтике. За первые 12 лет он провел в Финском заливе свыше 1000 судов. В феврале 1918 г. в порту Ревеля (ныне Таллинн) были скованы льдом корабли Балтийского флота. Портовые ледоколы не могли разбить лед, а в это время на Ревель надвигались немецкие войска. На помощь эскадре пришел «Ермак». Он взломал лед и вывел большую часть кораблей из гавани. 25 февраля они ушли в Гельсингфорс (Хельсинки). Но и из Гельсингфорса вскоре пришлось уйти. 12 марта эскадра направилась в Кронштадт. Ей предстояло пройти 200 миль. Дорогу кораблям прокладывали «Ермак» и вспомогательный ледокол «Волынец».

Несмотря на торосистый лед, туманы и обстрел, корабли тремя отрядами пришли в Кронштадт. Решающий вклад в успех этого беспримерного похода внес «Ермак».

С началом освоения Северного морского пути «Ермак» был направлен в Арктику. Он выводил замерзшие во льдах пароходы, доставлял им продукты и топливо.

В феврале 1938 г. «Ермак» участвовал в снятии с льдины экипажа станции «Северный полюс», которую возглавлял И. Д. Папанин.

В 1938 г. за пять месяцев плавания «Ермак» освободил из ледового плена 17 и провел в Карское море и море Лаптевых 10 пароходов. В том же году он достиг 83го градуса северной широты. До этого ни одно судно, самостоятельно передвигаясь во льдах, не достигало таких высоких широт.

Во время Великой Отечественной войны ветеран проводил на буксире в Кронштадт и обратно баржи с углем, продуктами и оборудованием, госпитальные суда.

В 1949 г. ледокол был награжден орденом Ленина. «Ермак» был в строю до 1963 г.

В 1917 г. в Англии был построен ледокол «Святогор», в 1927 г. переименованный в «Красин». В 1928 г. «Красин» участвовал в спасении участников экспедиции У. Нобиле, которые потерпели катастрофу на дирижабле «Италия».

В 1932 г. «Красин» совершил первое зимнее плавание в Арктике, а в 1933 г. впервые достиг зимой северной оконечности Новой Земли.

В 1932 г. советский ледокольный пароход «Сибиряков» впервые прошел Северный морской путь за одну навигацию. Он вышел из Архангельска в июле. Проходя льды у побережья Чукотки, судно повредило винт, но экипажу удалось отремонтировать повреждение. Затем от удара о ледяную глыбу обломился конец гребного вала и пошел ко дну вместе с винтом. Моряки взрывали лед аммоналом, а когда судно вышло на чистую воду, подняли на мачтах брезентовые полотнища. 1 октября 1932 г. «Сибиряков» вышел в Берингов пролив.

Конструкция ледоколов рассчитана на очень большую нагрузку. Ледокол редко двигается непрерывно, чаще он останавливается, отходит назад и наскакивает на льдину с разбега. Иногда ему приходится ударять в лед и кормой. Чтобы вползти на льдину, форштевень и ахтерштевень (носовая и кормовая части судна) имеют уклон 23–25°. Весь ледокол, особенно его нос и корма, должны быть прочными, а их штевни – массивными. Так, форштевень советского ледокола «Сибирь», построенного в начале 40х гг., весил 26 тонн, а ахтерштевень – 36 тонн. У обычных судов вес этих частей не превышает 6–7 тонн.

Один квадратный метр борта «Ермака» выдерживал нагрузку в 55 тонн, а «Сибири» – 75 тонн. Шпангоуты на ледоколах, особенно в носовой и кормовой части, установлены чаще, чем на других судах.

Стремление к повышенной прочности корпуса усложнило его конструкцию. Повышенная жесткость достигается применением многочисленных палуб и платформ. К поперечным водонепроницаемым переборкам, которые есть на каждом судне, добавлены продольные, отделяющие машинные и котельные помещения. Двойное дно судна переходит во второй борт.

Вдоль ватерлинии судна обшивка утолщена и образует так называемый ледовый пояс в том месте, где корпус ледокола наиболее часто соприкасается со льдом. На «Ермаке» высота ледового пояса достигала 5,4 м, на «Сибири» – 6,1 м.

Непрерывным ходом ледоколы могут сокрушать сравнительно тонкий лед. «Ермак» и «Красин» ломали ходом лед толщиной 50–60 см. Особенно тяжелые льды ледоколы бьют «звездочкой», ударяя в одно и то же место, но в разных направлениях.

Если ледокол, ударив в лед, не расколол его и застрял, в действие приводится креноводифферентная система. Электрические помпы начинают качать воду в носовую дифферентную цистерну, нос судна становится тяжелее и сильнее давит на лед. Вода поочередно перекачивается из цистерн правого борта в левый и наоборот. Ледокол начинает бортами давить на лед.

Если не удается выйти из ледового плена, с кормы на лед подают так называемый ледовой якорь, лапу которого вставляют в пробитую лунку. Машины работают назад, лебедка выбирает трос, и ледокол сам стаскивает себя с льдины. В крайних случаях лед взрывают.

Машины ледоколов работают в очень жестком режиме. Они дают то передний ход, то задний. Число реверсов машины может достигать 15–20 в минуту. На первых ледоколах стояли паровые поршневые машины. Они оказались простыми и надежными для эксплуатации во льдах: быстро меняли режим работы, долго и безаварийно действовали на переменных ходах, легко меняли направление вращения. Но при движении ледокола во льду изза возрастающего сопротивления скорость хода значительно уменьшалась, паровая машина снижала количество оборотов. В результате снижалась мощность в тот момент, когда она была нужна судну.

Позже на ледоколах в качестве главных двигателей стали устанавливать дизели. Они неустойчиво работают при малых нагрузках и не выносят длительных перегрузок, возникающих при движении ледокола во льдах. Этот недостаток был преодолен с помощью электрической передачи. Дизель равномерно вращает электрогенератор, подающий энергию на моторы, вращающие гребные винты. Гребные двигатели работают в переменном режиме, потребляя нужное в данный момент количество электроэнергии. Число их оборотов легко регулируется, что позволяет подобрать наиболее выгодный для работы режим и использовать полную мощность для работы на заднем ходу. Каждый гребной двигатель обслуживается 2–3 генераторами.

Уязвимым местом ледоколов являются гребные винты: их лопасти часто гнутся и ломаются под ударами льдин. Чтобы защитить лопасти и руль от ударов, ледоколы имеют максимально возможную осадку. Но кормовым винтам грозят также и льдины, скользящие по корпусу судна. Для их защиты на корпусе сделаны своеобразные «ножи», отводящие льдины от винтов.

Гребные винты ледоколов не отливаются целиком как обычно, а имеют съемные лопасти, которые в случае повреждения можно заменить запасными. Винты делаются из специальных ванадиевоникелевых сплавов. Винты обычно имеют 4 лопасти: при меньшем количестве куски льда, застревающие между ними, ломают винт.

В 1957 г. в СССР был спущен на воду первый в мире атомный ледокол «Ленин». Он имел водоизмещение 16 000 тонн и мощность главных турбин 44 000 л. с. «Ленин» мог работать целый год, не заходя в порт.

В 1977 г. другой советский ледокол, «Арктика», дошел до Северного полюса, осуществив мечту Ф. Нансена.

Ледоколы сыграли важную роль в освоении Арктики, расширив возможности доставки людей и грузов в ранее недоступные районы.

Литье стали

В середине XIX в. в связи с быстрым ростом производства резко выросла потребность в стали. Существовавшие в то время кричный передел, тигльная выплавка стали и пудлингование не могли удовлетворить эту потребность.

В конце 1854 г., в разгар Крымской войны, на Венсенском полигоне во Франции испытывался мощный артиллерийский снаряд конструкции англичанина Генри Бессемера. Глава экспертной комиссии капитан Минье отметил, что дело за малым: создать еще и пушку для стрельбы такими снарядами. Это побудило Бессемера начать разработку новой пушки.

Первое – материал, способный выдержать значительные напряжения при стрельбе снарядами крупного калибра. Использовавшиеся в то время бронза и чугун его не устраивали, и он решил получить чугун более высокого качества. Свои опыты Бессемер сначала проводил в небольшом горне, затем в пламенной (пудлинговой) печи. Во время очередного эксперимента он обратил внимание на несколько кусков чугуна, которые, несмотря на сильный жар, не расплавлялись. Изобретатель пустил сильную струю воздуха, чтобы усилить сгорание. Спустя полчаса Бессемер увидел, что от кусков чугуна остались лишь тонкие пленки обезуглероженного железа. Итак, атмосферный воздух может обезуглероживать чугун, превращая его в ковкое железо без пудлингования и других операций. То, что происходит в металле, когда на него воздействуют воздухом, сам Бессемер объяснял так: содержащийся в чугуне «углерод не может в условиях белокалильного жара находиться в присутствии кислорода, не соединяясь с ним и, таким образом, не производя горения… Следовательно, достаточно привести в соприкосновение кислород и углерод так, чтобы значительные их количества подвергались взаимному действию, чтобы получить температуру, не достигнутую до сих пор в крупнейших печах». Хотя на самом деле больше тепла выделяется при реакции с кислородом не углерода, а кремния, суть идеи от этого не менялась: для обезуглероживания расплавленного чугуна его следует продувать воздухом.

Эта гениальная идея, вскоре совершившая переворот в металлургии, сначала казалась многим, по меньшей мере, нелепой. Так, когда Бессемер сказал литейщику, нанятому для проведения практических плавок, что хочет продуть холодный воздух через жидкий металл, тот без сомнения заявил: «Металл весь скоро превратится в глыбу». И мастер очень удивился, когда после продувки в изложницу по желобу полилась ослепительная струя металла. Бессемер писал: «Я не в состоянии передать, что я чувствовал, когда увидел эту раскаленную массу, медленно поднимающуюся из формы. Это был первый большой слиток литого железа, который когдалибо видел человеческий глаз».

В 1856 г. Бессемер взял патент на продувку раскаленного чугуна воздухом. Сначала он проводил опыты в небольшом лабораторном сосуде. Попытка перейти к экспериментам в более крупных масштабах едва не закончилась катастрофой. Для опытов Бессемер решил использовать сосудконвертер (от латинского слова convertere – превращать) высотой чуть более метра, изготовленный из листового железа и выложенный внутри огнеупорным кирпичом. Не прошло и десяти минут после начала продувки, как из отверстия в крышке внезапно вылетел сноп искр, который с каждым мигом все ширился и ширился, пока не превратился в столб пламени. Раздались громкие хлопки, и высоко в воздух начали извергаться расплавленный металл и шлак. Конвертер напоминал вулкан во время извержения. Бессемер мог только наблюдать, понимая, что в любой момент мог начаться пожар или произойти взрыв. К счастью, спустя несколько минут «извержение» прекратилось. Полученный металл оказался ковким железом.

Взволнованный изобретатель повторил эксперимент, приняв, как он полагал, надлежащие меры против огненного фонтана: над отверстием конвертера он подвесил на цепи чугунную крышку. Но при новой продувке вновь началось извержение. Крышка быстро раскалилась, стала плавиться и через несколько минут о ней напоминал лишь обрывок цепи.

Новый способ получения стали многими был встречен скептически. И когда Бессемер решил взять патент на свое изобретение в Германии, прусское патентное ведомство отказало ему, мотивировав свое решение тем, что «никому нельзя запретить продувать воздух через жидкое железо».

В течение нескольких лет английский изобретатель усовершенствовал свой процесс. Бессемерование чугуна – это процесс превращения жидкого чугуна в литую сталь путем продувки сжатым воздухом. Продувка проводится в специальном резервуаре – конвертере. Превращение чугуна в сталь в конвертере происходит благодаря окислению углерода и примесей (кремния, марганца), содержащихся в чугуне, кислородом воздуха. Процесс бессемерования происходит без подвода тепла извне и без применения какоголибо горючего материала: тепло, необходимое для процесса, образуется благодаря окислению железа и его примесей.

Практически бессемерование происходит следующим образом. Чугун в том виде, в каком он изливается из доменной печи, заливается в конвертер – резервуар, похожий на грушу с отверстиями на дне для подвода воздуха. Он укреплен на двух подвижных опорах, по одной с каждой стороны, что позволяет переводить его из горизонтального в вертикальное положение и наоборот.

Наполнив конвертер, его поворачивают в вертикальное положение и через отверстия начинают вдувать воздух, который пузырьками проходит через расплавленный металл. Кислород воздуха при этом приходит в соприкосновение с каждой частицей чугуна и в результате соединяется с углеродом, находящимся в чугуне. Когда процесс закончен, конвертер переводят в горизонтальное положение и прекращают вдувание воздуха. После окончания процесса в конвертере образуется железо, в которое затем добавляют строго определенную дозу примеси, содержащей углерод, поддерживающий дальнейший процесс окисления железа. В результате в конвертере образуется сталь, содержащая требуемый процент углерода.

Процесс бессемерования протекает чрезвычайно быстро, продолжительность его не превышает 15 минут. Количество перерабатываемого чугуна и пропускная способность конвертера весьма велики: в конвертере 10–15 тонн чугуна превращается в железо или сталь в течение 10 минут. В пудлинговой печи на это уходило несколько дней. По качеству бессемеровская сталь во многом превосходила пудлинговое железо.

Признание пришло к Бессемеру в 1862 г.: на Всемирной выставке в Лондоне с успехом демонстрировалась разнообразная продукция из бессемеровской стали. В 1867 г. на Всемирной выставке в Париже изобретатель был удостоен Большой золотой медали. В 1871 г. Бессемер был избран президентом вновь созданного британского Института железа и стали, а в 1879 г. стал членом Лондонского королевского общества.

Следует отметить, что наряду с очевидными достоинствами бессемеровский конвертер имел и недостатки. Основной из них заключался в том, что далеко не любой чугун можно было в конвертере переделывать в сталь. Если для выплавки чугуна использовались железные руды, богатые фосфором, то последний переходил в чугун, а затем и в сталь. В результате сталь становилась хрупкой и не находила применения. В конвертере нельзя переплавлять железный лом или твердый чугун, т. к. не хватает тепла, чтобы расплавить твердые куски металла. К тому же в конвертере можно получать лишь сталь, идущую на обычные нужды.

Один из недостатков конвертера исправил соотечественник Бессемера Сидни Томас. Он подошел к конвертерной плавке с точки зрения химика. На миниатюрном конвертере, вмещавшем около 2,5 кг чугуна, Томас вместе с двоюродным братом начал производить опыты по удалению фосфора из расплавленного металла. Для этого необходимо, чтобы шлаки были не кислыми, а основными, т. е. состоящими из основных окислов. Это требовало, чтобы и огнеупорная футеровка конвертера была основной, иначе она разъедалась бы шлаком и выходила бы из строя. После многочисленных опытов Томас остановился на огнеупорной футеровке, состоящей из извести, смешанной с жидким стеклом. Первые опыты были успешными, и Томас уговорил владельцев завода в Бленавоне, где работал его двоюродный брат, провести опытные плавки. После нескольких десятков плавок Томасу удалось снизить содержание фосфора в стали до сотых долей процента.

Одна из причин его успеха заключалась в следующем: примеси в чугуне выгорали в строгой очередности, зависящей от химических свойств кислорода. Первым выгорал кремний, затем марганец, частично железо. Потом доходит очередь до углерода. Как только запасы углерода иссекают, конвертерный костер начинает угасать. В этот момент металлурги прекращали продувку, считая, что больше гореть нечему, кроме железа. При бессемеровском процессе действительно не стоило продолжать продувку, но если требовалось очистить металл от фосфора, то торопиться не следовало. К этому времени фосфор в металле оставался практически в том же количестве. Томас решил продолжать продувку. И выяснилось, что фосфор сгорает с большим тепловым эффектом, почти не уступая кремнию. В 1877 г. Томас взял патент на один из вариантов технологии, связанной с удалением фосфора, и продал его, чтобы продолжать опыты. Он искал наиболее удачный материал для футеровки и постепенно пришел к выводу, что лучше всего подходит хорошо обожженный доломит. Стенки из него выдерживали воздействие извести, необходимой для создания основного шлака, поглощавшего выделяющийся из металла фосфор.

В 1878 г. Томас берет патент на свое изобретение. Спустя несколько дней после этого на сессии британского Института железа Томасу даже не дали слова, чтобы он мог рассказать о своем изобретении. Среди участников собрания был и Бессемер. Несмотря ни на что, Томас шлифовал свою технологию в промышленных условиях, и вскоре его ждал триумф. Уже после его смерти в конце XIX в. томасовский конвертер по масштабам выплывки стали уступал лишь «старшему брату» – бессемеровскому конвертеру.

Но постепенно роль конвертеров в выплавке стали начала понижаться. До середины XX в. основная нагрузка приходилась на мартеновские печи. Но конвертеры восстановили утраченные было позиции благодаря применению кислородного дутья. Эту идею выдвинул еще в 1875 г. Д. К. Чернов. По его мнению, это должно было повысить температуру металла и сократить время процесса, а также затраты на воздуходувную машину. Но реализовать эту идею стало возможным лишь тогда, когда удалось создать установки для сжижения атмосферного воздуха и получения из него кислорода. В 1933 г. советский ученый Н. И. Мозговой приступил к экспериментам по продувке жидкого чугуна чистым техническим кислородом. В 1950е годы во многих странах были построены кислородные конвертеры. Кислородное дутье имеет серьезные преимущества: при сохранившейся высокой производительности постройка кислородноконвертерных цехов обходится дешевле. Кислородное дутье повысило температуру в конвертере, что позволило перерабатывать большие объемы металлолома. Теперь в конвертерах можно было выплавлять легированную сталь многих марок, что раньше считалось привилегией электропечей. Сегодня кислородноконвертерным способом выплавляется более половины всей производимой в мире стали.

Несмотря на громадное значение бессемеровской стали, проблема улучшения качества металла осталась не решенной. А специальное машиностроение требовало массового производства именно высококачественной стали. Кроме того, дешевая бессемеровская сталь вытеснила старый пудлинговый металл, и появились крупные нереализованные запасы последнего. Требовалось найти пути передела его в сталь.

Проводились опыты, в ходе которых пытались сплавить в пламенных печах чугун и железо, но в них не удавалось достичь необходимой температуры.

В 1856 г. немецкие инженеры братья Вильгельм и Фридрих Сименс сконструировали для нужд стекольной промышленности регенеративную газовую печь. Смешиваясь с воздухом, газ горел, развивая высокую температуру, достаточную для плавки даже тугоплавких металлов. Регенератор представлял собой сдвоенную камеру, заполненную решетчатой кирпичной кладкой, через которую пропускались печные газы, отдававшие кладке значительную часть своего тепла. Затем по этой же кладке в обратном направлении пропускали воздух и горючий газ, предназначенные для горения. Подогрев предотвращал охлаждение печи воздухом или газом и повышал температуру в печи примерно на 1000 градусов.

Но именно высокая температура, как ни странно, вначале тормозила внедрение регенеративных печей в металлургическое производство. Поначалу металл загружали в печь в огнеупорных тиглях, и в ходе плавки расплавлялся не только металл, но и тигль. В ряде опытов оплавлялись даже стенки печи, а однажды рухнул ее свод.

Принцип регенерации тепла и отопления печи газом использовал в своей печи французский металлург Пьер Мартен. По предоставленным В. Сименсом чертежам он построил регенеративную сталеплавильную печь, использовав для кладки ее стен и свода огнеупорный кирпич, способный выдерживать высокие температуры. Она была запущена в 1864 г. Сущность мартеновского процесса заключается в том, что сталь производится на поду регенеративных пламенных печей путем переработки в них чугуна и стального лома (скрапа). В мартеновской печи происходит не просто плавка загруженных материалов: до самого конца процесса в печи идет химическое взаимодействие между металлом, шлаком и газом.

Мартеновская печь относится к типу отражательных печей. Ванна, где идет плавка, выложена огнеупорным кирпичом. Над ванной – сферический свод. Продукты горения топлива, а вместе с ними и тепло отражаются от него и направляются в ванну, где расплавляют металл. Такая конструкция обеспечивает равномерное распределение тепла по всей площади ванны. Сначала в качестве топлива в мартене применяли смесь доменного и коксового газов, сейчас все шире используется природный газ. Нагретые в регенераторах воздух и газ подаются в верхнюю часть мартена, где смешиваются и сгорают, давая температуру до 1800–2000 °C.

Для загрузки сырья в передней стенке печи имеются завалочные окна, закрываемые стальными задвижками. В задней стене – выпускное отверстие, через которое готовую сталь сливают в ковш. Когда идет плавка, выпускное отверстие забито пробкой из огнеупорной глины.

Работа в мартеновской печи происходит в несколько этапов, сначала в печь загружают холодные материалы (шихту) – железный лом, руду, известь. Их насыпают в стальные ящики – мульды. Завалочная машина захватывает мульду, вносит через завалочное окно в печь, переворачивает, высыпая содержимое. После окончания загрузки заслонки опускают и в печь вводят максимальное количество газа и воздуха, чтобы шихта быстрее прогрелась и расплавилась. После этого к печам подвозят ковши с доменным чугуном. Его доставляют из миксера, где чугун хранится в жидком виде. Мостовой кран поочередно поднимает ковши, наклоняет их, и чугун по специальному желобу льется в печь. Выплавка стали в мартене продолжается много часов. За это время пробы металла несколько раз отправляют в лабораторию, где исследуется их химический состав. В случае необходимости в печь вводятся недостающие вещества. На последнем этапе плавки происходит очищение стали от вредных примесей и раскисление – удаление из металла кислорода. Для этого в ванну добавляют раскислители: ферросилиций, ферромарганец, алюминий.

Во второй половине XX в. были созданы двухванные печи. В них применяют не воздух, а чистый кислород. Это дает такое количество тепла, что позволяет печам обходиться без регенераторов. Их производительность в 2–4 раза выше, чем однованных, а расход топлива – в 10–15 раз меньше.

Самые большие в мире мартеновские печи построены на Мариупольском металлургическом комбинате. Объем ванны в этих печах 900 м3.

Но даже кислород не помог мартеновским печам выдержать конкуренцию с электрическим конвертером.

Электросталеплавильный процесс ведет свое начало от электрической дуги, которую получил, экспериментируя с гальваническим элементом, профессор физики СанктПетербургской медикохирургической академии В. В. Петров в 1802 г. Спустя год он опубликовал книгу «Известие о ГальваниВольтовских опытах», в одной из глав которой описал превращение некоторых оксидов в металлы посредством электрического тока.

В 1853 г. во Франции был взят патент на конструкцию электропечи для плавки стали. В 1879 г. Вильгельм Сименс сконструировал электропечь, в которой впервые сумел выплавить железо из руды. Однако эта печь была далека от совершенства и полученное железо содержало много примесей.

В 1891 г. создатель дуговой электросварки Н. Г. Славянов осуществил плавку стали и других металлов в небольших тигльных печах с электродами. Большой вклад в развитие электропечей внес французский ученый Анри Муассан. В 1892 г. он представил во Французской академии наук свою конструкцию, позволявшую получать температуры до 4000 °C.

Широкому применению электрического тока мешала его относительно высокая стоимость. Но эта проблема была решена после появления первых гидроэлектростанций. На стыке XIX–XX вв. Поль Эру во Франции и Эрнесто Стассано в Италии практически одновременно построили дуговые плавильные печи.

Благодаря особым условиям в плавильном пространстве, прежде всего восстановительной атмосфере и температуре до 5000 °C, металлурги получили возможность не только полнее очищать металл от нежелательных примесей, но и выплавлять легированную сталь. Спрос на электросталь резко возрос в годы Первой мировой войны, когда металл высокого качества понадобился для производства пушек, брони и других видов вооружения.

За несколько десятилетий с момента возникновения электрического способа выплавки электропечи прибавили в объеме, их конструкции стали более совершенными. Поскольку в них можно плавить даже такие тугоплавкие металлы, как вольфрам и молибден, металлурги могут плавить сталь, легированную любыми металлами. В 1940–1950е годы в электропечах стало применяться кислородное дутье. Оно позволило увеличить производительность электропечей, сократить расход электроэнергии, электродов, дорогих легирующих добавок. Повысилось и качество металла.

В индукционных электропечах нет электродов, что позволяет получать практически безуглеродную высоколегированную сталь.

Следующим шагом в развитии электропечей стали вакуумные индукционные и дуговые печи. Создаваемое в вакуумной камере разрежение заставляет пузырьки газа выходить из жидкого металла.

Современные методы литья позволяют производить качественную сталь без дефектов. Это помогает сократить дальнейшую механическую обработку и получить высокие эксплуатационные свойства материала.

Лодка. Гребные суда

Появление плавательных средств было вызвано необходимостью передвижения по водоемам: рекам и озерам. Изза отсутствия дорог путешествие по воде было быстрее и легче. Помимо того, плавательные средства требовались для рыбной ловли.

Первым средством передвижения по воде были стволы деревьев. Их очищали от веток и плыли, лежа на бревне и работая ногами. Затем стали делать плоты, связывая вместе несколько стволов или связок камыша. Они управлялись шестом, а на глубоких местах использовали гребную доску. Плот позволял перевозить грузы.

Для быстрого плавания по воде больше подходила лодка, выдолбленная из ствола. Ее делали, выдалбливая или выжигая в стволе углубление для гребца. Один конец ствола заостряли для увеличения скорости передвижения. На мелководье лодка, как и плот, управлялась шестом, а на более глубоких местах гребли веслом, в которое постепенно превратилась гребная доска.

Часто лодки делали из выскобленной коры деревьев. Куски коры сшивались и связывались, а швы заливались смолой. Жители Севера делали каркас лодки из китового уса, натягивая на него шкуры животных.

Самое раннее изображение весла было обнаружено на древнеегипетской вазе, датированной III тысячелетием до н. э. Первые лодки для плавания по Нилу изготавливались из папируса. Его стебли собирали в крепкие связки, сплетавшиеся затем в толстый изогнутый мат с поднятыми концами. Их удерживал в таком положении трос из папируса.

Деревянные суда начали строить в Египте в конце IV–III тысячелетии до н. э. Они, как и папирусные суда, имели лунообразную форму с поднятыми концами, плоское днище, большую ширину и малую осадку. Для плавания по реке в воде должно было находиться не менее 40 % высоты корпуса. Сам корпус представлял собой набор коротких и толстых (до 10 см толщиной) досок из кедра, акации, сикоморы, скрепленных между собой деревянными гвоздями. Доски располагались встык и прошпаклевывались папирусом или смолой. Изнутри они поддерживались поперечными гнутыми брусьями. Снаружи корпус стягивался несколькими канатами. На верхних досках располагались лавки для гребцов.

На таких судах в качестве дополнительного движителя применялся парус. Его ставили, когда судно плыло вверх по Нилу. При плавании вниз по течению парус убирали, освобождая борта для гребцов. Весла опирались на планширь – брус, проходивший по краю бортов. На нем были укреплены колышки или ременные петли, заменявшие уключины. В зависимости от ветра и волны гребцы могли работать сидя или стоя. При максимальном темпе гребли 26 тактов в минуту они вставали почти в полный рост, при каждом толчке с силой бросаясь на сиденье.

Постепенно для постройки судов стали применять балки из длинных стволов кедровых деревьев, привозившихся из Ливана.

Это повысило прочность корпуса. Появился внутренний киль, исчез обвязывающий пояс. Весла стали вставляться в уключины.

Постепенно лидерство в судостроении перешло к финикийцам – народу, жившему в Передней Азии на территории современного Ливана. Они основали колонии по всему побережью Средиземного моря. Финикийцы строили суда с килем и обшивкой на специальном каркасе из шпангоутов. Под палубой размещались помещения для грузов.

В Древней Греции постепенно стали возникать различия между военными и торговыми судами. Военные суда имели одну мачту или несколько мачт с парусом и по 25 весел на каждом борту, которые поддерживались вынесенными балками. На торговых использовались только весла.

Существовало несколько типов весельных судов. Считается, что для увеличения скорости и маневренности еще финикийцы стали строить корабли с двумя рядами весел, расположенных друг над другом в шахматном порядке – погречески они назывались диеры. Позже греки строили триеры, расположив весла в 3 ряда по диагонали. Гребцы назывались (в порядке рядов снизу вверх): таламиты, зевгиты и траниты. Весла верхнего ряда направлялись только колками, остальные продевались через круглые или прямоугольные отверстия в бортах – скалмы. Скалмы защищались от попадания воды специальными кожаными манжетами.

Карфагенским судостроителям приписывают строительство квинквирем – судов с 5 ярусами весел.

Однако в последнее время стали высказываться сомнения в возможности постройки судов с числом ярусов весел больше одного. Не было найдено ни одного такого судна. Расчеты показывают, что постройка таких судов невозможна даже при современном уровне развития материалов и технологий. Дело в том, что с увеличением длины весел требовалось бы значительно увеличить их диаметр и, как следствие, массу настолько, что с ними не могли бы справиться и несколько гребцов. Это же касается и массы всего корабля.

Помимо того, на многоярусных судах была невозможна синхронная работа всех гребцов, что отрицательно сказалось бы на скорости и управляемости судна.

Поэтому триремы и другие подобные суда, скорее всего, назывались не по количеству ярусов, а по количеству гребцов на одно весло.

В Средние века наиболее распространенным гребным морским судном была галера. В зависимости от величины она могла быть узкой и быстроходной ординарной, называвшейся еще галеразензиль или более округлой грузовой.

Ординарная могла иметь до 30 гребных скамеек по одному борту. На одной такой скамье сидели по три гребца, каждый из которых имел свое весло, длина и вес которого увеличивалась по мере удаления гребца от борта. На этих галерах были весла трех разных размеров. Такая система называлась терцаруоло.

На грузовой галере все весла имели одинаковую длину до 12 метров и массу до 300 кг. На каждое весло приходилось по пять гребцов.

Позже были созданы галеры, на которых одно весло обслуживали 8 гребцов, а общее число гребцов достигало 240.

Палуба галеры делилась поперечными доскамимужлуками на нос, среднюю часть и корму. На них могли устанавливаться две мачты. В XV–XVII вв. в качестве гребцов на галерах стали использовать рабов или осужденных преступников. Такие галеры назывались каторгами.

В XV–XVI вв. хозяевами Средиземного моря стали пираты – мусульмане, базировавшиеся в Северной Африке. Их поддерживали турецкие единоверцы. Они грабили корабли и города Испании и Италии. Испанцы и итальянцы, в свою очередь, отвечали тем же. Долгое время в этой борьбе одерживали верх сторонники Магомета.

В 1571 г. вблизи города Лепанто в западной Греции состоялось грандиозное сражение между объединенным флотом Испании, Австрии и итальянских государств и турецким флотом под командованием Алипаши, на стороне которого выступали алжирские пираты. С каждой стороны в сражении участвовали до 250 кораблей, большинство из которых были галеры. Сражение закончилось победой европейцев. В бою погиб Алипаша.

Сражение при Лепанто стало последним в истории крупным сражением гребных флотов. Постепенно гребные суда уступили место парусным.

Сейчас гребные суда применяются в основном как спортивные, мелкие промысловые, транспортные и спасательные.

Они могут быть как с уключинами, так и без.

У шлюпок и различных лодок уключины располагаются на бортах. Шлюпки применяются на военных кораблях, гражданских морских судах. У шлюпок нет палубы. Одноместная шлюпка называется тузик и имеет длину до 3 м. Самая большая шлюпка – баркас – может иметь до 22 весел при длине до 11 м.

У академических судов уключины находятся на кронштейнах за бортом. Это наиболее совершенные гребные суда, особо легкие. Академические суда, предназначенные для гонок называются скифы. Они имеют удлиненную сигарообразную форму. Эти суда бывают парные и распашные. В парных гребец гребет двумя веслами, в распашных – одним. Этот тип судов предназначен для гребли на тихой воде.

Гондолы – прогулочные суда, распространенные главным образом в Венеции, – имеют уключину, расположенную в корме. Единственное весло применяется как для передвижения, так и для управления гондолой.

Не имеют уключин каноэ и байдарки.

Каноэ появилось у индейцев Северной Америки. Первоначально это была лодка, выдолбленная из целого ствола дерева, или каркас, обтянутый корой. Каноэ предназначалось для перевозки людей и грузов. Современные каноэ также изготавливают либо из дерева, либо каркас обтягивают непромокаемым материалом. Они имеют челночнообразную форму корпуса. Гребцы располагаются либо на дне лодки, либо на специальных банках. В спортивном каноэ гребцы стоят на одном колене. Весло для каноэ однолопастное лопатообразное. Управление каноэ производится путем поворота весла в воде и изменения его траектории в конце гребка.

Байдарки, или каяки, появились у северных народов: эскимосов, коряков и чукчей. Они состояли из деревянного каркаса, обтянутого шкурой моржа. Современные байдарки изготавливаются из дерева, металла или пластмассы и обтягиваются водонепроницаемым материалом. Гребцы сидят у самого днища байдарки, чтобы снизить центр тяжести. Сверху байдарка закрыта декой (палубой), в которой прорезаны люки для гребцов. Весла для байдарок двухлопастные, управление осуществляется рулем, который поворачивается ногами.

Лук

Лук стал первым оружием, позволявшим аккумулировать энергию мышц человека и затем мгновенно ее высвобождать, отправляя стрелу на большое расстояние. Первые луки представляли собой согнутую палку, к концам которой была привязана веревка – тетива. Применение луков позволило увеличить дистанцию, с которой можно поразить дичь на охоте. Простой лук применялся римлянами, германцами, англосаксами, африканскими и южноамериканскими племенами, обитателями островов Тихого океана.

Со временем стали изготавливать сложные луки. При их изготовлении на деревянную основу наклеивали сухожилия, а с внутренней стороны лук покрывали роговыми пластинками. Такой лук был на вооружении народов Востока, скифов, сарматов, гуннов. Его использовали в Древней Руси.

Наконечники стрелы первоначально изготавливались из кости или из твердого дерева. Позже, с развитием кузнечного искусства, их стали делать из бронзы или стали. Сначала наконечники были плоскими или листовидными, повторяющими форму кремниевых наконечников. Затем скифы изобрели более совершенный граненый наконечник, получивший распространение в Азии, а потом и в Европе.

Стрелы могли быть оперенными и неоперенными. Англичане еще в XIV в. использовали как те, так и другие. В целом, хорошая стрела, пригодная для дальней и точной стрельбы, была довольно сложным технологичным изделием, ее изготовление было достаточно трудоемким.

Постепенно лук стал применяться не только на охоте, но и на войне. Была разработана тактика, при которой лучники становились перед войсками, выстраивались в несколько рядов и выпускали стрелы в противника. Пока одни ряды вели стрельбу, другие перезаряжали луки. Стрелы пускались по навесной траектории, огибая фронтальную защиту обороняющихся. Обычно лучники начинали бой до того, как воюющие стороны сходились в рукопашном бою.

При стрельбе из лука тетиву натягивали на длину вытянутой руки, а выше плеча. Это исключало прицеливание, в том значении, как мы это понимаем. Для того чтобы научиться не просто стрелять, а попадать в цель, необходимо было регулярно и долго тренироваться с самого детства. При соблюдении этого условия к совершеннолетию лучник мог выпускать до десяти стрел в минуту на расстояние 200 шагов. Услуги таких профессиональных стрелков были очень дороги.

В Средние века хорошие стрелки, имея мощные луки, пробивали рыцарские латы на расстоянии 80–100 шагов. Так, в 1346 г. во время Столетней войны в битве при Креси английские лучники, вооруженные луками, стрелявшими на расстояние до 300 шагов, решили успех сражения.

В IX в. на основе лука был создан арбалет. Он представлял собой ложе из крепкого дерева (обычно тиса), на одном конце которого укреплялась дуга лука, сделанная из стали. Тетиву из крученого сухожилия или пенькового шнура натягивали при помощи специального устройства, вращая зубчатое колесо. Арбалет стрелял короткими железными стрелами или свинцовыми и каменными пулями (болтами) на расстояние 150 шагов.

Широкое распространение арбалет получил в XII в. С его появлением любой человек, обладавший элементарными навыками стрельбы, мог соревноваться с профессиональным лучником в меткости, даже превосходил его по поражающему действию. По некоторым данным, арбалетный болт поражал латника на расстоянии 150 метров и сбивал всадника с коня на расстоянии 200 метров.

Теперь лучники перестали быть отдельной высокооплачиваемой кастой. Их стали серьезно теснить отряды арбалетчиков. Изза своей доступности арбалет долго считался «низким» оружием, недостойным благородного рыцаря. В 1139 г.

Второй Латеранский собор запретил использование арбалетов как смертоносного оружия против христиан и разрешил применять их исключительно против неверных. Однако в 1190 г. арбалеты были приняты на вооружении в армии Ричарда I Английского и Филиппа Августа Французского. Папа Иннокентий III вспомнил о запрете собора, но это не дало особых результатов.

Началось бурное развитие арбалетов. Их расцвет пришелся на XV–XVI века. Они применялись наряду с еще несовершенным ручным огнестрельным оружием.

Вместе с улучшением самой конструкции арбалета появлялись и новые типы конструкций. В XIV в. изобрели натяжной крюк, крепившийся к поясу арбалетчика. Для натяжения нога упиралась в стремя, стрелок приседал, зацеплял тетиву за крюк и, выпрямляясь, натягивал тетиву.

В 1500 г. по приказу императора Священной Римской империи Максимилиана было разработано устройство, предотвращавшее случайный выстрел. Причиной этого стал неожиданный спуск стрелы, едва не убившей императора.

Примерно в 1530 г. в Италии появились арбалеты, которые помещались под одеждой. Несмотря на все запреты и штрафы за их ношение, они получили широкую популярность, особенно среди горожан. Позже появились модификации для стрельбы глиняными или металлическими пулями.

В конце XVI в. появились арбалеты, комбинированные с огнестрельным оружием. Но постепенно арбалет перестал использоваться в военном деле.

После снятия с вооружения арбалет долго применяли охотники, ценя его за бесшумность. Но с совершенствованием огнестрельного оружия, повышением дальности боя бесшумность отошла на второй план, и от арбалета отказались. Хотя еще в начале XX в. сибирские охотникипромысловики натягивали на звериных тропах тросики с подведенным к ним подобием арбалета.

Во второй половине XX в. арбалеты возродились вновь. С появлением новых композитных материалов, позволивших уменьшить их массу, мощное и бесшумное оружие взяли на вооружение войска специального назначения.

Старший брат арбалета – лук – применялся дольше младшего собрата. Более легкий и простой в обращении лук любили кавалеристы. Луками были вооружены башкирские кавалеристы еще во время Отечественной войны 1812 г., за что получили у наполеоновских солдат прозвище «амуры».

В XV в. в Швейцарии, на родине легендарного Вильгельма Телля, зародилась спортивная стрельба из лука. В конце XIX в. были оформлены современные правила этого вида спорта. Стрельба из лука входила в программу Олимпийских игр начиная с 1900 до 1920 года. И была включена вновь в олимпийскую программу в 1972 году.

Звенящая тетива лука натолкнула людей на создание струнных инструментов – кифары, лютни, скрипки, гитары и многих других.

Лук послужил основой для создания лучкового токарного станка – прародителя всех современных станков. В нем гибкая жердь, соединенная веревкой с педалью, на которую нажимал рабочий, служила накопителем энергии. Затем она отдавала эту энергию на вращение обрабатываемой детали, делая процесс обработки непрерывным.

Магнитофон

Попытки записи звука делались еще в XIX веке.

В 1857 г. Л. Скотт создал фоноавтограф. Принцип его действия заключался в том, что колебания звуковой диафрагмы передавались игле, и та, в свою очередь, вычерчивала на поверхности цилиндра, покрытого сажей, кривую. Фоноавтограф позволял создать видимый образ звука, но не более.

В 1877 г. Эдисон, работая над усовершенствованием телефонного аппарата, создал фонограф, позволявший осуществлять запись и воспроизведение звука.

В фонографе звуковые волны при помощи трубы подводились к мембране из тонкого стекла или слюды, соединенной с иглой – резцом. Игла вычерчивала на быстро вращающемся вале, обернутом оловянной фольгой или бумажной лентой, покрытой слоем воска, винтовую канавку переменной глубины. При воспроизведении звука двигавшаяся по канавке игла совершала механические колебания, и связанная с ней мембрана издавала звук.

Позже Эдисон усовершенствовал свое изобретение, создав специальный сплав из воска и некоторых смол. Но ему не удалось исправить всех недостатков. Валик мог вести запись в течение нескольких минут, после нескольких прослушиваний копия разрушалась, а делать с нее отпечатки было невозможно.

В 1887 г. Э. Берлинер запатентовал граммофон. Он использовал тот же принцип, что и фонограф, но игла в записывающем аппарате располагалась параллельно плоскости мембраны и чертила не бороздки, а извилистые линии. Вместо громоздкого валика использовалась круглая пластинка.

С диска, записанного по способу Берлинера, можно было получать копии. Сначала граммофонные пластинки изготавливались из целлулоида, затем из эбонита. В 1896 г. Берлинер изобрел шеллак, который стал основным материалом для производства грампластинок.

Воспроизведение звука осуществлялось при помощи слюдяной пластинки, соединенной при помощи рычага с зажимом, в который помещались сменные стальные, а затем корундные или алмазные иглы. Сначала скорость вращения пластинки составляла 90–100 об/мин, затем был принят стандарт 78 об/мин.

Граммофон и его портативный вариант патефон были распространены до 40х годов XX века. Затем им на смену пришли электрические проигрыватели и электрофоны.

Появление магнитной записи звука тесно связано с возникновением фонографа и зарождением радиоэлектроники. Через 11 лет после появления фонографа, в 1888 г., в журнале «The Electrical World» появилась статья американского инженера О. Смита, посвященная усовершенствованию конструкции фонографа Эдисона. В ней были предложены прогрессивные идеи, касающиеся записи звука. Смит изложил новый принцип записи звука – магнитный. В качестве носителя он предложил хлопчатобумажную нить, пронизанную стальными опилками. По замыслу Смита, стальные опилки должны были намагнититься возле проводов микрофонной цепи. Отдельные частички должны были запечатлеть отдельную фазу электрического волнообразного процесса.

Смит не указал способа воспроизведения магнитной фонограммы и не создал действующей конструкции аппарата для магнитной записи звука.

Через десять лет идеей магнитной записи звука увлекся датчанин В. Паульсен. В отличие от О. Смита, он попытался ее реализовать и для этого разработал конструкцию аппарата для магнитной записи звука. 1 декабря 1898 г. Паульсен запатентовал свое изобретение. Его аппарат получил название «телеграфон». Телеграфон представлял собой электромагнитный фонограф. Конструкция телеграфона действительно несколько напоминала аппарат Эдисона: такой же вращающийся цилиндр, но вместо слоя воска, была навита тонкая стальная струна диаметром 0,5 мм. В первых моделях использовалась фортепианная струна, на которую записывался звук. Цилиндр вращался с помощью часового механизма. Записывающая головка, представлявшая собой электромагнит, двигалась вдоль витков со скоростью 2,1 м/с.

Для 40минутной записи необходимо было 6000 м проволоки. Телеграфон воспроизводил записи в диапазоне частот от 150 до 2500 Гц.

Стирание записи производилось сильным постоянным магнитом. Для этого было достаточно провести им по проволоке.

На Всемирной выставке в Париже в 1900 г. В. Паульсен за конструкцию телеграфона получил Гранпри. В 1901 г. Паульсен создал новый аппарат, значительно отличавшийся от предшественника. Он имел основные черты современных магнитофонов. Запись велась на стальную ленту шириной 3 и толщиной 0,05 мм. Лента сматывалась с одной бобины, наматываясь на другую. При этом она проходила рядом с записывающей и воспроизводящей головками. Запись можно было прослушивать через телефонные трубки.

Воодушевленный успехом Паульсен решил приступить к производству магнитофонов. В 1903 г. он, совместно с американскими бизнесменами, создал Американскую телеграфонную компанию, которая стала производить диктофоны.

Вначале продукция пользовалась успехом. Но конкуренция между первыми магнитофонами и граммофонами закончилась победой последних. Несколько фирм, созданных Паульсеном, обанкротились и прекратили свое существование.

Покупатели отдавали предпочтение граммофонам, поскольку те давали более громкий звук. Усиление слабого электрического сигнала, воспроизводимого телефонным наушником, было невозможно: еще не было изобретена усилительная лампа.

Несмотря на свое несовершенство, магнитофоны продолжали применяться. Так, на международном конгрессе в Копенгагене в 1916 г. доклады записывались на магнитофон. В качестве носителя информации в нем использовался стальной провод. Для записи докладов, общей продолжительностью 14 часов, понадобилось 2500 км провода весом в 100 кг.

Некоторое время в радиовещании применялась записывающая аппаратура, использовавшая ленту из нержавеющей стали.

Поиски оптимального носителя звуков продолжались много лет. Были опробованы биметаллические звуконосители. В них на немагнитную основу из латуни или бронзы гальваническим способом наносился ферромагнитный слой. Эти ленты вышли из употребления, т. к. не обладали хорошими магнитными свойствами.

Магнитофоны имели большие габариты и вес. Так, магнитофон фирмы «Маркони» весил несколько сот килограммов. Стальная лента в нем наматывалась на бобины диаметром 0,5 м. При обрыве ее приходилось соединять электросваркой.

Интерес к магнитофону возобновился с появлением мощных усилителей на электронных лампах. В 1920х гг. магнитофон уже применялся на американском флоте для ускорения передачи и приема радиотелеграфных сообщений.

Позже магнитофоны начали изготавливать в Германии и Англии. Запись попрежнему велась на стальную ленту.

Дальнейшее развитие магнитофонов шло по пути создания новых магнитных лент, воспроизводящих, записывающих и стирающих головок; лентопротяжных механизмов.

В 1925 г. для записи звука стали использовать малогабаритные электрические микрофоны.

В том же году советский инженер И. И. Крейчман запатентовал гибкую ленту, сделанную из пластмассы и покрытую магнитным порошком. Но это изобретение осталось незамеченным.

Немец Ф. Пфлеумер, изучая патент В. Паульсена, нашел указание на то, что запись можно вести не только на провод и ленту, но и на диски, покрытые намагниченным порошком. Пфлеумер провел поиск приемлемых магнитных носителей звука. Сначала он применил вместо стальной ленты бумажную, покрытую магнитным материалом. Затем он использовал более удобные пластмассовые ленты.

В 1935 г. на радиовыставке в Берлине были продемонстрированы разработанные совместно фирмами АЕГ и БАСФ промышленные образцы магнитных пластмассовых лент. Такая лента стоила в 5 раз дешевле металлической и обладала отличными магнитными свойствами, ее можно было легко склеивать, у нее был небольшой вес. Там же был показан первый магнитофон «К1». После этого началось постепенное вытеснение металлических звуконосителей пластмассовыми.

Успехами в магнитной записи звука заинтересовалась военная разведка. Ее сотрудники хотели использовать магнитофон для записи радиоперехватов и прослушивания телефонных разговоров.

В 1938 г. немецкий инженер Е. Шюллер разработал и внедрил в производство новый тип функциональных кольцеобразных головок. Теперь на каждом этапе создания магнитной записи использовалась отдельная головка: записывающая, воспроизводящая и стирающая.

В США конструированием магнитофонов долгое время практически не занимались. Ситуация изменилась после того, как в 1940 г. инженер Кармас разработал новые покрытия для магнитофонных пленок. Они позволили снизить скорость движения пленок в магнитофоне с 76 см/с до 19 и 9,6 см/с. В СССР первый ленточный магнитофон «СМ45» был создан в 1942 г. Он работал на ферромагнитной ленте. После войны производились модели для радиовещания серии «МЭЗ» и студийные «РМС16». В 1949 г. в Киеве был выпущен первый советский бытовой магнитофон «Днепр».

Сразу после окончания Второй мировой войны Германия продолжила исследования по совершенствованию принципа магнитной записи звука. На немецком радио применялся магнитофон, работавший на пластмассовой ленте, на которую наносился слой оксида железа. Скорость движения ленты составляла 80 см/с. Это позволяло записывать звук частотой до 10 000 Гц. Лента имела толщину около 0,05 мм и ширину 5 мм.

Разрабатывались также перспективные механизмы протяжки ленты. В 1947 г. появился магнитофон, в котором механизм протяжки ленты имел три электродвигателя. Один служил для подачи ленты, другой для вращения ведущего вала с постоянной скоростью и протягивания ленты, третий – для подмотки ленты. Скорость перемещения ленты была примерно 76 см/с. Это обеспечивало воспроизведение частот в диапазоне от 32 до 9600 Гц.

В начале 50х годов появились малогабаритные бытовые магнитофоны с магнитной лентой на пластмассовой основе. Металлическая лента и провод были окончательно вытеснены.

В это время шло повышение качества воспроизведения звука. Появились двухканальные усилители с разделением частот на высокие и низкие.

В 1950–1960е годы выпускались различные магнитофонные приставки с простым лентопротяжным механизмом и упрощенным узлом записи. Для громкого прослушивания записи приставки подключались к радиоприемникам, имеющим усилители звуковой частоты.

В 1968 г. были произведены первые кассетные магнитофоны. В них магнитная лента помещалась в закрытую плоскую коробочку – кассету. Кассета вставлялась в магнитофон и приводилась в движение его лентопротяжным механизмом. Лента двигалась со скоростью 4,75 см/с. Поначалу качество записи и воспроизведения звука было низким, что было связано с медленным движением ленты и малой шириной дорожек.

Несмотря на недостатки, кассетные магнитофоны стали пользоваться популярностью. Они выгодно отличались от бобинных магнитофонов удобством обращения и небольшими размерами.

Проблему низкого качества звука в кассетном магнитофоне решил в 1969 г. американец Р. Долби. Он разработал систему, получившую его имя. Она представляла собой динамический экспандер и компрессор для определенного частотного диапазона. При записи повышался уровень высоких частот (1–2 кГц и выше). При воспроизведении уровень этих сигналов восстанавливался. Применение этой системы позволяло снизить собственные шумы лент и усилителей и устранить некоторые паразитные эффекты, например копирэффект.

Улучшению качества работы кассетных магнитофонов способствовало также создание высококачественных лент на хромоксидной и кобальтовой основах.

В 1979 году произошел очередной технологический прорыв: японская корпорация «Сони», производившая портативные магнитофоны, выпустила в продажу первый кассетный плеер «Walkman». Он позволял прослушивать запись через наушники. Для упрощения конструкции в плеере не было функции записи.

Его можно было носить в кармане или на поясе, оставляя руки свободными.

Основными деталями магнитофона являются головки стирания, записи и воспроизведения. Для упрощения в большинстве магнитофонов сейчас применяется универсальная головка, совмещающая запись и воспроизведение.

Головка представляет собой магнитный сердечник для концентрации магнитного потока и обмотки для подвода или снятия электрических сигналов. Со стороны, обращенной к ленте, сердечник имеет рабочий зазор – промежуток, заполненный немагнитным материалом, например бериллиевой бронзой. Он обеспечивает магнитную связь головки с лентой.

Ток, проходя через обмотку записывающей головки, образует вокруг сердечника магнитное поле. Поле намагничивает проходящую через него ленту. Если через обмотку проходит электрический ток, возникший вследствие воздействия звука на микрофон, то магнитное поле изменяется в зависимости от силы тока микрофона. Кроме тока записывающего сигнала магнитное поле записывающей головки образуется также током дополнительного смещения, поступающим из высокочастотного генератора. Дополнительное питание током высокой частоты называется подмагничиванием. Оно позволяет нейтрализовать искажения, производимые электрическими приборами магнитофона. Во время работы вокруг них образовывается сильное магнитное поле, оказывающее влияние на ленту и снижающее качество фонограммы. Подмагничивание повышает качество магнитной записи.

Разные участки ленты получают намагниченность различную по силе и направлению. При воспроизведении записи лента двигается вдоль воспроизводящей головки с той же скоростью, что и при записи. При этом в обмотках головки возбуждается электрический ток, изменяющийся в зависимости от силы магнитного поля ленты. Воспроизведенный при этом сигнал поступает в усилитель, а от него – к динамику.

Стирание записи производится головкой стирания, соединенной с генератором высокой частоты. Ток, который создает этот генератор, пропускается через обмотки головки. Проходя через магнитное поле стирающей головки, лента многократно перемагничивается, в результате чего переходит в размагниченное состояние.

Движение ленты обеспечивается лентопротяжным механизмом. Его основными частями являются электродвигатель, ведущий вал и прижимной ролик. Лентопротяжный механизм магнитофона также обеспечивает ускоренную перемотку ленты в обоих направлениях и ее кратковременную остановку.

Несмотря на постоянное развитие звуковоспроизводящих устройств, магнитофоны остаются популярными во всем мире.

Мельница

Мельница является первым устройством, использовавшим не мышечную энергию человека или животных, а энергию природных сил – воды и ветра.

Первыми были водяные мельницы, где происходило преобразование энергии водяного потока в энергию вращения. Это простейшее устройство состояло из основного колеса, двух цевочных колес и рабочего органа – двух жерновов: подвижного и неподвижного. Первые мельницы появились на горных речках и быстро распространились повсюду, где можно создать перепад воды.

Изобретение мельниц было встречено с восторгом: о мельницах слагали песни, поэты посвящали им оды.

В зависимости от высоты напора воды различаются три типа водяных колес: нижнебойные, среднебойные и наливные, или верхнебойные колеса. Постепенно, с развитием техники осуществлялся переход от нижнебойных колес к верхнебойным как более производительным.

Обычно мощность водяного колеса не превышала нескольких десятков киловатт, число оборотов водяного колеса было так же незначительно, примерно от 1 до 10 об/мин. В зависимости от конструкции водяного колеса коэффициент полезного действия его колебался в пределах от 0,3 до 0,75.

В XI–XII веках помол на ручных мельницах был повсеместно прекращен. Водяные мельницы в то время ставились не только на реках: на территории современного Ирака в Басре были построены мельницы в устьях каналов, питавшихся водой за счет приливов. Они приводились в движение водой, отступавшей во время прилива. В Месопотамии на Тигре действовали плавучие мельницы. Мельницы Мосула висели на железных цепях посреди реки.

Вначале основным назначением мельниц был помол зерна. Но в XII в. жернова были заменены так называемыми кулаками, предназначенными для выполнения совсем другой работы. В простейшем варианте на главном валу мельницы вместо цевочного колеса был жестко закреплен кулак, управлявший рабочим органом. В XII–XIII веках появились сукноваляльные, железо– и бумагоделательные мельницы.

Постепенно начинали применять металл для валов и других деталей колеса; увеличивался его диаметр.

Стремление повысить мощность двигателя заставляло строить гидравлические установки больших размеров. Во Франции мастер Р. Салем под руководством А. де Виля соорудил в 1682 г. крупнейшую гидросиловую установку из 13 колес, диаметр которых достигал 8 м. Колеса, установленные на реке Сене, приводили в действие 235 насосов, поднимавших воду на высоту 163 м. Эта система, снабжавшая водой фонтаны королевских парков в Версале и Марли, получила у современников название «чудо Марли».

Больших успехов в области строительства гидротехнических сооружений добился русский изобретатель К. Д. Фролов на КолываноВоскресенских рудниках Алтая. В 70х годах XVIII в. на Алтае начали разработку серебряных руд, залегавших на более глубоких горизонтах. Использовавшиеся ранее водоотливные подъемные машины, приводимые в движение вручную или конной тягой, не могли обеспечить откачку воды и подъем руды на поверхность. Для увеличения количества добываемой руды Фролов разработал проект строительства комплекса вододействующих установок. После длительной борьбы с чиновниками Горного ведомства К. Д. Фролову удалось добиться утверждения своих предложений. В течение 1783–1789 гг. он внедрил свой проект. Это было самое крупное гидротехническое сооружение XVIII века.

К. Д. Фролов построил плотину высотой 17,5 м, шириной по верху 14,5 м, в основании – 92 м, длиной 128 м, создававшую необходимый напор воды. По специальной штольне в 443 м и каналу длиной 96 м вода поступала на первое гидравлическое колесо диаметром 4,3 м, приводившее в движение пилу для распиловки древесины. Затем вода, разделялась на два потока: один шел к Преображенскому руднику, а другой по подземной выработке длиной 128 м подавался к рудоподъемному колесу Екатерининского рудника. Это колесо обеспечивало подъем руды с горизонтов 45 м, 77 м и 102 м. В течение одного часа с глубины 102 м поднимались 12 бадей весом 30 пудов каждая. Подъемная машина обслуживалась 12 рабочими.

В Афганистане ветряные мельницы впервые появились в IX в. Лопасти ветряного колеса располагались в вертикальной плоскости и были прикреплены к валу, который и приводил в действие верхний жернов. Почти одновременно с ветряными мельницами были изобретены и регулирующие устройства. Они были необходимы, поскольку крылья мельницы были связаны с жерновом практически напрямую и, следовательно, скорость его вращения очень зависела от капризов ветра. В Афганистане все мельницы и водочерпальные колеса приводились в движение господствующим северным ветром, поэтому ориентировались только по нему. На мельницах были устроены люки, которые открывались и закрывались, чтобы регулировать силу ветра.

В Европе ветряные мельницы появились в XII в., в основном в тех местах, где было недостаточно рек. По своей конструкции они отличались от водяных мельниц лишь положением движителя и главного вала.

Различают два вида ветряных мельниц. В первом при смене направления ветра поворачивается весь корпус мельницы, во втором – лишь головная часть.

Следует отметить, что ветряные мельницы, которые являются неотъемлемой частью пейзажа Голландии, предназначены не для помола зерна, а для откачки воды. Поэтому можно отметить, что изобретение, сделанное в Афганистане, помогло сохранить европейскую страну.

Метрополитен

В середине XIX в. в крупных городах мира остро встала транспортная проблема. Население некоторых городов составляло 1 млн человек и более. Основным средством передвижения был транспорт на конной тяге. Кареты и омнибусы не справлялись с возросшим объемом перевозок. Улицы городов, построенные еще в XVI–XVIII вв., были узкими и не позволяли осуществлять оживленное движение.

Единственным выходом из данной ситуации было строительство дорог под улицами городов. Строительство первого метрополитена началось в Лондоне. Оно стало возможным благодаря изобретенному в 1814 г. английским инженером М. Брюнелем туннелепроходческому щиту. Образцом для его создания послужил морской моллюскдревоточец, пробуривавший отверстия в затонувших кораблях при помощи раковины.

В 1818 г. Брюнель получил патент на изобретение, представлявшее собой механическую копию древоточца, предназначенного для бурения туннелей. В дальнейшем по образцу этого изобретения были построены механизированные проходческие щиты.

В 1846 г. Ч. Пирсон создал свой проект подземной железной дороги и представил его Королевской комиссии по делам столичных железных дорог. Для его осуществления в 1853 г. создается компания North Metropolitan Railway. Именно она дала название новому виду транспорта. Слово «метрополитен» в переводе означает «столичный».

Строительство метрополитена началось в 1860 г. 10 января 1863 г. состоялось открытие первой линии лондонской подземки. Она соединяла станции ФаррингдонСтрит и Паддингтон, между которыми находилось 5 промежуточных станций. Ее длина составляла 3,6 км. Общее время поездки – 33 минуты. Составы двигались при помощи паровозов. В вагонах было газовое освещение. 6 составов, состоящих из 4 вагонов, двигались с интервалом 15 минут. В первый день работы было перевезено 30 000 пассажиров.

Несмотря на то что поездка в метро проходила в туннелях, заполненных паровозным дымом, новый вид транспорта оправдал возложенные на него ожидания. В 1863 г. было принято решение о строительстве кольцевой линии лондонского метрополитена протяженностью 30 км. Она была открыта в 1884 г., на одной станции соединялась с первой линией.

В 1868 г. в НьюЙорке была пущена первая линия надземной железной дороги, расположенной на металлических эстакадах. Сначала использовалась канатная тяга. В 1871 г. ее заменили на паровую, а в 1890 г. – на электрическую.

В 1890 г. первая электрифицированная линия появилась и Лондоне. Оплата поездки не зависела от дальности и равнялась двум пенсам.

В 1896 г. первая линия метрополитена была запущена в Будапеште. Открытие парижского метрополитена было приурочено к началу промышленной выставки 1900 г. Впоследствии метрополитены появились в Мадриде, Афинах, БуэносАйресе, Токио и других городах. Нередко в одном и том же городе проектирование, строительство и эксплуатацию отдельных линий вели разные фирмы. Поэтому метро не представляло единой сети. Различные линии отличались шириной колеи и напряжением в электрической контактной сети.

Первые проекты московского метрополитена появились еще до Октябрьской революции, но они не были осуществлены изза недостатка средств. В 1931 г. пленум ЦК ВКП (б) принял решение о начале его строительства. Для этого была создана организация «Метрострой». В 1932 г. началось строительство, в 1935 г. были пущены первые линии общей протяженностью 11,6 км с 13 станциями. Строительство московского метро не прекращалось даже в годы Великой Отечественной войны.

В 1960 г. была пущена первая линия Киевского метро. В Украине, кроме киевского, метрополитен есть еще в Харькове и Днепропетровске.

В современных городах на долю метрополитена приходится значительная часть пассажирских перевозок, превышающая долю остальных видов городского транспорта.

Кроме подземных и надземных линий существуют наземные линии метро, построенные в районах с небольшой плотностью застройки. На отдельных линиях метрополитена в Париже, Монреале, Мехико и Саппоро (Япония) построена специальная колея с бетонными дорожками для поездов на пневматических шинах.

Сети метрополитена могут быть: с независимым движением поездов по отдельным линиям (как в Советском Союзе), с переходом части поездов с одной линии на другую (Лондон, НьюЙорк) и комбинированные. Расстояние между станциями может составлять 500–800 м (Берлин, Мадрид, Милан и др.) или 1–2 км в городах бывшего СССР. Кроме того, в ряде городов мира (НьюЙорк, Париж, СанФранциско) есть линии скоростного метрополитена, где станции располагаются на расстоянии 3–6 км. Они соединяются переходами со станциями обычного метро.

Современные линии метрополитена проектируются и строятся с учетом расположения жилых районов и предприятий, созданием взаимосвязи с другими видами городского, пригородного и междугородного транспорта. На расположение туннелей метрополитена оказывают влияние инженерногеологические условия данной местности. В зависимости от этого, а также от плотности застройки данного района, наличия подземных коммуникаций, бывают туннели мелкого (10–15 м) и глубокого (30–50 м) заложения.

Станции метро, расположенные на большой глубине, оборудованы эскалаторами для спуска и подъема пассажиров. Иногда вместо них применяются подъемники лифтового типа.

Строительство линии метрополитена начинается с геодезическомаркшейдерских работ. В зависимости от глубины залегания и условий строительства применяют открытый и закрытый методы строительства.

Открытый метод применяется при сооружении туннелей мелкого заложения. При этом осуществляется вскрытие поверхности улицы, и туннельные конструкции возводятся в котловане. Движение наземного транспорта либо отводится в сторону, либо проходит по временному мосту через котлован. Подземные сооружения перекладываются или подвешиваются к крепям. Здания, расположенные в зоне строительства, укрепляют. Для перекрытия туннелей применяются стоечнобалочные или сводчатые конструкции, рассчитанные на нагрузки от массы земли и движущегося по поверхности наземного транспорта. Стыки между бетонными звеньями туннеля изолируют и герметизируют, после чего туннели засыпают землей.

Закрытым методом могут сооружаться туннели как глубокого, так и мелкого заложения. Их сооружение начинается со строительства вертикальной шахты, идущей с поверхности земли до нужной глубины. В ней устанавливаются лифтыподъемники, применяющиеся для поднятия наверх выбранной породы и спуска необходимого оборудования и материалов. При достижении требуемой глубины от шахты в нужном направлении начинают прокладывать транспортный туннель. Его строительство ведется при помощи проходческого щита – металлического цилиндра, диаметр которого равен диаметру будущего туннеля. В головной части щита находится кольцевой нож из литой стали. Его продвижение вперед осуществляется при помощи гидравлических домкратовтолкателей. Твердые породы предварительно разрыхляются врубовыми машинами, отбойными молотками или взрывами. В хвостовой части проходческого щита монтируются тюбинги – металлические или железобетонные цилиндрические звенья, свинчивающиеся вместе. Они принимают на себя давление горных пород и предохраняют туннели от обвалов.

Если туннели проходят через водоносные слои, строители применяют специальные методы. Это применение кессонов – специальных камер, в которые для предотвращения поступления воды нагнетают сжатый воздух, замораживание грунтов с последующим бетонированием, водопонижение, химическое закрепление грунтов.

После установки тюбингов начинается прокладка железнодорожных путей, состоящих из двух ходовых и одного контактного рельса, монтаж вентиляционной системы, автоматических устройств сигнализации. На последнем этапе происходит благоустройство вестибюлей станций и отладка всех систем метрополитена.

Метрополитен помог разрешить кризис, связанный с увеличением пассажирских перевозок в больших городах. Сейчас их трудно представить без сияющих букв M или S.

Микроскоп

Глаз человека устроен так, что не может разглядеть предмет, размеры которого не превышают 0,1 мм. В природе же существуют объекты, чьи размеры намного меньше. Это микроорганизмы, клетки живых тканей, элементы структуры веществ и многое другое.

Еще в античные времена для улучшения зрения применялись шлифованные природные кристаллы. С развитием стеклоделия стали изготовлять стеклянные чечевицы – линзы. Р. Бекон в XIII в. советовал людям со слабым зрением класть на предметы выпуклые стекла для того, чтобы их лучше рассмотреть. В это же время в Италии появились очки, состоявшие из двух соединенных линз.

В XVI в. мастера в Италии и Нидерландах, изготовлявшие очковые стекла, знали о свойстве системы из двух линз давать увеличенное изображение. Одно из первых таких устройств изготовил в 1590 г. голландец 3. Янсен.

Несмотря на то что увеличительная способность сферических поверхностей и линз была известна еще в XIII в., до начала XVII в. никто из естествоиспытателей даже не пытался применить их для наблюдения мельчайших предметов, недоступных невооруженному человеческому глазу.

Слово «микроскоп», произошедшее от двух греческих слов – «маленький» и «смотрю», ввел в научный обиход член академии «Dei Lyncei» (рысеглазых) Десмикиан в начале XVII века.

В 1609 г. Галилео Галилей, изучая сконструированную им зрительную трубу, использовал ее и в качестве микроскопа. Для этого он изменял расстояние между объективом и окуляром. Галилей первым пришел к выводу, что качество изготовления линз для очков и для зрительных труб должно быть различным. Он создал микроскоп, подбирая такое расстояние между линзами, при котором увеличивались не удаленные, а близко расположенные предметы. В 1614 г. Галилей рассматривал при помощи микроскопа насекомых.

Ученик Галилея Э. Торричелли перенял у своего учителя искусство шлифовки линз. Кроме изготовления зрительных труб Торричелли конструировал простые микроскопы, состоявшие из одной крошечной линзы, которую он получал из одной капли стекла, расплавляя над огнем стеклянную палочку.

В XVII в. были популярны простейшие микроскопы, состоявшие из лупы – двояковыпуклой линзы, закрепленной на подставке. На подставке укреплялся и предметный столик, на котором размещался рассматриваемый объект. Внизу под столиком находилось зеркало плоской или выпуклой формы, которое отражало солнечные лучи на предмет и подсвечивало его снизу. Для улучшения изображения лупа перемещалась относительно предметного столика при помощи винта.

В 1665 г. англичанин Р. Гук при помощи микроскопа, в котором использовались маленькие стеклянные шарики, открыл клеточное строение животных и растительных тканей.

Современник Гука голландец А. ван Левенгук изготовлял микроскопы, состоявшие из небольших двояковыпуклых линз. Они давали 150–300кратное увеличение. При помощи своих микроскопов Левенгук исследовал строение живых организмов. В частности, он открыл движение крови в кровеносных сосудах и красные кровяные тельца, сперматозоиды, описал строение мышц, чешуйки кожи и многое другое.

Левенгук открыл новый мир – мир микроорганизмов. Он описал множество видов инфузорий и бактерий.

Много открытий в области микроскопической анатомии сделал голландский биолог Я. Сваммердам. Наиболее подробно он исследовал анатомию насекомых. В 30е гг. XVIII в. он выпустил богато иллюстрированный труд под названием «Библия природы».

Методы расчета оптических узлов микроскопа разработал швейцарец Л. Эйлер, работавший в России.

Наиболее распространенная схема микроскопа следующая: исследуемый предмет помещается на предметном столике. Над ним располагается устройство, в котором смонтированы линзы объектива и тубус – трубка с окуляром. Наблюдаемый предмет освещается с помощью лампы или солнечного света, наклонного зеркала и линзы. Диафрагмы, установленные между источником света и предметом, ограничивают световой поток и уменьшают в нем долю рассеянного света. Между диафрагмами установлено зеркало, изменяющее направление светового потока на 90°. Конденсор концентрирует на предмете пучок света. Объектив собирает лучи, рассеянные предметом и образует увеличенное изображение предмета, рассматриваемое при помощи окуляра. Окуляр работает как лупа, давая дополнительное увеличение. Пределы увеличения микроскопа от 44 до 1500 раз.

В 1827 г. Дж. Амичи применил в микроскопе иммерсионный объектив. В нем пространство между предметом и объективом заполнено иммерсионной жидкостью. В качестве такой жидкости применяются различные масла (кедровое или минеральное), вода или водный раствор глицерина и др. Такие объективы позволяют увеличить разрешающую способность микроскопа, улучшить контрастность изображения.

В 1850 г. английский оптик Г. Сорби создал первый микроскоп для наблюдения объектов в поляризованном свете. Такие аппараты применяются для изучения кристаллов, образцов металлов, животных и растительных тканей.

Начало интерференционной микроскопии было положено в 1893 г. англичанином Дж. Сирксом. Ее суть в том, что каждый луч, входя в микроскоп, раздваивается. Один из полученных лучей направляется на наблюдаемую частицу, второй – мимо нее. В окулярной части оба луча вновь соединяются, и между ними возникает интерференция. Интерференционная микроскопия позволяет изучать живые ткани и клетки.

В XX в. появились различные виды микроскопов, имеющие разное назначение, конструкцию, позволяющие изучать объекты в широких диапазонах спектра.

Так, в инвертированных микроскопах объектив располагается под наблюдаемым объектом, а конденсор – сверху. Направление хода лучей изменяется при помощи системы зеркал, и в глаз наблюдателя они попадают, как обычно – снизу вверх. Эти микроскопы предназначены для изучения громоздких предметов, которые трудно расположить на предметных столиках обычных микроскопов. С их помощью исследуют культуры тканей, химические реакции, определяют точки плавления материалов. Наиболее широко такие микроскопы применяются в металлографии для наблюдения за поверхностями металлов, сплавов и минералов. Инвертированные микроскопы могут оснащаться специальными устройствами для микрофотографирования и микрокиносъемки.

На люминесцентных микроскопах устанавливаются сменные светофильтры, позволяющие выделить в излучении осветителя ту часть спектра, которая вызывает люминесценцию исследуемого объекта. Специальные фильтры пропускают от объекта только свет люминесценции. Источниками света в таких микроскопах служат ртутные лампы сверхвысокого давления, излучающие ультрафиолетовые лучи и лучи коротковолнового диапазона видимого спектра.

Ультрафиолетовые и инфракрасные микроскопы служат для исследования областей спектра, недоступного человеческому глазу. Оптические схемы аналогичны схемам обычных микроскопов. Линзы этих микроскопов изготовлены из материалов, прозрачных для ультрафиолетовых (кварц, флюорит) и инфракрасных (кремний, германий) лучей. Они снабжены фотокамерами, фиксирующими невидимое изображение и электроннооптическими преобразователями, превращающими невидимое изображение в видимое.

Стереомикроскоп обеспечивает объемное изображение объекта. Это собственно два микроскопа, выполненные в единой конструкции таким образом, что правый и левый глаза наблюдают объект под разными углами. Они нашли применение в микрохирургии и сборке миниатюрных устройств.

Микроскопы сравнения представляют собой два обычных объединенных микроскопа с единой окулярной системой. В такие микроскопы можно наблюдать сразу два объекта, сравнивая их визуальные характеристики.

В телевизионных микроскопах изображение препарата преобразуется в электрические сигналы, воспроизводящие это изображение на экране электроннолучевой трубки. В этих микроскопах можно изменять яркость и контраст изображения. С их помощью можно изучать на безопасном расстоянии объекты, опасные для рассмотрения с близкого расстояния, например радиоактивные вещества.

Лучшие оптические микроскопы позволяют увеличить наблюдаемые объекты примерно в 2000 раз. Дальнейшее увеличение невозможно, поскольку свет огибает освещаемый объект, и если его размеры меньше, чем длина волны, такой объект становится невидимым. Минимальный размер предмета, который можно разглядеть в оптический микроскоп – 0,2–0,3 микрометра.

В 1834 г. У. Гамильтон установил, что существует аналогия между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Возможность создания электронного микроскопа появилась в 1924 г. после того, как Л. Де Бройль выдвинул гипотезу, что всем без исключения видам материи – электронам, протонам, атомам и др. присущ корпускулярноволновой дуализм, то есть они обладают свойствами как частицы, так и волны. Технические предпосылки для создания такого микроскопа появились благодаря исследованиям немецкого физика X. Буша. Он исследовал фокусирующие свойства осесимметричных полей и в 1928 г. разработал магнитную электронную линзу.

В 1928 г. М. Кнолль и М. Руска приступили к созданию первого магнитного просвечивающего микроскопа. Три года спустя они получили изображение объекта, сформированного при помощи пучков электронов. В 1938 г. М. фон Арденне в Германии и в 1942 г. В. К. Зворыкин в США построили первые растровые электронные микроскопы, работающие по принципу сканирования. В них тонкий электронный пучок (зонд) последовательно перемещался по объекту от точки к точке.

В электронном микроскопе, в отличие от оптического, вместо световых лучей используются электроны, а вместо стеклянных линз – электромагнитные катушки или электронные линзы. Источником электронов для освещения объекта является электронная «пушка». В ней источником электронов является металлический катод. Затем электроны собираются в пучок с помощью фокусирующего электрода и под действием сильного электрического поля, действующего между катодом и анодом, набирают энергию. Для создания поля к электродам прикладывается напряжение до 100 киловольт и более. Напряжение регулируется ступенеобразно и отличается большой стабильностью – за 1–3 минуты оно изменяется не более чем на 1–2 миллионные доли от исходного значения.

Выходя из электронной «пушки», пучок электронов с помощью конденсорной линзы направляется на объект, рассеивается на нем и фокусируется объектной линзой, которая создает промежуточное изображение объекта. Проекционная линза вновь собирает электроны и создает второе, еще более увеличенное изображение на люминесцентном экране. На нем под действием ударяющихся в него электронов возникает светящаяся картина объекта. Если поместить под экраном фотопластинку, то можно сфотографировать это изображение.

Все вышеперечисленные узлы электронного микроскопа объединяются в общую конструкцию – колонну. Внутри колонны на всем пути электронов поддерживается вакуум с давлением до 107 Па. Это необходимо для того, чтобы электроны не рассеивались на постороннем веществе – атомах и молекулах газа – во избежание искажения изображения. В основании микроскопа размещаются стабильные источники электрического тока. Здесь же размещается пульт управления микроскопом.

Полное увеличение электронного микроскопа равняется произведению увеличений объективной и проекционной линз. Наблюдаемый объект увеличивается в 20 000–40 000 раз. Электронные микроскопы позволяют получать изображение объектов размером до 2–3·108 м.

Музыкальные инструменты

Музыка является важнейшей частью человеческой культуры. Она сопровождает человека от рождения и до смерти.

Наиболее ранними считаются ударные инструменты. Они возникли у первобытных народов, сопровождавших свои пляски ударами камней или кусков дерева друг о друга. Подобным образом происходит извлечение звуков у современных кастаньет, которые напоминают по форме раковины и соединяются попарно шнурками или деревянными рукоятками. Первые кастаньеты изготавливались из каштана, отсюда и название. Сейчас кастаньеты изготавливаются из твердых пород дерева: черного, самшита, кокосовой пальмы.

Было замечено, что звук можно сделать более гулким и сильным, натянув кожу на полый деревянный или глиняный предмет. Так появились предки современных барабанов и литавр.

Современный барабан представляет собой полый корпус или раму, на которые с одного или обеих сторон натянута кожа. Звук извлекается ударом по мембране или трением. В современных оркестрах применяют большой и малый барабаны. На большом играют колотушкой с мягким наконечником. Малый имеет более низкий корпус, поверх нижней мембраны натянуты струны, делающие звук сухим и трескучим. На нем играют двумя деревянными палочками с утолщениями на концах.

Первые литавры представляли собой полый сосуд, отверстие которого затянуто кожей. Они были распространены в Индии, Африке, у славянских народов. От них произошли современные литавры, ставшие еще в XVII в. первыми ударными инструментами в оркестре. Сейчас литавры представляют собой большие медные котлы, верх которых затянут кожей. Высоту звука можно регулировать, изменяя натяжение кожи при помощи винтов. На литаврах играют палочками, обтянутыми войлоком.

Бубен представляет собой обруч с погремушками, с одной стороны на него натянута кожа, с другой могут быть прикреплены струны с бубенчиками. На нем играют, потряхивая или ударяя по коже и обручу.

Одним из самых древних инструментов являются тарелки. Это плоские металлические пластинки, звук из которых извлекаются ударом друг о друга, палочкой от барабана, металлической метелкой.

Треугольник сделан из стального прута. Он подвешивается к пульту, и по нему ударяют металлической палочкой.

Если вышеперечисленные ударные инструменты обычно имеют одну высоту звука, то ксилофоны и колокольчики могут издавать различный по высоте звук. Ксилофон представляет собой набор деревянных брусков. На них играют при помощи деревянных палочек. Ксилофон издает сухой звонкий щелкающий звук. Его диапазон – от «до» первой до «до» четвертой октавы.

Колокольчики – набор металлических пластин разной формы, закрепленных на деревянных брусках. На них можно играть палочками или молоточками. Иногда в них используется клавиатура.

Струнные инструменты произошли от охотничьего лука. Постепенно к одной струнететиве стали добавлять другие разной длины и толщины, натягивавшиеся с различной силой. Это позволяло извлекать звуки разной высоты.

Примером такого музыкального инструмента является лира, которая была известна еще в Древнем Египте и Греции. Она состояла из фигурной изогнутой рамы, скрепленной сверху перекладиной, к которой тянулись струны. Лиру держали левой рукой, в правой держали плектр, которым извлекались звуки. Родственным лире инструментом была кифара.

Современным представителем этой линии струнных инструментов является арфа. Она появилась еще в древности, была популярна в Древнем Египте, Финикии, Греции, Риме. В Средние века она получила огромное распространение в Европе. Под аккомпанемент переносной арфы исполняли свои сказания ирландские сказители. Неслучайно ее изображение вошло в герб Ирландии.

Постепенно арфа стала инструментом аристократов. Ее богато украшали. Играли на ней, как правило, женщины. Сейчас арфа используется как солирующий инструмент и как один из инструментов в оркестре. Она имеет 45–47 струн, натянутых на треугольную металлическую раму. Укорачивая струны при помощи 7 педалей, на арфе можно извлечь все звуки от «ре» контроктавы до «фа» четвертой октавы.

Позже было замечено, что струны, натянутые на полый ящик, издают более красивый звук. Ящики стали делать различной формы, применяя разные способы крепления к нему струн. Так возникли инструменты, каждый из которых имел свой неповторимый тембр. Эти инструменты издавали короткий звук. Затем для получения протяжного звука стали использовать смычок – палочку с натянутым на нее пучком конского волоса, которым вели по струне. Звучание струны длилось, пока по ней водили смычком.

Первым музыкальным инструментом с ящикомрезонатором был ныне забытый монохорд, что в переводе с древнегреческого означает «однострун». Его создал Пифагор для опытов со струнами. Это был не музыкальный инструмент, а прибор. Монохорд имел простую конструкцию: вдоль длинной коробки была натянута струна, под которой была подвижная подставка. Пифагор, проводя опыты, двигал подставку, останавливая ее под струнами в разных местах. Струна при этом как бы делилась на две части – равные или неравные. Если подставка стояла точно посередине, то части получались одинаковые и звучали одинаково. А если подставка сдвигалась, то отрезки струны получались разные и звучали – один выше, а другой ниже.

Позже появились полихорды, имевшие несколько струн. Различные способы извлечения звуков дали начало различным струнным инструментам.

Одним из наиболее распространенных раньше струнных щипковых инструментов была лютня. Она появилась еще в античности, затем была очень популярна у арабов, благодаря которым она и попала в средневековую Европу.

Лютня состояла из большого полукруглого корпуса и широкого грифа с колками для натяжения струн. Нижняя дека – выпуклая часть корпуса – для красоты украшалась кусочками черного дерева или слоновой кости. В центре верхней деки был вырез в виде звезды или розы. Некоторые большие лютни – архилютни – имели три таких выреза. Количество струн у лютни было в пределах от 6 до 16. Все они, кроме двух самых высоких, были удвоенными в унисон или октаву.

Играли на лютне сидя, положив ее на левое колено. Правой рукой защипывали струны, одновременно фиксируя их на грифе левой рукой, удлиняя их или укорачивая.

Лютня использовалась как сольный инструмент и для сопровождения. Лютни больших размеров звучали в ансамблях и оркестрах.

Еще одним распространенным щипковым инструментом является гитара.

Ее история уходит в глубокую древность. На египетских памятниках встречаются изображения музыкального инструмента, наблы, внешним видом напоминающего гитару. С течением времени этот инструмент эволюционировал и видоизменялся. В XIII в. существовало два вида гитар: мавританская и латинская гитары. Мавританская имела овальную форму, и играли на ней преимущественно плектром, что придавало ее звучанию резкость. Латинская гитара имела более сложную форму. Мягкое звучание сделало ее популярной у любителей утонченной музыки. Именно латинская гитара стала близкой предшественницей современной классической гитары.

В XVI в. широкое распространение получил инструмент, по внешнему виду и приемам игры близкий к гитаре – виуэла. Она обладала более узким и выпуклым корпусом и была популярной в высших слоях испанского общества. На виуэлах аккомпанировали пению, играли соло и дуэтом, исполняли вариации, фантазии, танцы, пьесы.

Вплоть до середины XVIII в. гитара сохраняла свои первоначальные черты. Она имела 9 струн, составлявших 5 рядов. С 1770 г. европейские мастера постепенно изменяли этот инструмент. Появились гитары с одинарными струнами, строй стал фиксированным и сохранился вплоть до нашего времени.

Испания не сразу приняла эти новшества. Там мастера стали создавать инструменты с шестью двойными струнами. Затем самобытное испанское направление влилось в русло европейской традиции. Форму современной классической гитары создал испанский мастер Торрес, живший в середине XIX века.

В Испании была наиболее распространена шестиструнная гитара, которая стала и сольным инструментом. В России большей популярностью пользовалась семиструнная гитара, наиболее удобная для вокального аккомпанемента.

Еще одна разновидность гитары – гавайская – имеет 6 струн, под которыми натянута кожа. На ней играют плектром. Гавайская гитара имеет мягкий тянущийся звук.

Развитие смычковых струнных инструментов привело к появлению целого семейства виол. В зависимости от размера различали дискантовую, альтовую, теноровую, большую басовую, контрабасовую виолы. С увеличением размера понижалась высота звука, издаваемого виолами. Он отличался нежностью, мягким матовым тембром, но слабой силой. Все виолы имели корпус с ярко выраженной «талией» и покатыми «плечами». При игре их держали вертикально на коленях или между коленями.

В конце XV в. появилась скрипка. Она обладала более сильным звуком и большими исполнительскими возможностями, чем ее предшественницы, и вскоре вытеснила их. В конце XVI в. наиболее известные скрипичные мастера жили в итальянском городе Кремона. Они принадлежали к семействам Амати, Страдивари и Гварнери. Качество их инструментов до сих пор не превзойдено.

Корпус скрипки плавно заокруглен и имеет тонкую «талию». На верхней деке находятся вырезы, имеющие форму латинской буквы f – эфы. На звук скрипки влияют размер корпуса, его форма и даже лак, которым он покрыт. К корпусу прикреплен гриф, заканчивающийся завитком. Перед завитком в желобке находятся отверстия, в которые вставлены колки. Они натягивают струны, которые с другой стороны плотно закреплены у подгрифка. В середине корпуса между эфами закреплена подставка, через которую проходят 4 струны. Они настроены на ноты «ми», «ля», «ре» и «соль».

Диапазон скрипки находится в пределах от «соль» малой до «соль» четвертой октавы. Скрипач изменяет высоту звука, прижимая пальцами левой руки струну к грифу. Для удобства игры он кладет скрипку на левое плечо, придерживая ее подбородком. Звук извлекается при помощи смычка, находящегося в правой руке музыканта.

Смычок состоит из трости или древка, на нижнем конце которого закреплена колодочка. Она служит для натягивания волоса.

Скрипка звучит до тех пор, пока смычок скользит по струне. Это позволяет исполнять на скрипке длинные плавные мелодии. Одновременно можно играть только на двух струнах скрипки, поскольку струны расположены на полукруглой подставке. Для того чтобы взять аккорд одновременно на трех или четырех струнах, применяют прием арпеджиато, беря звуки один за другим, скользя по струнам смычком. Кроме этого иногда защипывают струны скрипки пальцами. Такой прием называется пиццикато.

Кроме скрипки смычковыми инструментами являются альт, виолончель и контрабас. Они отличаются лишь размерами, а форму, в основном, унаследовали от виолы. Во время игры альт держат горизонтально, а виолончель и контрабас – вертикально, упирая в пол специальной подставкой. Самым низким звуком среди смычковых обладает контрабас. Он может брать «ми» контроктавы.

В Средние века появились струнные инструменты, в которых звук извлекался при помощи клавиш.

Первым таким инструментом был клавикорд, появившийся в XII в. Он представлял собой прямоугольный ящик, на одной стороне которого размещалась клавиатура. Играющий нажимал на клавиши, приводившие в движение металлические пластинки – тангеты. Те, в свою очередь, касались струн, которые при прикосновении начинали звучать.

Другой струнный клавишный инструмент – клавесин – был изобретен в Италии в XV в. В нем при нажатии на клавишу двигались деревянные рычажки, на конце одного из которых был укреплен черенок вороньего пера. Перо зацепляло струну, и раздавался звук. Такой механизм был присоединен к каждой струне. Струны клавесина располагались параллельно клавишам, а не перпендикулярно, как у клавикорда. Его звучание было суховатым, стеклянным. Главный недостаток клавесина заключался в том, что сила звука у него всегда оставалась одинаковой и не зависела от силы удара по клавише.

Поворотным моментом в истории европейской культуры стало изобретение в начале XVIII в. фортепиано. Оно полностью изменило характер музыкальной культуры западной цивилизации.

На рубеже XVII–XVIII вв. появилась потребность в новом клавишном инструменте, не уступавшему по выразительности скрипке.

В 1709 г. итальянец Б. Кристофори, смотритель музыкального музея семейства Медичи, изобрел первое фортепиано. Он назвал его «gravicembalo col piano е forte», что означает «клавишный инструмент, играющий нежно и громко». Затем название сократилось до «фортепиано». На первый взгляд он мало чем отличался от клавесина. Но в этом инструменте было одно новшество. Кристофори так изменил механику, что от силы удара по клавише зависела и сила звука. Фортепиано Кристофори состояло из клавиши, войлочного молоточка и специального возвращателя. У него не было ни демпферов, ни педалей. Удар по клавише заставлял молоток ударять по струне, вызывая ее вибрацию, совсем не похожую на вибрацию струн у клавесина или клавикорда. Возвращатель позволял молоточку идти назад, а не оставаться прижатым к струне, что заглушало бы вибрацию струны. Позднее был изобретена двойная репетиция, позволившая молоточку опускаться наполовину, что очень помогало в исполнении трелей и быстро повторяющихся нот. Рама у фортепиано Кристофори была деревянной.

Самое замечательное в фортепиано – это способность резонировать и динамический диапазон. Деревянный корпус и стальная рама, изобретенная в XIX в., позволяют инструменту достигать почти колокольного звучания на форте.

Другое отличие фортепиано от его предшественников – это способность звучать не только тихо и громко, но и менять силу звука внезапно или постепенно.

Славу одного из самых совершенных музыкальных инструментов рояль завоевал далеко не сразу. Его соперником долго оставался клавесин, давно получивший признание. Композиторы создали множество прекрасных сочинений для клавесина. К его изящному звучанию уже был приучен и слух музыкантов, и слух публики. А удары молоточка по струнам фортепиано казались непривычными и грубоватыми.

Для того чтобы перестроить слух музыкантов и любителей музыки с клавесинного звучания на фортепианное, понадобилось около ста лет.

В XIX в. сложились два основных вида фортепиано: горизонтальный – рояль с корпусом в виде крыла и вертикальный – пианино. Рояль стал концертным инструментом и применяется там, где нужна полная громкость. Пианино ставят там, где большой рояль не поместится и можно обойтись меньшей силой звука.

Третий вид музыкальных инструментов – духовые – ведут свое происхождение от раковин, рога, тростника. Звук возникает в них благодаря колебанию воздуха в полой трубке. Первыми духовыми инструментами были зурна, дудка, свирель, рожок, флейта.

Современные духовые инструменты делятся на деревянные и медные. Они могут быть прямыми и сравнительно короткими, другие – длинные и «свернутые» для удобства. И форма инструмента, и материал, из которого он сделан, определяют его тембр. В отличие от клавишных и струнных, духовые инструменты одноголосны.

К деревянным духовым инструментам относятся флейта, гобой, кларнет, фагот. Они делятся на флейтовые (все виды флейт) и язычковые.

Флейта возникла из тростниковой дудки с отверстиями. Сначала она была продольной, и ее держали вертикально. Позже появилась поперечная флейта, которую держат горизонтально. Этот вид флейты, усовершенствованный немцем Т. Бемом, постепенно вытеснил продольную. Диапазон флейты: от «до» первой до «до» четвертой октавы. Нижний регистр глуховатый и мягкий, средний и часть верхнего имеют нежный и певучий тембр, самые высокие звуки – пронзительные и свистящие.

Предшественниками медных духовых инструментов были сигнальные трубы, применявшиеся в бою, на охоте, во время торжественных церемоний. Валторна, труба, туба, тромбон, корнет издают резкие, сильные звуки. Наиболее низкий звук имеет туба. Появление в начале XIX в. вентильной механики расширило возможности медных духовых инструментов, позволило воспроизводить на них любую музыку.

Новую разновидность деревянных духовых инструментов создал в 1842 г. бельгиец А. Сакс. Этот инструмент он назвал саксофоном. Саксофон, названный так по имени изобретателя, представляет собой духовой инструмент, снабженный девятнадцатью клапанами. На нем играют не как на других медных мундштучных инструментах, а с помощью мундштука, подобного мундштуку баскларнета. Саксофон делается из серебра или особого сплава, но относится к деревянным инструментам.

Самым большим музыкальным инструментом является орган. Это духовой инструмент, на котором играют при помощи клавишей. Он обязан своим происхождением флейте Пана – нескольким тростниковым дудочкам разной длины, связанным вместе. Позже воздух стали нагнетать при помощи мехов. Затем для этого стали применять водяной пресс. Трубы стали делать сначала из дерева, а затем из металла. Над клавиатурой органа находятся регистровые ручки. Каждой клавише соответствуют несколько десятков или сотен труб, издающих звук одной высоты, но разного тембра. Переключая регистровые ручки, можно изменять звук органа, делая его похожим на звуки различных инструментов.

Органы долгое время устанавливали в католических соборах. Лучшие органисты, например И.С. Бах, служили в церкви. Позднее органы стали размещать в специальных органных залах.

В XX в. появились электронные музыкальные инструменты. Первый из них – терменвокс – был изобретен в 1920 г. советским инженером Л. Терменом. В нем звук создавался при помощи электронного генератора звуковых частот, усиленных усилителем и преобразованных громкоговорителем. Высота и сила звука изменялись при помощи вертикального металлического стержня, скрепленного с металлической дугой. Исполнитель управлял инструментом, изменяя положение ладоней: одной – вблизи стержня менялась высота звука, другой – вблизи дуги – громкость. Тембр звука определялся режимом работы генератора.

Электрические инструменты делятся на собственно электроинструменты и адаптированные, т. е. обычные инструменты, снабженные усилителем звука (например электрогитара).

Наркоз

Слово «наркоз» произошло от греческого слова, означающего «оцепенение», «онемение».

Наркоз необходим для блокирования болевых сигналов, идущих от пораженных органов в мозг. Слишком мощный сигнал может насколько перевозбудить один участок мозга, что разладится работа остальных. В результате может произойти остановка сердца или дыхания.

Наркоз ведет свою историю от обезболивания, применявшегося при хирургических операциях в Ассирии, Египте, Индии, Китае и других странах Древнего мира. Первые обезболивающие вещества изготавливались из растений и применялись в виде настоев, отваров и «сонных губок», пропитанных соком белены, конопли, опия, цикуты. Губку смачивали в настойке или поджигали, в результате чего образовывались пары, усыплявшие больных. Кроме того, обезболивание вызывали, сдавливая сосуды шеи и конечностей, выпуская большое количество крови, давая пациенту вино или спирт, применяя холод.

В XII в. в Болонском университете было собрано около 150 рецептов обезболивающих средств. Примерно в 1200 г. Р. Луллий открыл эфир, обезболивающие средства которого описал в 1540 г. Парацельс.

Несмотря на эти исследования, при проведении операций, для того чтобы вызвать потерю сознания, зачастую применяли деревянный молотоккиянку, которым пациента били по голове.

В начале XIX в. английский ученый Г. Деви случайно вдохнул большую дозу закиси азота N2O. При этом он ощутил чрезвычайное возбуждение и опьянение, затанцевал, словно сумасшедший. Узнав о свойствах «веселящего газа», в лабораторию Деви стали приходить респектабельные леди и джентльмены, чтобы подышать удивительным веществом. Веселящий газ действовал поразному: одни прыгали по столам и стульям, другие говорили без умолку, третьи лезли в драку.

В 1844 г. американский зубной врач X. Уэллс использовал наркотическое действие закиси азота для обезболивания. Сначала он попросил своих ассистентов вырвать у него зуб, используя в качестве наркоза этот газ. При этом он совсем не ощутил боли. В дальнейшем он испробовал этот наркоз на своих пациентах, но публичная демонстрация удаления зуба закончилась провалом: пациент громко закричал то ли от боли, то ли при виде медицинских инструментов. Неудача и насмешки довели стоматологановатора до самоубийства.

16 октября 1846 г. Н. И. Пироговым впервые была произведена полостная хирургическая операция под полным эфирным наркозом. В ходе ее было осуществлено полное обезболивание, расслаблены мышцы, исчезли рефлексы. Больной был погружен в глубокий сон, потеряв чувствительность.

14 февраля 1847 г. Н. И. Пирогов сделал первую операцию под эфирным наркозом во 2м военносухопутном госпитале.

Испытав эфиризацию (эфирный наркоз) на здоровых людях, повторно на самом себе, и располагая материалом после 50 операций под эфирным наркозом (используя его в госпитальной и частной практике), Пирогов решил применить эфирный наркоз непосредственно при оказании хирургической помощи на поле сражения.

В этом же году Пирогов осуществил интрахеальный наркоз – введение обезболивающего непосредственно в дыхательное горло.

8 июля 1847 г. Пирогов уезжает на Кавказ, где шла война с горцами, с целью проверить действие эфирного наркоза как обезболивающего средства в больших масштабах. По пути в Пятигорске и ТемирХанШуре Пирогов знакомил врачей со способами эфиризации и провел ряд операций под наркозом. В Оглах, где не было отдельного помещения для операций, Пирогов стал специально оперировать в присутствии других раненых, чтобы убедить их в болеутоляющем действии эфирных паров. Благодаря наглядному примеру другие раненые также безбоязненно подвергались наркозу. Прибыв в Самуртский отряд, Пирогов в примитивном «лазарете» провел около 100 операций. Таким образом, Пирогов первым в мире применил эфирный наркоз на поле сражения. За год Пирогов сделал около 300 операций под эфирным наркозом (всего в России с февраля 1847 г. по февраль 1848 г. их было произведено 690).

4 ноября 1847 г. шотландский врач Дж. Симпсон провел первую операцию под хлороформным усыплением. Первые операции под хлороформным наркозом в России осуществили: 8 декабря 1847 г. Лоссиевский в Варшаве, 9 декабря 1847 г. Поль в Москве, 27 декабря 1847 г. в СанктПетербурге в клинике Пирогова.

Пирогов энергично внедрил наркоз в клиническую практику. Он непрерывно работал над усовершенствованием методики и техники наркотизации. Пирогов предложил ректальный способ наркоза (введение эфира в прямую кишку). Для этого великий хирург сконструировал специальный аппарат и улучшил конструкцию существовавших ингаляционных аппаратов.

Изучая эфирный наркоз, Пирогов также вводил эфир в сонную и бедренную артерии, во внутреннюю яремную вену, бедренную и воротную вены. На основании экспериментальных данных Пирогов пришел к выводу, что при впрыскивании жидкого эфира в вену наступает мгновенная смерть.

Метод внутривенного наркоза чистым эфиром не получил распространения. Однако идея Пирогова о возможности введения наркотического средства непосредственно в кровь была претворена в жизнь русскими учеными Н. П. Кравковым и С. П. Федоровым, которые в начале XX в. предложили вводить непосредственно в вену снотворное гедонал.

Вместе с общим наркозом развивалось местное обезболивание. Для этого использовали втирание различных веществ, сдавливание нервных стволов и т. п.

В 1859 г. был открыт кокаин – алкалоид листьев кокаинового куста. Исследования показали, что он обладает обезболивающими свойствами. В 1884 г. русский врач В. К. Анреп предложил использовать кокаин в качестве анестезирующего средства, а в 1884 г. австриец Келлер применил кокаиновое обезболивание при операциях на глазах. Но к сожалению, при длительном приеме кокаин вызывал болезненное привыкание.

Новый этап в местном обезболивании начался с появлением новокаина, созданного на основе кокаина, но не вызывающего привыкания. С введением в практику растворов новокаина стали развиваться различные способы местного обезболивания: инфильтрационная, проводниковая и спинномозговая анестезия.

В первой половине XX в. анестезия, наука об обезболивании, стала самостоятельным разделом медицины. Она занимается подготовкой больного к операции, проведением наркоза и наблюдением во время операций и в послеоперационный период.

При проведении наркоза осуществляется контроль за состоянием больного при помощи электроэнцефалографии и наблюдения за пульсом и артериальным давлением. Важным этапом является выход из наркоза, поскольку рефлексы у больных восстанавливаются постепенно и возможны осложнения.

Применение наркоза позволило осуществлять операции на сердце, легких, головном и спинном мозге, ранее невозможные изза мощного болевого шока. Поэтому врачанестезиолог не менее важен, чем хирург.

Обработка металлов

Металлы были знакомы человеку начиная с глубокой древности. Об истории применения железа рассказано в отдельной статье.

Здесь же мы расскажем об истории использования различных металлов, как «ветеранов», так и открытых сравнительно недавно.

Первым металлом, который стал использоваться человеком как в чистом виде, так и в сплавах, была медь. Еще в каменном веке, занимаясь поиском подходящих пород, люди стали использовать медные самородки для изготовления мелких изделий путем холодной ковки. Позже их стали ковать, предварительно отжигая.

Холодной ковкой можно было придать форму лишь небольшим предметам – шилам, булавкам, проволоке, крючкам, наконечникам стрел, ножам. Они требовали лишь небольшой ковки и шлифовки. Получить листы из самородной меди нельзя было изза ее растрескивания.

Одним из первых названий металла было слово «эс», что значит «руда». Первые медные рудники находились на Кипре, откуда готовый продукт вывозили в другие страны. Поэтому медь стали называть «эс киприум» – «металл с Кипра». Позже это название превратилось просто в «купрум».

Следующим этапом был отжиг меди, а позже – ее восстановление из руд. Для восстановления меди из малахита требуется температура не ниже 700–800 °C. А при отжиге меди плавление происходит при температуре 1084 °C. Поэтому, скорее всего, впервые люди открыли процесс восстановления меди из минералов, наносившихся на стенки гончарных изделий для их окраски, случайно, обнаружив кусочки металла на стенках горшков после их обжига. И тогда стали плавить руду намеренно.

Плавку производили в печах примитивного типа: глиняный тигль с рудой и углем помещался в неглубокую ямку с насыпанным поверх нее слоем древесного угля. Так могла быть достигнута температура, необходимая для восстановительной плавки руды и получения расплава меди.

Первые предметы из меди в Египте датируют IV тыс. до н. э. Многие древние медные предметы изготовлены не из чистой меди, а из медномышьякового сплава. Присутствие в меди 0,5–8 % мышьяка улучшает ее ковкость в холодном состоянии, дает возможность получить более плотные отливки в рельефных литейных формах. Кроме того, медь, легированная мышьяком, плавится при более низкой температуре. Только при содержании мышьяка выше 8 % пластичность сплава ухудшается, он становится хрупким.

Наибольшее распространение получили сплавы меди с оловом – бронзы. Появление оловянной бронзы ознаменовало начало новой эры в истории человечества – бронзового века.

Добавление олова к меди, начиная с небольших долей, улучшила ее литейные качества, но изменила пластичность сплава. Бронзы, содержащие до 5 % олова, можно ковать и волочить в холодном виде. При дальнейшем повышении содержания олова такая обработка возможна только в горячем виде. При этом увеличивается хрупкость: бронзы, содержащие до 30 % олова, дробятся под молотком.

Небольшая добавка олова к меди незначительно понижает ее температуру плавления: медь, содержащая 5 % олова, плавится при 1050 °C, 10 % – при 1005 °C, 15 % – при 960 °C.

Еще одним распространенным сплавом меди является латунь – сплав меди и цинка в соотношении примерно 2:1. Латунь тверже, чем медь, более износостойка. Она очень ковкая и вязкая, легко прокатывается в тонкие листы, вытягивается в проволоку, выштамповывается в разнообразные формы. Она сравнительно легко плавится и отливается при температурах ниже температуры плавления меди.

Сейчас медь является одним из наиболее широко применяемых металлов. Современные бронзы не всегда содержат олово, его место заняли алюминий, кремний, свинец, бериллий. Широко используются медноникелевые сплавы, в которые иногда добавляют кобальт.

Особенно важна медь для электротехники. По электропроводности она занимает второе место среди металлов, уступая лишь серебру. Но изза дефицита меди провода чаще делают из алюминия.

Наряду с медью, одним из первых металлов, которые стал использовать человек, является золото. Как и медь, золото встречается в самородном виде, но гораздо реже. В древности его добывали из аллювиальных песков и гравия, представляющих собой продукты разрушения золотоносных пород. Позже его добывали также из золотоносных жил, пронизывающих кварцевые породы. Такое золото называется «жильным».

Грек Агатархид во II в. н. э. описал добычу золота на рудниках в Египте. Сначала раскалывали скалу, в которой находились жилы, затем обломки породы нагревали огнем, резко охлаждали водой и дробили непосредственно в шахтах. Раздробленную породу толкли в каменных ступках до размеров гороха, потом ручными мельницами размалывали в порошок. Золото отделяли, промывая порошок водой на наклонной плоскости, после чего полученный металл сплавляли в слитки.

Самородное золото обычно содержит примеси, в основном серебро и медь. В Древнем Египте его очищали, нагревая со свинцом, оловом, солью и ячменными отрубями. Плиний Старший писал об извлечении золота с помощью ртути. Для этого золотоносную руду дробили и смешивали с ртутью, отделяли породу от ртутнозолотой смеси, фильтруя через кожаный или замшевый фильтр. Из образовавшейся амальгамы получали золото, выпаривая ртуть.

В древности золотые изделия изготавливали ковкой или литьем. Тогда широко применялось листовое золото, которым покрывали различные предметы, как металлические, так и деревянные. Фольгу накладывали и укрепляли с помощью пайки на медь, бронзу, серебро. Изделия из меди покрывали золотом для предотвращения коррозии. Золотой фольгой покрывали деревянную мебель. Уже в античности из листового золота делали зубные коронки.

В Египте применялись изделия из природного сплава золота с серебром. Египтяне называли его азем, греки – электрон, а римляне – электрум.

Долгое время золото применялось для производства драгоценностей, монет. Изза малой износостойкости применялось не чистое золото, а его сплавы с серебром и медью.

Сейчас золото добывают из руд, в которых на тонну породы приходится несколько граммов драгоценного металла. Важнейшим промышленным способом его добычи стало цианирование: измельченную породу обрабатывают раствором цианида натрия. Золото переходит в раствор в виде комплексного соединения.

Кроме производства ювелирных изделий и монет золото применяется в электротехнике.

Серебро, несмотря на то что встречается в природе в 15–20 раз чаще золота, значительно реже находится в виде самородков. Помимо того, серебряные самородки покрыты черным налетом сульфида. Все это обусловило более позднее открытие серебра человеком. По этой причине поначалу оно было более редким и ценным, чем золото.

Широкие разработки серебра началось, когда его стали добывать из руд, где встречались серебро и свинец.

В течение длительного времени из серебра делали украшения – бусы, кольца, вазы, сосуды. Из серебра, как и из золота, изготавливали тонкие листы и фольгу, которыми покрывались деревянные предметы. Позднее серебро использовалось для чеканки монет.

Люди знали об антисептических свойствах серебра – вода, налитая в серебряные сосуды, обеззараживалась от болезнетворных микробов.

В XIX–XX вв. соли серебра стали применяться для изготовления светочувствительного слоя фото– и кинопленки.

Свинец сначала добывали, выплавляя руду на костре в неглубокой яме, на дно которой стекал расплавленный металл. Сырьем для получения свинца служил минерал галенит или свинцовый блеск. Его применяли для очистки золота. Высокая пластичность металла не позволяла использовать его самостоятельно. Из свинца и его сплавов с оловом и сурьмой отливали фигурки, рыболовные грузила, кольца, бусы, украшения, пробки, посуду, водопроводные трубы, саркофаги. Свинцом заполняли полости бронзовых статуэток и гири для весов. Основное применение свинца в древности – закупоривание сосудов.

Растертый в пудру свинцовый блеск применялся на Востоке для подведения глаз. В Египте соединения свинца применялись для окрашивания стекол в желтый цвет.

В Средние века низкая температура плавления (327 °C) позволяла отливать из свинца пули для ружей и пистолетов.

В наши дни свинец применяется в производстве аккумуляторов, из него делают оболочки кабелей. Свойство свинца поглощать рентгеновские и радиоактивные лучи используется для защиты от излучения.

Олово впервые было получено из природной двуокиси – касситерита – путем выплавки с древесным углем. О получении бронзы путем добавления к меди олова было рассказано выше. Хорошие литейные свойства олова позволили изготавливать из него посуду, а начиная с XVIII в. – популярных до сих пор оловянных солдатиков. С появлением консервов олово стали применять для покрытия жести, из которой делают консервные банки. В электротехнике оловянные припои применяют для пайки проводов.

Существуют две модификации олова: α– и βолово. При комнатной температуре существует βолово. Это белое вещество. При температуре ниже 13 °C более устойчиво αолово – серый мелкокристаллический порошок. Процесс превращения белого олова в серое проходит при температуре –33 °C. Оно получило название «оловянной чумы». Считается, что именно эта «болезнь» послужила причиной гибели полярной экспедиции экспедиции Р. Скотта к Южному полюсу. Путешественники остались без горючего, просочившегося через пораженные «чумой» швы баков.

Третий из металлов, считающихся драгоценными, – платина, был открыт на несколько тысячелетий позже золота и серебра. В переводе с испанского «платина» означает «серебришко». Так испанцы презрительно называли тяжелый белый нержавеющий металл, часто встречавшийся им на серебряных рудниках в Южной Америке.

Большое количество платины было вывезено в Испанию, где ее продавали по цене более низкой, чем серебро. Недобросовестные ювелиры примешивали ее к золоту и изготавливали из платины фальшивые монеты. Это привело к тому, что испанский король издал указ о запрете ввоза платины в страну и уничтожении всего оставшегося количества платины. Все запасы металла в Испании и колониях были утоплены в море.

В 1744 г. испанский морской офицер А. де Ульоа привез образцы платины в Лондон. Это вызвало интерес у ученых. В середине XVIII в. платина была признана самостоятельным металлом.

Похожая на серебро внешне и способностью не ржаветь, платина долгое время не поддавалась ни огню, ни молоту. Изза высокой температуры плавления – (1769 °C) ее долго не могли расплавить. Температуру плавления металла снижали добавки мышьяка. Этот прием, в частности, использовал французский ювелир М.Э. Жанетти, изготавливавший изделия из платины.

После введения метрической системы мер в конце XVIII в. во Франции из платины изготовляли эталоны метра и килограмма. Позже их стали делать из сплава платины и металла платиновой группы – иридия.

Русский ученый А. А. МусинПушкин разработал и ввел новые методы аффинажа платины – металлургического процесса получения металла высокой степени чистоты путем отделения примесей. Схема аффинажа платины основывалась на растворении сырой (шлаковой) платины в «царской водке» – смеси азотной и соляной кислот – и на последовательном осаждении нашатырем платины из раствора.

В середине XIX в. в России были отчеканены монеты из платины.

Вплоть до Второй мировой войны большая часть добываемой платины шла на изготовление украшений. Сейчас около 90 % всей платины идет на научные и промышленные разработки. Из нее делают лабораторные приборы – тигли, чашки, термометры сопротивления и др. Около 50 % всей потребляемой платины идет на изготовление катализаторов – ускорителей химических реакций. Они применяются в производстве соляной кислоты и нефтехимической промышленности. Около 25 % платины расходуется в электро– и радиотехнике, автоматике и медицине. Кроме того, ее применяют как антикоррозионное покрытие.

Самый распространенный в природе металл – алюминий. Но в относительно чистом виде он был получен датским физиком Эрстедом лишь в 1825 г. Ученый писал в одном из научных журналов, что в результате его опытов «образовался кусок металла, цветом и блеском несколько похожий на олово». Это сообщение осталось почти незамеченным, да и сам Эрстед не придал своему открытию большого значения.

В 1827 г. к Эрстеду приехал молодой немецкий физик Ф. Велер. Вернувшись в Германию, он занялся проблемой получения алюминия и в конце 1827 г. опубликовал свой метод. Вначале ему удавалось получать алюминий в виде зерен небольшого размера. После 18 лет кропотливой работы Велер усовершенствовал свой способ, получая металл в виде компактной массы.

В то время алюминий ценился очень дорого. Так, из него были сделаны погремушки для будущего императора Франции Наполеона III. Именно он, уже будучи монархом, решил вызвать зависть у своих венценосных коллег. С этой целью он решил сделать из алюминия доспехи для солдат своей армии. Для осуществления проекта он предоставил неограниченные возможности ученому и промышленнику А.Э. СентКлер Девилю, чтобы тот разработал способ получения алюминия в больших количествах. Девиль положил в основу своих исследований метод Велера и разработал соответствующую технологию, внедрив ее на своем заводе.

Способ Девиля заключался в восстановлении двойного хлорида алюминия и натрия Na3AlCl6 металлическим натрием.

Чтобы прекратить спекуляции некоторых бонапартистских кругов о якобы французском приоритете открытия алюминия, Девиль отчеканил из алюминия медаль собственного производства с портретом Ф. Велера и датой «1827», послав ее в подарок немецкому ученому.

Несмотря на изобретение Девиля, алюминий ценился очень дорого. С 1855 по 1890 г. в мире было получено всего 200 тонн металла. Это было связано с тем, что в природных соединениях алюминий крепко связан с кислородом и другими элементами. Его можно получать методом электролиза расплава оксида алюминия – глинозема, но он плавится при температуре 2050 °C, что требует больших затрат энергии.

Техническое использование алюминия стало бы возможным, если бы удалось понизить температуру плавления оксида хотя бы до 1000 °C. Такой способ почти одновременно открыли в 1886 г. американец Ч. Холл и француз П. Эру. Они установили, что глинозем хорошо растворяется в расплавленном криолите – минерале AlF33NaF. Этот расплав подвергается электролизу при температуре 950 °C. Поскольку запасы криолита ограничены, позже было налажено производство синтетического криолита.

Чистый алюминий имеет сравнительно небольшую прочность, поэтому в конце XIX – начале XX в. велись поиски алюминиевого сплава, обладающего большой прочностью. В начале прошлого века немец А. Вильм получил сплав, содержавший, кроме алюминия, добавки меди, магния и марганца. Его прочность была выше, чем у алюминия. Чтобы еще больше ее повысить, Вильм решил подвергнуть металл закалке. С этой целью он нагрел несколько образцов сплава примерно до 600 °C и резко охладил их в воде. Прочность образцов была различной, и Вильм решил, что неисправен измерительный прибор. Несколько дней ученый настраивал его. Повторные измерения показали, что прочность возросла примерно вдвое. Следующие опыты показали, что закалка нового сплава в сочетании со старением значительно повышает прочность нового сплава.

Подобрав оптимальный состав сплава и разработав режим его термообработки, Вильм получил патент и продал его немецкой фирме. В 1911 г. эта фирма выпустила первую партию нового сплава, названного в честь города Дюрена, где находился завод по его производству, дюралюминием, или дуралюмином.

Новый сплав появился как нельзя кстати: в это время развивалась авиация, и с усовершенствованием конструкций самолетов появилась потребность в легком и прочном материале для изготовления корпусов самолетов. Первый цельнометаллический самолет появился в середине 20х годов прошлого века. Но полностью вытеснил дерево в авиации алюминий лишь в 40е годы.

Кроме авиации алюминий применяется в электротехнике, где, в силу своей относительной дешевизны и высокой электропроводности, успешно заменяет медь. Сверхчистый алюминий используют в производстве электрических конденсаторов и выпрямителей и для синтеза полупроводниковых соединений. Чистый алюминий используют и для производства различных отражателей, и для предохранения металлических поверхностей от коррозии.

Алюминий используется как конструкционный материал в ядерных реакторах. В алюминиевых резервуарах большой емкости хранят жидкие газы, азотную и уксусную кислоту, пищевые масла. Алюминий применяется в пищевой промышленности для упаковки продуктов (в виде фольги).

В последние десятилетия алюминий широко используется для отделки зданий и сооружений.

Еще один металл, широко применяемый в технике, титан, был открыт в виде металлического порошка английским минерологомлюбителем У. Грегором в 1791 году. В 1795 г. немецкий химик М. Клапрот установил, что минерал рутил представляет собой природный окисел этого металла. Он назвал его титаном в честь исполинов, древнегреческих детей бога неба Урана и богини Земли Геи.

Однако восстановить оксид титана до металла ученым не удалось. Лишь в 1910 г. американец М. Хантер получил металлический титан путем нагревания его хлорида с натрием в герметичном стальном сосуде. Полученный металл был загрязнен примесями и очень хрупок. Титан высокой чистоты получили голландские ученые А. ВанАркел и И. де Бур. Он был пластичен при низких температурах.

По распространенности в земной коре среди конструкционных материалов титан уступает лишь железу, алюминию и магнию. На воздухе на поверхности титана образуется защитная оксидная пленка, поэтому титан не поддается коррозии на воздухе и в морской воде, на него не действуют азотная кислота и «царская водка». Чистый титан – ковкий, пластичный, прочный и легкий металл. Он вдвое легче железа, превосходя по прочности многие стали. Он выигрывает и в сравнении с алюминием, превосходя его по прочности в 6, а по твердости – в 12 раз.

Как самостоятельный конструкционный материал титан стал применяться в лишь 50е годы XX в., поскольку его было трудно извлекать из руд и перерабатывать.

Большая часть производимого в мире титана расходуется на нужды авиационной и ракетной техники, а также морского судостроения. Технический титан используется для изготовления емкостей, химических реакторов, трубопроводов и других изделий, работающих в агрессивных химических средах. Биологическая безвредность титана позволяет использовать его в восстановительной хирургии и пищевой промышленности. Свойство титана повышать прочность при низких температурах дает возможность использовать его в криогенной технике.

Карбид титана применяется для изготовления режущих инструментов. Двуокись титана и титанат бария служат основой для титановой керамики, применяемой в производстве электрических конденсаторов, сегнетоэлектриков и пьезоэлементов.

Из титана сделаны многие художественные изделия, в частности скульптуры.

Сейчас развитие металлургии идет по пути поиска новых способов обработки металлов, получения сплавов с заданными свойствами. Можно с уверенностью сказать, что эра металлов будет продолжаться бесконечно.

Огонь

Огонь можно охарактеризовать как быстро протекающий процесс окисления вещества, сопровождающийся большим выделением тепла и ярким свечением.

С овладения огнем началась человеческая цивилизация, человек стал отдаляться от остальной природы, эксплуатируя ее ресурсы в своих целях. Человек – единственное живое существо, не только не боящееся огня, но и использующее его для обогрева, приготовления пищи, обработки материалов и т. п. Сейчас невозможно точно установить, когда отношение человека к огню стало иным, чем, например, других приматов. Скорее всего, первый огонь, который увидели наши предки, был пожаром, когда горело дерево, в которое ударила молния.

После «приручения» огня человек задумался над тем, как получать и сохранять огонь. Первую проблему можно было решить при помощи высечения кремнем искр, которые попадали на трут с дальнейшим раздуванием огня или путем трения кусочков дерева.

О важности сохранения огня говорит тот факт, что в Древнем Риме жриц богини домашнего очага Весты, допустивших нерасторопность, вследствие которой угас священный огонь, сурово наказывали, а языческих жрецов за подобную провинность казнили.

Сначала при помощи огня только обогревались и освещали жилища. Позднее, когда люди перешли к земледелию, при помощи огня выжигали участки леса под пашню. Огню обязаны своим появлением гончарное дело и керамика.

С появлением кузнечного дела и металлургии понадобилась высокая температура для нагрева и плавления металлов. С этой целью пережигали древесину без доступа воздуха, получая древесный уголь. Позже, когда началась массовая вырубка лесов, возникла необходимость в альтернативном источнике энергии, обладающем более высокой теплотворной способностью. Им стал каменный уголь. С началом в XVIII в. начался век пара, который Жюль Верн назвал новой стихией, соединившей в себе две старые – огонь и воду.

В середине XIX века начинают использовать еще один источник энергии – нефть. Сначала использовали сырую нефть, затем продукты ее переработки – керосин, бензин, мазут. Особую важность приобрела нефть с появлением двигателей внутреннего сгорания, основным топливом в которых являются нефтепродукты.

В конце XIX в. начали строиться тепловые электростанции на угле и мазуте.

Последним видом топлива, которое широко применяет человек, стал природный газ.

Несмотря на развитие альтернативных источников энергии – гидроэлектростанций, атомной энергетики и других, огонь как средство получения энергии не изжил себя, его перестанут использоваться лишь при полном исчерпании всех запасов топлива.

Одноразовая посуда

В 1908 году американский врач Э. Дэвидсон опубликовал исследование о смертности среди школьников. Одной из ее причин он назвал использование негигиеничных металлических кружек.

В том же году молодой студент – юрист X. Мур, писавший заметки для газеты производителей продуктов питания «The Packer», опубликовал разоблачительную статью о негигиеничности посуды, которую использовали железнодорожные инженеры, и провел кампанию против «общественной жестяной кружки». Затем Мур придумал «безопасную чашку», представлявшую собой скрученный конусом лист картона.

Свое изобретение Мур показал чикагскому предпринимателю Л. Луэллену. Луэллен сразу понял перспективность начинания и, в свою очередь, усовершенствовал его: у чашки появилось дно, и она приобрела округлую форму.

К 1910 году Луэллен запатентовал изобретение и основал в партнерстве с Муром «Компанию индивидуальной чашки для питья». Тогда же партнеры сконструировали автомат по продаже индивидуальных чашек и установили его в общественных местах и железнодорожных поездах.

К 1960 году ежегодно в одной только Америке продавалось бумажных стаканчиков на 50 млн долларов в год.

Увеличению спроса на одноразовую посуду способствовало появление в середине XX в. супермаркетов и ресторанов быстрого обслуживания типа «Макдоналдс».

В супермаркетах продукты стали расфасовывать в пластике для быстроты обслуживания покупателей. После использования продукта упаковка выбрасывается.

В ресторанах быстрого обслуживания для того, чтобы покупатели не нуждались в столовых приборах, продают супы в стаканах, которые можно пить, а не есть ложкой, замороженные бутерброды, которые перед употреблением надо лишь разогреть в микроволновой печи, а затем снять упаковку и т. п.

Для производства одноразовой посуды стали использовать различные пластмассы. Самым распространенным материалом является полипропилен. Он устойчив к действию температур до 150 °C и применяется для изготовления пленки, в которую помещают мороженые продукты. Их можно опустить в кипяток для разогрева прямо в пленке.

Можно также выделить полистирол, который отличается высокой прочностью, способностью окрашиваться в различные цвета и химической инертностью, если изготовлен без нарушения технологии. Полистирол применяется, например, для упаковки масла и маргарина.

Из полиэтилена изготавливают пленку для хранения холодных продуктов, различные емкости: хлебницы, чашки с блюдцами и т. д. Однако долго хранить сливочное масло или маргарин в такой пленке нельзя изза ее неустойчивости по отношению к жирам.

Емкости для подсолнечного масла, минеральной воды и прохладительных напитков делают из сравнительно нового материала – полиэтилентерефталата. Это очень инертная пластмасса, которая может выдерживать давление углекислого газа газированных напитков. Но хранить в бутылках изпод минералки растительное масло, воду или алкогольные напитки нельзя, так как масло и спирт гораздо более сильные растворители олигомеров, чем вода, и вредные вещества могут переходить из пластмассы в жидкость.

По оценкам специалистов, потребление пластиковой посуды в мире составляет до 88,5 кг на человека в год. Большая часть этой посуды оказывается на свалке и, разлагаясь, загрязняет окружающую среду.

Сегодня лишь четверть производимых полимерных материалов изготовлена из биоразлагаемых пластиков. Основными недостатками этих материалов являются дороговизна, неполная разлагаемость, возможность порчи пищевых продуктов от преждевременного разложения упаковки в процессе ее использования.

Первый биоразлагаемый пластик, целлофан, был получен в 1908 г. Присущая целлофану биодеградируемость в то время препятствовала его применению, и поэтому он был заменен пластиками с более продолжительными сроками службы.

В 70х годах от целлофана как упаковочного материала полностью отказались, обратив свое внимание на более технологичный крахмал. Один из новых биоразлагаемых материалов, успешно вышедших на рынок, «MaterBi», был запатентован в Италии в 1995 г. Он представляет собой смесь кукурузного крахмала, поливинилового спирта и поликапролактона. Из «MaterBi» получают самые различные изделия: от мешков до ручек.

«Крахмальные» изделия могут быть рассчитаны на требуемый срок самораспада. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы. В австрийских и шведских ресторанах «Макдоналдс» – «крахмальные» вилки и ножи. Но в США и в Украине «Макдоналдс» продолжает использовать дешевую пластиковую посуду.

Кроме крахмала и целлюлозы для производства биоразлагаемых пластмасс пытаются использовать полисахариды, пектин, рапсовое масло, из которого можно делать полимер, напоминающий полиуретан и другие материалы.

Но цена на биодеградируемые пластики сейчас во многом зависит от степени их востребованности в той или иной области. В основном эти материалы используются в медицине, для изготовления имплантантов, лекарственных капсул. В быту же большинство потребителей не склонно переплачивать за биоразлагаемый пакет для упаковки пищевых продуктов.

Другим направлением в развитии одноразовой посуды, не загрязняющей окружающую среду, является съедобная посуда. Такая посуда, например, была разработана к Московской олимпиаде 1980 г. на кафедре общественного питания Ленинградского института советской торговли. Она помогла бы избавиться от моечного оборудования и посудных шкафов.

Хозяин ресторана из английского города Кейворт П. Пипонидис тоже сделал посуду, в которой посетители уносят еду, съедобной. Коробка из картофельной муки изготавливается по технологии, сходной с той, что используется в производстве чипсов.

Американские специалисты в области химии пищевых продуктов разработали съедобную бумагу для упаковки бутербродов. Она состоит из пюре, приготовленного из овощей, фруктов и ягод и обработанного особым способом, которое, попав в рот, сразу же растворяется. Внешне она напоминает обычную бумагу, обеспечивает герметичность продуктов и может применяться не только для упаковки бутербродов, но и для хранения полуфабрикатов в холодильнике.

Современная одноразовая посуда требует максимальной переработки и новых технологий производства, иначе Земля может утонуть в упаковках, остающихся после съеденной пищи.

Парашют

Принцип действия аппарата, замедляющего падение тел в воздухе, впервые сформулировал Роджер Бекон еще в XIII веке. В своем сочинении «О секретных произведениях искусства и природы» он признал возможность постройки летательных машин и указал, что можно опираться на воздух при помощи вогнутой поверхности.

Леонардо да Винчи впервые разработал конструкцию аппарата, замедляющего падение. Он писал: «Если человек возьмет полотняный купол, каждая сторона которого имеет 12 локтей ширины и 12 локтей высоты, он сможет безопасно сброситься с любой высоты». Но эта идея долго оставалась лишь на бумаге.

В 1617 г. в Италии был опубликован труд Фауста Веранчио «Книга о машинах». В ней был помещен рисунок, изображающий человека, опускающегося на квадратном куполе.

В 1777 г. парижский профессор Дефонтаж изобрел летающий плащ. По утверждению ученого, плащ должен был обеспечить безопасный спуск с большой высоты. Профессор не решился сам испытать свое изобретение. Он обратился к судебным властям с просьбой предоставить для испытания преступника, приговоренного к смертной казни. Убийца и грабитель Жак Думье согласился прыгнуть. В сопровождении полицейских он был доставлен к парижскому оружейному складу, где его ожидал Демонтаж. «Испытатель» влез на крышу, и профессор надел на него плащ, состоящий из большого количества мелких покрышек. Изобретатель посоветовал Думье держать руки горизонтально и стараться парить, как птица. Тот прыгнул. Вначале ветер отнес его немного в сторону, затем Думье стремительно полетел вниз. Почти достигнув земли, он немного задержался и восстановил потерянное равновесие. На землю Думье опустился совершенно невредимым. Довольный Дефонтаж вручил ему кошелек с золотыми монетами.

Удачные опыты спуска грузов осуществил один из изобретателей воздушного шара Жозеф Монгольфье. В 1777 г., рассчитав сопротивление воздуха, он сконструировал аппарат, с которым сам прыгнул с крыши сарая. Опыт прошел удачно.

Французский физик Луи Себастьян Ленорман усовершенствовал аппарат Веранчио, сделав его более надежным, целесообразным и красивым. Аппарат представлял собой жесткий конусообразный купол со стропами и напоминал современные учебные парашюты. 26 декабря 1783 г. Ленорман спрыгнул с высокого дерева, держа в руках шест, на концах которого было привязано по зонту.

29 декабря 1783 г. Ленорман совершил прыжок с балкона обсерватории в Монпелье. Свой аппарат он назвал «парашют», что дословно означает «противопадение». С его легкой руки это название вошло в обиход.

Парашют, пусть еще несовершенный, был изобретен. 5 июня 1783 г. братья Монгольфье испытали воздушный шар. После испытания первых аэростатов воздухоплаватели стали задумываться о мерах спасения в случае аварии.

Первым на воздушном шаре с парашютом поднялся француз Бланшар. Испытывая парашют, он несколько раз спустил на землю свою собаку. Убедившись в безопасной работе парашюта, Бланшар увеличил размеры купола, чтобы на нем мог спускаться человек. Парашют Бланшара напоминал огромный зонт. Вершиной он был прикреплен к воздушному шару. Воздухоплаватель помещался в особой корзине и, в случае необходимости, мог отделиться от шара, обрезав стропышнуры. Но прыжок с аэростата Бланшар так и не решился совершить.

Впервые это сделал француз Гарнерен. Он изготовил купол парашюта в форме большого зонта диаметром 10 метров. 36 шелковых клиньев острыми концами сходились в центре купола. В его нижнюю кромку был вшит деревянный обруч. От него шли крепкие тросы, удерживавшие легкую плетеную корзину. Купол парашюта стропами прикреплялся к оболочке аэростата. Достаточно было их перерезать, и купол в падении раскрывался. Гарнерен несколько раз сбрасывал на парашюте животных. Убедившись в безопасности парашюта, 22 октября 1797 г. Гарнерен прыгнул с парашютом с аэростата. Достигнув высоты 600 метров, он обрезал веревку, соединяющую парашют с воздушным шаром. Аэростат взвился вверх, а парашют, на котором висел Гарнерен, стал быстро опускаться. Спустившись в поле, испытатель сел на лошадь и вернулся в парк Монсо, где его ждали восхищенные зрители.

Жак Гарнерен стал парашютистомпрофессионалом. Его парашют сильно раскачивался при снижении, поскольку не имел полюсного отверстия. Когда, по совету ученого Лаланда, Гарнерен сделал в куполе полюсное отверстие, качка значительно уменьшилась. На своем примитивном парашюте Гарнерен совершил несколько десятков прыжков. А его племянница Елизавета вошла в историю как первая женщина парашютисткавоздухоплавательница.

В течение всего XIX в. ловкие и предприимчивые люди, в основном циркачи и акробаты, развлекали зрителей эффектными воздушными трюками. В это время шла и серьезная работа над совершенствованием парашюта, в частности над устранением раскачивания парашюта во время спуска. В 1834 г. математик Кайлей выдвинул идею, что основным условием устойчивого положения парашюта в воздухе является заостренная форма купола с вершиной, направленной не вверх, а вниз. К сожалению, изза плохой подготовки и отсутствия предварительного испытания с грузом первое испытание закончилось трагически. Англичанин Коккинг спрыгнул с высоты 1000 метров. При падении внутренние распорки сломались, купол сложился и Коккинг с большой скоростью рухнул на землю.

Позже предпринимались попытки создать управляемые парашюты, перемещавшиеся по желанию парашютиста в любую сторону. Так, парашют Летюра имел площадь 73 м2, был снабжен рулем и двумя крыльями, которые приводились в движение при помощи педалей. Но при испытаниях Летюр разбился. Для уменьшения скорости падения стали увеличивать площадь купола. В 1855 г. парашютистка Пуантевен спускалась с высоты 1800 метров 43 минуты.

В 1880 г. американец Болдуин совершил прыжок с парашютом, который раскрывался автоматически. К верхнему узлу строп была привязана дополнительная стропашнур. Второй ее конец привязывался к корзине или оболочке воздушного шара. Когда Болдуин отделялся от шара, стропашнур под его тяжестью обрывалась, матерчатый купол без всякого каркаса от скорости падения сначала вытягивался во всю длину, а затем наполнялся воздухом и раскрывался. Такой принцип автоматического раскрытия сохранился до наших дней.

В конце XIX в. интерес к воздухоплаванию уменьшился, и парашюты на рубеже XIX–XX веков были преданы забвению.

Возрождение парашюта связано с появлением аэроплана. На несовершенных аппаратах пилоты часто гибли. В 1910 г. погибло около 30 авиаторов, в следующем году число жертв возросло до 80. Гарантией спасения летчиков мог стать только парашют. В старые модели начали вносить изменения для удобства и надежности использования во время аварийных прыжков из аэропланов. Снова начались поиски, были неудачи, поражения и победы.

В 1909 г. изобретатель Вассер предложил оригинальный образец парашюта для летчиков. Он представлял собой зонт, спицы которого соединялись с сиденьем летчика шелковыми шнурами. Само сиденье наглухо пристегивалось к телу пилота. Когда летчик находился в машине, сложенный зонт лежал за сиденьем. Достаточно было дернуть за шнурок, освобождающий концы спиц, чтобы пружины раскрылись, зонт наполнился воздухом и летчик силой потока встречного воздуха был выдернут из кабины вместе с сиденьем. Испытания парашюта Вассера так и не состоялись.

Существуют разные данные о том, кто совершил первый прыжок с парашютом из самолета. По одним источникам, это сделал Грант Мортон в конце 1911 года. Находясь в самолете, Мортон двумя руками швырнул купол парашюта в воздух. Силой потока купол раскрылся, и его потащило из самолета. Спуск и приземление прошли благополучно. По другим сведениям, американец Бери, поднявшись в воздух на двухместном аэроплане, перелез из своей кабины в специальное приспособление под фюзеляжем и покинул аэроплан на высоте 800 метров.

Несмотря на успешные испытания, парашют в авиации долго оставался не у дел. Не существовало аппарата легкого, надежного и постоянно надетого на летчика во время полетов. Тогда считали, что нужно обезопасить не летчика, а самолет. Изобретались устройства, автоматически поддерживающие устойчивое положение самолета в воздухе. Но существовали и другие причины аварий. Возрастающее количество этих аварий побудило активизировать работу над созданием подходящих моделей парашюта.

Прототип современного парашюта – легкого, компактного, надежного – создал русский изобретатель Глеб Евгеньевич Котельников. Начать разработку его побудила гибель летчика Мациевича, свидетелем которой он был. Перед началом работы Котельников составил список требований к будущему парашюту. Он должен быть компактным, всегда находиться с летчиком, давая ему возможность отделиться от аэроплана с любого места – с сиденья, с крыла, с борта. Он должен раскрываться по желанию авиатора и автоматически. Котельников хорошо продумал подвесную систему парашюта. Она состояла из поясного, нагрудного, двух плечевых обхватов и равномерно распределяла силу рывка во время раскрытия парашюта.

Котельников выбрал подходящий материал для изготовления купола, увидев, как большую шелковую шаль пропустили через маленькое колечко. Изобретатель понял, что прочный, эластичный шелк вполне подходит для купола. Изготовив маленькую модель, Котельников начал опускать на ней куклу. После удачных испытаний Глеб Евгеньевич рассчитал парашют для груза весом 80 кг и скоростью снижения 5 метров в секунду.

27 октября 1911 г. Котельников подал заявку в Комитет по изобретениям на выдачу патента. Однако изобретатель его так и не получил, поскольку парашют имел много схожих узлов с парашютом И. Сонтага, получившего патент ранее. Сначала Котельников назвал свое изобретение «спасательный прибор», затем, «автоматический ранец – парашют системы Котельникова». Лишь в 1923 г. изобретатель назвал свое детище РК1 (Русский, Котельникова, модель первая).

2 июня 1912 г. парашют был испытан на прочность при помощи автомобиля. Прикрепив лямки парашюта на буксировочные крюки, машину разогнали до скорости около 80 км/ч. Котельников дернул за спусковой ремень, и купол парашюта выбросило вверх. Он мгновенно раскрылся. Сила удара была настолько велика, что автомобиль с заглушенным мотором, пройдя несколько метров, остановился. 6 июня того же года манекен весом 76 кг сбросили с высоты 250 метров. Раскрытие парашюта прошло нормально.

Только в 1919 г. американец Лесли Ирвин создал подобную модель, отличавшуюся от модели Котельникова тем, что в ней был матерчатый легкий ранец, куда укладывался купол со стропами.

В 1923 г. Котельников изготовил модель парашюта РК2. В ней алюминиевый ранец с пружинной полкой и закрывающейся крышкой был заменен ранцем с жесткой спинкой и откидными боковыми клапанами. Они закрывались мягкой крышкой с пропущенными сквозь петли металлическими шпильками на общем стальном тросе. Модель РК3 имела ранец мягкой конструкции в виде расклеенного конверта. Боковые и торцовые клапаны при выдергивании вытяжного троса оттягивались специальными резинками, облегчая раскрытие. В 1924 г. Котельников сконструировал парашют из хлопчатобумажной ткани диаметром 12 метров, на котором можно было спускать грузы весом до 300 килограммов.

2 августа 1930 г. начался новый этап в истории парашюта – в Советском Союзе на военных учениях был сброшен первый парашютный десант. Этот день считается рождением советских воздушнодесантных войск. Они предназначались для высадки в тылу противника и действий против штабов, железнодорожных узлов и других важных объектов. Для «крылатой пехоты» были разработаны специальные десантные парашюты конструкции Гроховского и Савицкого.

В 30е годы развивался парашютный спорт. Проходили соревнования на точность приземления и на длительность полета без раскрытия парашюта – затяжные прыжки, а также воздушная акробатика.

Во Второй мировой войне значение парашютов трудно переоценить. Они были необходимы летчикам, покидающим горящие самолеты. Одной из самых ярких страниц в истории стал захват немецкими десантниками острова Крит. В ходе Великой Отечественной войны советские десантники участвовали во многих операциях, на парашютах сбрасывались грузы для партизан в тылу врага.

С увеличением скорости самолетов и появлением реактивной авиации стало невозможным покидание летчиком самолета обычным способом. Это заставило конструкторов во всех странах начать работу над созданием катапультных установок. Силой пороховых газов они выбрасывали летчика в воздух вместе с сиденьем на безопасную высоту. После этого кресло отделялось и раскрывался парашют. 24 июня 1947 г. впервые катапультировался парашютистиспытатель Г. Кондрашов. В 1949 г. В. Кочетков катапультировался на скорости 1036 км/ч. Сейчас созданы катапульты, позволяющие покидать самолет на предельно малой высоте и скорости не менее 150 км/ч.

В наши дни есть спасательные парашюты, которые могут применять летчики на высоте до 25 км и скорости до 1400 км/ч. Спортивные парашюты используют спортсменыпарашютисты. Для быстрой остановки гоночного автомобиля, скоростного самолета и морского супертанкера, а также для снижения скорости спуска автоматической межпланетной станции применяются тормозные парашюты. Огромные купола посадочных парашютов служат для безопасного приземления грузов и людей, покидающих самолет, мягкой посадки беспилотных и пилотируемых космических кораблей.

Паровая машина

Способность пара производить механическую работу давно известна человеку. Начиная с глубокой древности появляется целый ряд механизмов, основанных на использовании силы пара. Известно, что еще Герон Александрийский применил пар для движения аппарата специальной конструкции. Леонардо да Винчи оставил описание паровой машины, которая, по его словам, была изобретена Архимедом.

Атмосферное давление как источник двигательной силы обращало на себя внимание многих ученых и изобретателей, особенно после опытов немецкого физика Отто фон Герике с так называемыми «магдебургскими полушариями», из которых был выкачан воздух (1650 г.).

Большое значение имело творчество французского физика Дени Папена, изобретателя парового котла и предохранительного клапана. Он первым в 1690 г. правильно описал пароатмосферный цикл, в котором использовалось атмосферное давление.

Сущность пароатмосферного цикла заключалась в следующем. В цилиндр наливалась вода, до уровня которой опускался поршень. Подогревая воду, получали пар, поднимавший поршень до верхнего положения. Затем упоркой заклинивался шток, огонь убирался, и цилиндр поливался водой. В результате создавались конденсация пара и безвоздушное пространство. Когда убиралась упорка, то поршень под давлением атмосферы опускался, что и позволяло поднимать груз на определенную высоту.

Впервые практически решил эту проблему англичанин Т. Сэвери, создав машину, предназначенную для откачки воды из шахт. Паровой насос «Друг рудокопов» – так называлась машина Сэвери (патент на нее был получен изобретателем в 1698 г.) – состоял из котла и сосуда. Они соединялись между собой трубой, имевшей кран. Пар, поступая из котла в сосуд, вытеснял оттуда воздух через всасывающую трубу. Затем закрывался кран, а сосуд обливался холодной водой из бачка, в результате чего пар конденсировался. Под давлением атмосферы вода по всасывающей трубе поднималась в сосуд. Открывая кран снова, подавали в сосуд пар, выталкивавший воду по нагнетающей трубе на поверхность. Затем все операции повторяли вновь.

Новое в машине Сэвери по сравнению с паровым котлом Папена заключалось в том, что у Сэвери паровой котел был отделен от рабочего пространства. Но работа пара и его конденсация попрежнему происходили в одном и том же сосуде. Машина Сэвери была крайне не экономична, ибо попеременное нагревание и охлаждение одного и того же сосуда требовали большого количества топлива. Она расходовала до 80 кг угля на 1 л. с. в час.

Эта машина обладала рядом серьезных недостатков. Глубина всасывания в ней не превышала 10 м, т. е. высоты, соответствующей атмосферному давлению. Высота подачи воды в машине достигала 30 м, что определялось давлением пара, которое по условиям прочности котла не могло превышать 3 атмосфер. Для откачивания воды с большей глубины нужно было ставить несколько машин одну над другой. Насос был небезопасен в работе изза частых взрывов.

Но машины Сэвери все же довольно широко применялись на протяжении всего XVIII в. как в Англии, так и в других странах. В 1707 г. одна из машин Сэвери была приобретена Петром I и установлена в Петербурге в Летнем саду для приведен